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We consider two classes of elliptic resonant problems. First, by local linking theory,
we study the double-double resonant case and obtain three solutions. Second, we intro-
duce some new conditions and compute the critical groups both at zero and at infinity
precisely. Combining Morse theory, we get three solutions for the completely resonant
case. � 2001 Academic Press
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1. INTRODUCTION

In this paper we consider the elliptic resonant problem at higher eigen-
value of &2 with Dirichlet boundary condition on a bounded domain
0/RN, N�1. More precisely, we will be concerned with the multiple
solutions of the problem

&2u= g(x, u), in 0, u=0 on �0, (P)

where g # C1(0� _R, R). We denote by 0<*1<*2< } } } <*k< } } } the
distinct eigenvalues of &2 in H :=H 1

0(0) and by H(*k) the corresponding
*k -eigenspace, respectively. We consider two cases. In the first case, we deal
with by using the local linking theory the double-double resonant case (see
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assumptions (A1) and (A2)) and obtain at least three solutions. In the
second case, by computing the critical groups and by using Morse theory,
we study the completely resonant case (see assumption (C) of subsection 1.2)
and obtain at least two nontrivial solution. We also establish some existence
results of one nontrivial solution under some very weak conditions.

1.1. Double-Double Resonance Case. In order to obtain multiple solutions
by using the local linking theory, we first make the following assumptions.
From now on, for two functions a, b, we write a(x)Pb(x) (or a(x)pb(x))
to indicate that a(x)�b(x) (resp. a(x)�b(x)) with strict inequality holding
on a set of positive measure.

(A1) *k�lim inf |t| � � ( g(x, t)�t) uniformly for a.e. x # 0 and there
exists : # C(0� ) such that g$(x, t)�:(x)P*k+1 for a.e. x # 0 and t # R.

(A2) There exist m�k, t0>0 and ; # C(0� ) such that

*m&1�
2G(x, t)

t2 �;(x)P*m for a.e. x # 0 and 0<|t|�t0 ,

where G(x, t)=� t
0 g(x, s) ds.

We see that (A1) and (A2) imply that

*k�lim inf
|t| � �

g(x, t)
t

�lim sup
|t| � �

g(x, t)
t

�:(x)P*k+1

and

*m&1�lim inf
t � 0

2G(x, t)
t2 �lim sup

t � 0

2G(x, t)
t2 �;(x)P*m ,

which characterize (P) the double resonance at infinity and the double
resonance at zero. Let us call (P) a double-double resonance problem.
Problems with double resonance at infinity were treated first by Berestycki
and deFigueiredo (cf. [1]). Recently, the paper [2] (see also [3] and the
references cited therein) studied this problem and obtained one nontrivial
solution.

Evidently, (A1) contains completely resonance at infinity, i.e.,

lim
|t| � �

g(x, t)
t

=*k .

For this problem there are many well-known existence and multiplicity
results (see, for example, [4�9, 19�23, 26�29] and the references cited
therein). Most of them are under the assumption of the boundedness of
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nonlinear term, that is, there exists g0 # L p(0) such that | g(x, t)|�g0(x)
for all t # R and a.e. x # 0 (see [4�9, 20, 27, 29]). If g is unbounded, one
nontrivial solution was obtained in [12, 13, 23, 26]; [10, 11] obtained two
solutions under some strong conditions. The main goal of this subsection
is to consider the multiple solutions of (P) with double-double resonance
and with unbounded nonlinear term. For this end, we introduce a
generalized condition of nonquadraticity at infinity (cf. [3]).

(A3) There exist + # (0, 2) and # # C(0� ) such that

lim sup
|t| � �

tg(x, t)&2G(x, t)
|t| + �#(x)P0 uniformly for a.e. x # 0.

Now the first main result stated as:

Theorem 1.1. Assume (A1), (A2), and (A3). Then (P) has at least three
solutions.

Remark 1.1. Indeed, there exist some functions satisfying (A1)�(A3).
For example, let *: 0� � [0, ?

2] be continuous with *(x)=0 on 01 and
*(x)= ?

2 on 02 , where 01 and 02 are two subsets of 0 with positive
measures. Define

g(x, t)={
*k t+

*k+1&*k

3 \2t sin \*(x)+
1
|t|+&

t
|t|

cos \*(x)+
1
|t|++ ,

if |t|�3,

�\*k+
25
27

(*k+1&*k)+ t, if 1�|t|�3,

(*m&1+(*m&*m&1) sin *(x)) t, if |t|�1.

Then it is easy to check that g(x, t) satisfies (A1)�(A3) with ;(x)=*m&1+
(*m&*m&1) sin *(x), #(x)=&cos *(x) and +=1. Particularly, g(x, t)&*k t
may be linear growth both at infinity and at zero on a subset of positive
measure.

Remark 1.2. Assumption (A3) permits that lim |t| � �(tg(x, t)&2G(x, t))
=� on a subset of positive measure and at the same time, that lim |t| � �(tg(x, t)
&2G(x, t))=c (c=constant or &�) on other subsets of positive measures.
(A3) is a generalization of the condition of nonquadraticity at infinity
which was introduced in [3], where #(x)=constant<0.

Remark 1.3. Theorem 1.1 generalizes Theorems 2.1 and 2.2 of [10]
and Theorem 2 of [5]. In [10] it was supposed that lim |t| � � ( g(t)�t)=*k ,
*k&1�inft{0 ( g(t)�t) (a global condition) and that tg(t) is not sign-changing

70 ZOU AND LIU



when |t| large. Mizoguchi [5] introduced the so-called density condition with
respect to G and obtained only one nontrivial solution by different method.
If g is bounded, [5, 7] obtained some similar results by different methods
under different conditions.

There is a conjugate result of Theorem 1.1.

Theorem 1.2. Suppose that there exist m>k, t0>0, 2>+>0; :� , ;� , #� #
C(0� ) such that the following conditions hold :

(A$1) lim sup |t| � � ( g(x, t)�t)�*k uniformly for a.e. x # 0 and g$(x, t)
�:� (x)p*k&1 for a.e. x # 0 and t # R;

(A$2) *m�2G(x, t)�t2�;� (x)P*m+1 for a.e. x # 0 and 0<|t|<t0 ;

(A$3) lim inf |t| � � (( g(x, t) t&2G(x, t))�|t|+)�#� (x)p0.

Then (P) has at least three solutions.

Remark 1.4. The proof of Theorems 1.1 and 1.2 is based on the reduc-
tion method and the local linking theory (cf. [17, 18]). We prove that the
reduction functional defined on a finite dimentional (or infinite dimen-
tional) subspace has the local linking geometry, then the abstract theorem
of [17, 18] could be used.

1.2. The Completely Resonant Case. We consider

lim
|t| � �

g(x, t)
t

=*k and lim
|t| � 0

g(x, t)
t

=*m . (C)

Obviously, this case is contained in the double-double resonance case. But
by introducing some new conditions which enable us to compute the critical
groups, we obtain some new results about multiple solutions. For this case,
the corresponding functional of (P) is degenerate both at infinity and at
zero. Therefore, computing the critical groups becomes the main ingredient
when we want to use Morse theory.

Throughout this paper, we write

g(x, t)=*k t+ f (x, t)=*m t+ f0(x, t)

and

F(x, t)=|
t

0
f (x, s) ds, F0(x, t)=|

t

0
f0(x, s) ds.

First, for computing the critical groups at infinity (cf. [12]), we introduce
a control function h� for f.
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Let h� : R+ � R+ be an increasing function and {1 , {2 two constants
such that

0<{1�
th�(t)
H�(t)

�{2<2, h�(s+t)�c(h�(s)+h�(t)), \s, t # R+.

Here and in the sequel, the letter c will be indiscriminately used to denote
various constants whose exact value is irrelevant. Evidently, h�(t)=t_ with
0<_<1 is a simple example. Now we assume that

(B1) | f (x, t)|�c(1+h�( |t| )) for a.e. x # 0 and t # R.

(B\
2 ) lim inf |t| � �(\F(x, t)�H�( |t| )) :=a\(x)p0, uniformly for

a.e. x # 0.

We will see that (B1) and (B\
2 ) enable us to compute the critical groups

at infinity and Betti number precisely.
Since the existence of nontrivial solutions is closely related to the behavior

of f0 at zero, we need some hypotheses around the origin. Similarly, we intro-
duce a control function as follows.

Let h0 : R+ � R+ be an increasing function and _1 , _2 two constants
such that

2<_1�
th0(t)
H0(t)

�_2 , h0(s+t)�c(h0(s)+h0(t)),

for s, t # R+ and small. A simple example is h0(t)=t_ with _>2. Now we
assume that

(C1) | f0(x, t)|�ch0( |t| ) for a.e. x # 0 and |t| small.

(C \
2 ) lim inft � 0 (\F0(x, t) �H0( |t| )) := b\(x) p 0, uniformly for

a.e. x # 0.

Remark 1.5. We can compute the critical groups at zero precisely under
(C1) and (C\

2 ). Considering (B1) (or (C1)), (B\
2 ) (resp. (C \

2 )) are reasonable.
Noting that a\(x) and b\(x) are permitted of zero on a positive measure
subset of 0, then \F(x, t) and \F0(x, t) may be sign-changing; F(x, t) is
allowed to be bounded or unbounded on different subsets of 0 with
positive measures.

In order to get multiple solutions, we need a further assumption, that is,

(D\) there exists :~ # C(0� ) such that \f $(x, t)�\:~ (x)P\(*k\1&*k)
for a.e. x # 0.
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Set

+�=dim(H(*1)� } } } �H(*k&1)), &�=dim H(*k);

+0=dim(H(*1)� } } } �H(*m&1)), &0=dim H(*m).

Now we are prepared to state the main results in this subsection.

Theorem 1.3. Assume (B1), (C1), and (D+). Then (P) has at least two
nontrivial solutions in each of the following cases:

(i) (B+
2 ) and (C +

2 ); |(+�+&�)&(+0+&0)|=odd number;

(ii) (B+
2 ) and (C &

2 ); |+�+&�&+0 |=odd number.

If (D&) holds, we can estimate the Morse index, therefore we get

Theorem 1.4. Assume (B1), (C1), and (D&). Then (P) has at least two
nontrivial solutions in each of the following cases:

(i) (B&
2 ) and (C +

2 ); +0+&0 {+� ;

(ii) (B&
2 ) and (C &

2 ); +0 {+� .

If we drop (D\), we obtain the existence results of one nontrivial
solution.

Theorem 1.5. Assume (B1) and (C1). Then there exists at least one
nontrivial solution in each of the following cases:

(i) (B+
2 ), (C +

2 ) and +�+&� {+0+&0 ;

(ii) (B+
2 ), (C &

2 ) and +�+&� {+0 ;

(iii) (B&
2 ), (C +

2 ) and +� {+0+&0 ;

(iv) (B&
2 ), (C &

2 ) and +� {+0 .

Remark 1.6. Theorem 1.5 extends different results contained in [12, 22].
In [12] it was assumed that f (x, t) is bounded and F(x, t) � � uniformly
for |t| � �. In [22], F(x, t) is not sign-changing.

Next we consider the following assumptions:

(E \
�) There exist #\ # C(0� ) such that

lim inf
|t| � �

\(tf (x, t)&2F(x, t))
|t|{+1 �#\(x)p0.
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(E \
0 ) There exist �\ # C(0� ) such that

lim inf
|t| � 0

\(tf0(x, t)&2F0(x, t))
|t|_+1 ��\(x)p0.

Then we have

Theorem 1.6. Assume that there exist { # (0, 1), _>2, such that | f (x, t)|
�c(1+|t| {) for all t # R and a.e. x # 0 and that | f0(x, t)|�c |t|_ for |t| small
and a.e. x # 0. Then (P) has at least one nontrivial solution in each of the
following cases:

(i) (E&
�), (E &

0 ) and +�+&� {+0+&0 ;

(ii) (E &
�), (E +

0 ) and +�+&� {+0 ;

(iii) (E +
�), (E &

0 ) and +�{+0+&0 ;

(iv) (E +
�), (E +

0 ) and +� {+0 .

Remark 1.7. We will prove that (E \
�) and (E \

0 ) imply completely the
critical groups at infinity and at zero, respectively. As we have pointed out
in subsection 1.1, (E \

�) generalize the condition of nonquadraticity at
infinity (see [3, 32, 33]). But in those papers, no characteristics of the critical
groups were obtained under (E \

�). Conditions (E \
0 ) seem to be new.

Remark 1.8. It is easy to see that the above theorems contain the case
of *k=*m , which means that the resonance happens both at zero and
at infinity simultaneously with the same resonant point. So they extend
different results of [5, 7, 10, 26, 27].

Remark 1.9. In Theorems 1.1 to 1.4, condition g$(x, t)�:(x)P*k+1

(or g$(x, t)�:� (x)p*k&1) can be replaced by a weaker version

g(x, t)& g(x, s)
t&s

�:(x)P*k+1 \resp.
g(x, t)& g(x, s)

t&s
�:� (x)p*k&1+

for all t{s. There is no essential difference for proving Theorems 1.1 to 1.4.

2. PROOFS OF THEOREMS 1.1 AND 1.2��BY LOCAL
LINKING THEORY

First, we have to establish some lemmas. Let &u&=(�0 |su| 2 dx)1�2 be
the usual norm in H induced by the inner product (u, v)=�0 su } sv dx,
u, v # H. & }& p denotes p-norm in L p(0). Since H(* i ) is the eigenspace
corresponding to *i , H(*i ) has the unique continuation property.
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Lemma 2.1. Assume that there exists h: R+ � R+, c1>0 and c2>0
such that

c1�
th(t)
H(t)

�c2<2*,

where 2*=2N�(N&2) if N�3; 2*=� if N�2; H(t)=�t
0 h(s) ds. For

P # C(0� _R, R), there exists %\ # C(0� ) such that

lim inf
|t| � �

\P(x, t)
H( |t| )

�%\(x)p0

uniformly for a.e. x # 0. Let H=V�W with dim V<� and V have the
unique continuation property. If un=vn+wn with vn # V, wn # W and wn �
&un& � 0, then

lim inf
n � �

�0\P(x, un) dx
H(&un&)

>0.

Proof. Evidently, dim V<� implies that there exists C0>0 such that

|v(x)|�sup[ |v(x)|: x # 0]�C0 &v&, \v # V.

By the unique continuation property of V, using a similar argument as that
in the proof of Lemma 3.2 of [4], we have, for any =1>0 and =2>0, that
there exist $(=1) # (0, 1) and $(=2)>0 such that

meas[x # 0 : |v(x)|<$(=1) &v&]<=1 , \v # V"[0],

meas[x # 0 : |w(x)|>$(=2) &w&]<=2 , \w # W.

Letting

01n=[x # 0 : |vn(x)|�$(=1) &vn&],

02n=[x # 0 : |wn(x)|�$(=2) &wn&],

then meas(0"01n)<=1 , meas(0"02n)<=2 , 01n & 02n {< and

|
01n & 02n

%\(x) dx� 1
2 |

0
%\(x) dx>0,

if =1 and =2 are small enough.
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By our assumptions, for any =>0, we have that

|un(x)|
&un&

�$(=1)
&vn &
&un &

&$(=2)
&wn&
&un&

�$(=1)&=,

|un(x)|
&un&

�C0

&vn &
&un&

+$(=2)
&wn&
&un &

�C0+=,

as x # 01n & 02n and n � �; and that

|un(x)|
&un&

�$(=1)
&vn &
&un &

+$(=2)
&wn&
&un&

�$(=1)+=

as x # 02n"01n and n � �.
On the other hand, for any =>0, there exists T=>0 such that

\P(x, t)
H( |t| )

�%\(x)&= for a.e. x # 0 and |t|�T= .

Setting 0n=[x # 0 : |un(x)|�T=], 03n=[x # 01n & 02n : |un(x)|�&un &],
04n=[x # 01n & 02n : |un(x)|<&un&], then by the definition of h and for n
large enough, we have that

|
01n & 02n

\P(x, un)
H(&un &)

dx

�|
01n & 02n

(%\(x)&=)
H( |un | )
H(&un&)

dx

�|
01n & 02n

%\(x)
H( |un | )
H(&un&)

dx&= |
01n & 02n

\\ |un |
&un&+

c1

+\ |un |
&un &+

c2

+ dx

�|
03n

%\(x)
H( |un | )
H(&un&)

dx+|
04n

%\(x)
H( |un | )
H(&un&)

dx&=c

�|
03n

%\(x) \ |un |
&un&+

c1

dx+|
04n

%\(x) \ |un |
&un &+

c2

dx&=c

�|
03n

%\(x) dx+|
04n

%\(x)($(=1)&=)c2 dx&=c

�($(=1)&=)c2 |
01n & 02n

%\(x) dx&=c

�
($(=1)&=)c2

2 |
0

%\(x) dx&=c

�c($(=1)&=)c2&=c.
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On the other hand, for n large enough,

|
02n"01n

\P(x, un)
H(&un&)

dx

=|
(02n"01n) & (0"0n)

\P(x, un)
H(&un&)

dx+|
(02n"01n) & 0n

\P(x, un)
H(&un &)

dx

�&=+|
(02n"01n ) & 0n

(%\(x)&=)
H(x, un)
H(&un &)

dx

�&=c+|
(02n"01n ) & 0n

%\(x)
H(x, un)
H(&un &)

dx

�&=c+|
(02n"01n ) & 0n

%\(x) \ |un |
&un&+

c2

dx

�&=c&|
(02n"01n ) & 0n

($(=1)+=)c2 %\(x) dx

�&=c&($(=1)+=)c2 =1 c

and

|
0"02n

\P(x, un)
H(&un&)

dx�&=+|
(0"02n ) & 0n

\P(x, un)
H(&un&)

dx

�&=+|
(0"02n ) & 0n

(%\(x)&=)
H( |un | )
H(&un&)

dx

�&=c&c |
0"02n

\\ |un |
&un&+

c1

+\ |un |
&un &+

c2

+ dx

�&c=&c=2 .

Combining the above estimates, we have that

lim inf
n � � |

0

\P(x, un)
H(&un &)

dx�c($(=1)&=)c2&=c&c=1($(=1)+=)c2&=2c.

Noting that =1 , =2 and = are arbitrary, we have that

lim inf
n � � |

0

\P(x, un)
H(&un&)

dx�($(=1))c2 (c&c=1)>0. K
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Setting H&=H(*1)�H(*2)� } } } �H(*k&1), H+=H(*k+1)�H(*k+2)
� } } } , H0=H(*k), then H=H& �H+�H 0.

Lemma 2.2 [15]. (i) If a(x)P*k+1 for a.e. x # 0, then there exists
$>0 such that

&w&2&|
0

a(x) w2 dx�$ &w&2, for all w # H +.

(ii) If a(x)p*k for a.e. x # 0, then there exists $>0 such that

&v&2&|
0

a(x) v2 dx�&$ &v&2, for all v # H&�H0.

It is well known that the solutions u # H of (P) are the critical points of
C1 functional

I(u)= 1
2 |

0
|su| 2 dx&|

0
G(x, u) dx.

Based on the above lemmas, we show how conditions (A1) and (A3) (or
(A$1) and (A$3)) imply the compactness condition (C)c in the Cerami's sense
(cf. [14]): any sequence [un]/H such that I(un) � c and (1+&un&) &I$(un)&
� 0 possesses a convergent subsequence. It was shown in [4] that condition
(C)c actually suffices to get a deformation theorem and then, by standard
minimax arguments, it allows rather general minimax results.

Lemma 2.3. Assume (A1) and (A3) (or (A$1) and (A$3)). Then I satisfies
the compactness condition (C)c for every c # R.

Proof. We suppose that the first alternative holds. The proof with the
second alternative is similar. Assume [un] is such that I(un) � c and that
(1+&un &) &I$(un)& � 0 as n � �, then it is enough to prove that [un] is
bounded. By negation, assume that &un & � �, and write un=u+

n +u&
n +

u0
n # H+�H&�H 0=H. For any =>0, by (A1) and (A2) we have that

&=&
C=

|t|
�

f (x, t)
t

�:(x)&*k+=+
C=

|t|
, for t{0.

If |u+
n |�|u&

n +u0
n | , then

f (x, un)(u+
n &u&

n &u0
n)�(:(x)&*k+=)(u+

n )2&(:(x)&*k+=)(u&
n +u0

n)2

+C= |u+
n &u&

n &u0
n |.
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If |u+
n |<|u&

n +u0
n | , then

f (x, un)(u+
n &u&

n &u0
n)�&=(u+

n )2+=(u&
n +u0

n)2+C= |u+
n &u&

n &u0
n |.

Consequently,

f (x, un)(u+
n &u&

n &u0
n)

�(:(x)&*k+=)(u+
n )2+=(u&

n +u0
n)2+C= |u+

n &u&
n &u0

n |.

Combining Lemma 2.2, we have the estimates,

(I$(un), u+
n &u&

n &u0
n)

�&u+
n &2&&u&

n &2&*k &u+
n &2

2+*k &u&
n &2

2&|
0

(:(x)&*k+=)(u+
n )2 dx

&= |
0

(u&
n +u0

n)2 dx&C= |
0

(u+
n &u&

n &u0
n) dx

�$ &u+
n &2+\ *k

*k&1

&1+ &u&
n &2&=c &u+

n &2

&=c &u&
n &2&=c &u0

n &2&c &un &,

it follows that &u\
n &�&un& � 0. By Lemma 2.1 and (A3), we have that

lim sup
n � �

�0 (un f (x, un)&2F(x, un)) dx
&un &+ <0,

which contradicts the fact that

|
0

( f (x, un) un&2F(x, un)) dx=2I(un)&(I$(un), un) � 2c, as n � �.

Hence &un& is bounded. K

Lemma 2.4. Assume (A1). Let H=V�W with dim V<� and V have the
unique continuation property. If un=vn+wn with &un& � � and &vn&�&un& � 1,
then

(a) (A3) implies that lim infn � � (�0 F(x, un) dx�&un &+)>0;

(b) (A$3) implies that lim supn � � (�0 F(x, un) dx�&un&+)<0.

Proof. (a) For =>0, there exists T=>0 such that

tf (x, t)&2F(x, t)�(#(x)+=) |t| +,
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hence

d
dt \

F(x, t)
t2 +�

(#(x)+=) |t| +

t3 for |t|�T= .

Integrating the above inequality over an interval [t, T]/[T= , �) yields
the estimate

F(x, T)
T 2 &

F(x, t)
t2 �|

T

t

(#(x)+=) |t| +

t3 dt.

Noting that (A1) implies that 0�lim inf |t| � �(F(x, t)�t2)�(1�2)(*k+1&*k),
then F(x, t)�|t| +�&(#(x)+=)�(2&+) for t�T= and a.e. x # 0. By the same
way, we can prove that it is also true for t�&T= and a.e. x # 0. Hence

lim inf
|t| � �

F(x, t)
|t| + �&

#(x)
2&+

p0.

By Lemma 2.1, we have that

lim inf
n � �

�0 F(x, un) dx
&un&+ >0.

The proof of (b) is similar and will be omitted. K

Before proving Theorems 1.1 and 1.2, we recall a global version of the
Lyapunov�Schmidt method (cf. Lemma 2.1 of [16]). Let H be a real
separable Hilbert space and X and Y be two closed subspaces of H such
that H=X�Y. Assume that I # C 1(H, R). If there are m>0 and {>1 such
that

(I$(u+v)&I$(u+w), v&w) �m &v&w&{ for all u # X, v, w # Y,

then there exists � # C(X, Y ) such that

I(u+�(u))=min
v # Y

I(u+v).

Moreover, �(u) is the unique member of Y such that (I$(u+�(u)), v) =0
for all v # Y. Furthermore, if we define I� (u)=I(u+�(u)), then I� # C1(X, R)
and

(I� $(u), u1) =(I$(u+�(u)), u1) for all u, u1 # X.

An element u # X is a critical point of I� if and only if u+�(u) is a critical
point of I. Now we have to prove the following lemma.
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Lemma 2.5. Assume that &I$(u)&�c(1+&u&{&1) for u # H and that I
satisfies the compactness condition (C)c . Then I� satisfies the compactness
condition (C)c .

Proof. Let un # X be such that I� (un) � c and that (1+&un&) I� $(un) � 0,
that is

I(un+�(un)) � c, (1+&un&)(PXI$(un+�(un)) � 0,

here and then, we denote by PX : H � X (or PY : H � Y) the projection
onto X along Y (resp. onto Y along X ). By the definition of �, we know
that PY I$(un+�(un))=0; therefore (1+&un&) I$(un+�(un)) � 0.

On the other hand, we have done if there exists a subsequence, which is
denoted by the same way, &un& � 0 as n � �. Otherwise we suppose that
&un&�c0 for all n large enough, hence

m &�(un)&{�(I$(un+�(un))&I$(un), �(un))

=&(I$(un), �(un))

�c(1+&un &{&1) &�(un)&.

It follows that &�(un)&�&un &�c and that

&�(un)& I$(un+�(un))=
&�(un)&

&un &
&un& I$(un+�(un)) � 0,

(1+&un+�(un)&)(I$(un+�(un)) � 0,

as n � �. Therefore, up to a subsequence, un+�(un) � u*+w* for some
u* # X, w* # Y. Hence, we have that un � u* and w*=�(u*). K

Remark 2.1. If I satisfies the usual (PS) condition, then so does I� (cf. [7]).

Remark 2.2. Under the assumption of (A1), we will find that {=2 and
that &I$(un)&�c(1+&un &) holds for all u # H.

Proof of Theorem 1.1. We divide the proof into steps.

Step 1. For any u # H0�H &, v, w # H +, by (A1) and Lemma 2.2,

(I$(u+v)&I$(u+w), v&w)�&v&w&2&|
0

:(x)(v&w)2 dx�$ &v&w&2.

Therefore, there exists �: H 0�H & � H + such that I(u+�(u))=
minw # H+ I(u+w). The functional I� : H0�H& � R defined by I� (u)=
I(u+�(u)) is of class C1 and an element u # H0 �H& is a critical point of
I� if and only if u+�(u) is a critical point of I.
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Step 2. &I hence &I� is bounded below on H& �H0. By negation,
if there exists un # H 0 �H& such that &I(un)�&n, then I(un)�n and
&un& � � as n � �. By (A1) we know that

lim inf
|t| � �

2G(x, t)
t2 �*k uniformly for a.e. x # 0,

hence, for sufficiently small =, there exists C=>0 such that G(x, t)&*k t2�
&t2=&C= for all t # R.

Write un=u0
n+u&

n . If &u&
n &�&un& � c0 {0, then we have that

I(un)�
1
2 \1&

*k

*k&1+ &u&
n &2&|

0 \G(x, un)&
1
2

*ku2
n+ dx

�
1
2 \1&

*k

*k&1+ &u&
n &2+

1
2

&un&2
2 =+c&=

�
1
2

&un&2 \\1&
*k

*k&1 +
&u&

n &2

&un&2 +
=

*1++c= ,

it follows that I(un) � &� as n � �. If c0=0, then limn � �(&u0
n&�&un&)=1.

It follows from (A3) and Lemma 2.4 that

lim inf
n � �

�0 F(x, un) dx
&un&+ >0.

Consequently,

I(un)�
1
2 \1&

*k

*k&1 + &u&
n &2&|

0
F(x, un) dx � &�.

Step 3. Letting H 1=H(*1)�H(*2)� } } } �H(*m&1) and H2=
H(*m)� } } } �H(*k), then H 0�H &=H 1�H 2. The functional &I�
satisfies the local linking condition on H1�H2, i.e.,

&I� (u)�0 for u # H1 with &u&�$0 ;

&I� (u)�0 for u # H2 with &u&�$0 .

In fact, since dim H1<�, condition (A2) implies that there exists $1 such
that

&I� (u)�&I(u)�&1
2 &u&2+ 1

2 *m&1 &u&2
2�0 for u # H1 with &u&�$1 .
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Furthermore, since (A2) implies that G(x, t)� 1
2 ;(x) t2+c |t| p for all t # R,

where 2<p<2*, we have by Lemma 2.2 that

&I� (u)=&I(u+�(u))

�&1
2 &u+�(u)&2+ 1

2 |
0

;(x) |u+�(u)| 2 dx+c |
0

|u+�(u)| p dx

�&c &u+�(u)&2+c &u+�(u)& p.

Noting that p>2 and � # C1(H &�H 0, H+), we have $2>0 such that
&I� (u)�0 for u # H 2 with &u&�$2 .

Step 4. By Lemmas 2.3 and 2.5, I� satisfies the compactness condition
(C)c and evidently, infu # H 1�H2(&I� (u))<0. Therefore, combining Steps 1�3
and Local Linking Theorem (cf. [17, 18]), we know that &I� has at least
three critical points hence (P) has at least three solutions. K

Proof of Theorem 1.2. For this case, we have to consider 8=&I. Then
(8$(v+w)&8$(v+w1), w&w1) �c &w&w1&2 for w, w1 # H & and v #
H0�H+. It follows that there exists , # C(H0 �H+, H &) such that
&I(v+,(v))=minw # H&(&I(v+w)) :=I� (v) for v # H0�H+. By a similar
argument, &I� is bounded below and satisfies the local linking geometry
with respect to H1=H(*k)� } } } �H(*m), H 2=H(*m+1)�H(*m+2)
� } } } , we omit the details. K

3. PROOFS OF THEOREMS 1.3�1.6��BY MORSE THEORY

In this section, we will deal with (B1), (B\
2 ), (C1), and (C \

2 ). First of all,
we show how conditions (B\

2 ) imply the usual (PS) condition.

Lemma 3.1. Assume (B1) and (B\
2 ). Then I satisfies (PS) condition.

Proof. We just consider (B&
2 ), since the proof with the other alternative

is similar.
Let [un] be the (PS)-sequence. We write un=wn+zn+vn with wn # H+,

zn # H& and vn # H0. It is enough to prove the boundedness of [un]. Since

(I$(un), wn&zn)

=|
0

sun } s (wn&zn) dx&*k |
0

un(wn&zn) dx

&|
0

f (x, un)(wn&zn) dx
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�c &wn+zn &2&c &wn+zn &&c &wn+zn& \|0
h�

2( |un | ) dx+
�c &wn+zn &2&c &wn+zn &

&c &wn+zn& \||un |�&un&
h2

�( |un | ) dx+|
|un |�&un&

h2
�( |un | ) dx+

1�2

�c &wn+zn &2&c &wn+zn &

&c &wn+zn& \||un |�&un& \
|un |
&un&+

{2

h2
�(&un&) dx

+|
|un | �&un&

h2
�(&un&) dx+

1�2

�c &wn+zn &2&c &wn+zn &&c &wn+zn& (1+h�(&un &))

�c &wn+zn &2&c &wn+zn &

&c &wn+zn& (1+h�(&vn &)+&wn &{2&1+&zn &{2&1),

it follows that c &wn&2+c &zn&2�cH 2
�(&vn&). Noting that

I(un)�c &wn+zn&2&c &wn+zn &&|
0

F(x, vn) dx

&c &wn+zn & (1+h�(&vn&)+&wn&{2&1+&zn &{2&1)

�c &wn+zn&2&ch2
�(&vn &)&|

0
F(x, vn) dx,

then, if [&vn&] is unbounded, we have that

I(un)
h2

�(&vn&)
�&c+

�0&F(x, vn) dx
H�(&vn &)

&vn&2&{2 c,

which implies that I(un) � �, a contradiction! K

By the next lemma, we compute the homology groups Hq(H, I a), where
Hq( } , } ) denotes the homology group with coefficients in a field F,
Ia=[u: I(u)�a]. We will denote such H

*
(H, I &a) by C

*
(I, �) when a

large enough and call them the critical groups at infinity (cf. [12]).

Lemma 3.2. Assume (B1) and (B\
2 ). Then

(i) (B+
2 ) implies that Cq(I, �)=$q, +�+&�

F;

(ii) (B&
2 ) implies that Cq(I, �)=$q, +�

F.
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Proof. (i) For any u # H, we write u=w+z+v with w # H+, z # H&

and v # H0. Let $=min[1&*k �*k+1 , *k �*k&1&1] and consider the field

D={u # H : &w&2&
$*1

8(*1+*k)
&z&2&

*H 2
�(&v&)

1+&v&2 �M= ,

where parameters *>0, M>0 will be determined later. Then the normal
vector on the boundary �D of D is given by &=&(u)=w&dz&*!$(&v&)
(v�&v&), where d=$*1 �8(*1+*k), !(t)=H 2

�(t)�(1+t2). Then for u # �D

and = small enough,

(I$(u), &) �$ &w&2+$d &z&2&c |
0

(1+h�(&u&)) |&| dx

�$ &w&2+$d &z&2&c &&& (1+h�(&v&)+&w&{2&1+&z&{2&1)

�$ &w&2+$d &z&2

&c(&w&+d &z&+*!$(&v&))(1+h�(&v&)+&w&{2&1+&z&{2&1)

� 1
2 min[$, $d](&w+z&2&(1+d ) c=&1h2

�(&v&))

&c*(1+h�(&v&) !$(&v&))&c*(1+=&1)(!$(&v&))2&c.

On the other hand, it is easy to check that

h2
�(t)�c+2{2

2!(t), (!$(t))2�
4H 2

�(t)
(1+t2)4 \{2

t
+t({2&1)+

2

, for t>0.

Then there exist cd>0, c*>0 and for *>6cd , M>2c* �min[$, $d], we
have that

(I$(u), &)�
1
2

min[$, $d] \&w&2&d &z&2&2 \cd+
*
3+ !(&v&)+&c*

�
1
2

min[$, $d](&w&2&d &z&2&*!(&v&))&c*

=
1
2

min[$, $d] M&c*>0.

It implies that I has no critical point outside D and that the negative
gradient of &I$(u) points inward to D on �D. Furthermore, for u # D,
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I(u)�
1
2 \1+

*k

*1+ &w&2&
1
2

$ &z&2

&|
0

F(x, v) dx+c(1+h�(&v&)+&w&{2&1+&z&{2&1) &w+z&

�&
$
8

&z&2+c*!(&v&)+ch2
�(&v&)+c&|

0
F(x, v) dx

�&
$
8

&z&2+ch2
�(&v&)+c&|

0
F(x, v) dx.

By the definition of h� and Lemma 2.1, we have that

h2
�

H�(t)
�c |t|{2&2 and lim inf

v # H 0
&v& � �

�0 F(x, v) dx
H�(&v&)

>0,

it follows that

lim inf
v # H0

&v& � �

�0 F(x, v) dx
h2

�(&v&)
=�,

hence I(u) � &� as &v+z& � �. On the contrary, it is easy to see that

I(u)�&c \&z&2+|
0

F(x, v) dx+&c,

which implies that &z+v& � � whenever I(u) � &�. Now we choose
a>0 such that K :=[u # H : I$(u)=0]/[u # H : |I(u)|<a]. Hence there
exists R2=R2(a) such that D2 :=[u # D : &z+v&�R2]/I &a & D. Setting
b� =max[ |I(u)|: &z+v&�R2 , &w&2�$*1 �8(*1+*k) &z&2+*!(&v&)] and
b>max[a, b� ], then I&b & D/D2 . Finally, choose R1>>R2>0 such that
D1 :=[u # D : &v+z&�R1]/I&b & D. Since (I$(u), &)>0 on �D, then we
can prove that (D, D & I&a) is a strong deformation retraction of the
topological pair (H, I &a). On the other hand, there exists a geometric
deformation ` of D2 onto D1 and by the second deformation theorem (cf.
[21]), there is a strong deformation retraction ' of I&a & D onto I &b & D.
Hence, ` b ' is a strong deformation retraction of I &a & D onto D1 . It
follows that
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Hq(H, I &a)$Hq(D, D & I&a)

$Hq(D, D1)

$Hq(H0�H&, [u # (H0�H &) : &u&�R1])

$$q, +�+&�
F.

(ii) Setting

O={u # H : &z&2&
$*1

8(*1+*k)
&w&2&

*H 2
�(&v&)

1+&v&2 �M= .

Then the normal vector on the boundary �O of O is given by &=&(u)=
z&($*1 �8(*1+*k)) w&*!$(&v&)(v�&v&), where !(t)=H 2

�(t)�(1+t2). By a
similar argument, there exist appropriately large * and M such that

(I$(u), &)�&
1
2

max {$,
$2*1

8(*1+*k) \&z&2&d
$*1

8(*1+*k)
&w&2&*!(&v&)+=+c

�&
1
2

cM+c<0,

it follows that I has no critical point in H"O and that the negative gradient
flow of I$(u) outwards to O on �O. On the other hand, for u # O,

I(u)�
1
2

$ &w&2&
1
2 \1+

*k

*1+ &z&2&|
0

F(x, v) dx

&c(1+h�(&v&)+&w&{2&1+&z&{2&1) &w+z&

�
$
8

&w&2&ch2
�(&v&)&|

0
F(x, v) dx&c.

By (B&
2 ) and Lemma 2.1,

lim
&v& � �

�0&F(x, v) dx
h2

�(&v&)
=�.

It follows that I(u) � � as &v+w& � �. Similarly, &v+w& � � as
I(u) � �. Therefore, by the definition of O and the above arguments, we
can find a large enough such that K :=[u # H : I$(u)=0]/[u # H :
|I(u)|<a] and I&a/H"O. Since K/O"I&1[a, �), the flow of the negative
gradient vector provides a strong deformation retraction of H"O onto I&a.
Then

Hq(H, I &a)$Hq(H, H"O)$Hq, +�
F. K
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Next we compute the critical groups at zero (cf. [21, 25]). Let H 0
0=

H(*m), H +
0 =H(*m+1)�H(*m+2)� } } } , H &

0 =H(*1)� } } } �H(*m&1),
then H=H 0

0 �H &
0 �H +

0 . We first prove the following auxiliary result.

Lemma 3.3. Assume (C \
2 ). Then

lim inf
v # H 0

0

&v& � �

\�0 F0(x, v) dx
H0(&v&)

>0.

Proof. By the definition of h0 , we have that

�0 H0( |v| ) dx
H0(&v&)

�
_2

_1
|

0

|v| h0( |v| )
&v& h0(&v&)

dx

�c \|&v&�|v| \
|v|
&v&+

2(_2&1)

dx+|
&v&�|v| \

|v|
&v&+

2(_1&1)

dx+
1�2

�c.

Noting that |v(x)| � 0 uniformly for a.e. x # 0 as v # H 0
0 with &v& � 0 and

that, for any =1>0 there exists $(=1)>0 such that meas(0"0=1
)<=1 , where

0=1
:=[x # 0 : |v(x)|�$(=1) &v&] (cf. [4]), it follows that

\�0 F0(x, v) dx
H0(&v&)

�
�0 (b\(x)&=) H0( |v| ) dx

H0(&v&)

�|
0=1

b\(x)
H0( |v| )
H0(&v&)

dx&c=

�|
0=1

|v|�&v&
b\(x) \ |v|

&v&+
_1

dx

+|
0=1

|v|<&v&
b\(x) \ |v|

&v&+
_1

dx&c=

�($(=1))$1 |
0=1

b\(x) dx&c=,

which implies the conclusion. K

Lemma 3.4. Assume (C1) and (C \
2 ). Then

(i) (C +
2 ) implies that Cq(I, 0)$$q, +0+&0

F;

(ii) (C &
2 ) implies that Cq(I, 0)$$q, +0

F.
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Proof. (i) We write u # H as u=w+z+v with w # H +
0 , z # H &

0 ,
v # H 0

0 and consider a neighborhood N of zero defined by

N :={u # H : &w&2&d &z&2&*
H 2

0(&v&)
1+&v&2�r2

1 , &z&2+&v&2�r2
2= ,

where d<<(*1 �8(*1+*m)) min[(*m �*m&1)&1, 1&*m �*m+1] is fixed;
*, r1 , r2 will be determined later. Then the boundary of N consists of

11={u: &w&2&d &z&2&*
H 2

0(&v&)
1+&v&2=r2

1 , &z&2+&v&2�r2
2= ,

12={u: &w&2&d &z&2&*
H 2

0(&v&)
1+&v&2�r2

1 , &z&2+&v&2=r2
2=.

The normal vector on �11 is

&=&(u)=w&dz&*!$(&v&)
v

&v&
, where !(t)=

H 2
0(t)

1+t2 .

Let |=min[*m �*m&1&1, 1&*m �*m+1]. Then for u # �11

(I$(u), &) �| &w&2+d| &z&2&c &v& \|0
h2

0( |u| ) dx+
1�2

�| &w&2+d| &z&2

&c &v& \||u|�&u&
h2

0(&u&) \_2

_1+
2

\ |u|
&u&+

2(_2&1)

dx

+|
|u| <&u&

h2
0(&u&) dx+

1�2

�| &w&2+d| &z&2&c &v& (h0(&v&)+&w&_2&1+&z&_2&1)

�| &w&2&c= &w&2&c &w&_2&c(d=&1+*=) &w&2(_2&1)

+d| &z&2&cd= &z&2&cd &z&_2&c(=&1+*=) &z&2(_2&1)

&(cd=&1h2
0(&v&)+c*!$(&v&) h0(&v&)+c*=&1(!$(&v&))2).

Noting that _2>2, and by the definition of h0 , we may find *=*(d ) large
enough, = and r1 small enough, such that
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(I$(u), &) �
|
3 \&w&2&d &z&2&3 \c+

*
4+ !(&v&)+

�
|
3

(&w&2&d &z&2&*!(&v&))

=r2
1 ,

which means that the negative gradient flow is inward on �11 . Next, we
estimate the value of I around 12 . Let A0=id&*m(&2)&1, then there
exists =, % # (0, 1) such that

I(u)�
1
2

&A0& &w&2&
1
2

| &z&2&|
0

F0(x, v) dx

+c &w+z& |
0

|h0(v+%(w+z))| dx

�
1
2

&A0& &w&2&
1
2

| &z&2&|
0

F0(x, v) dx

+c &w+z& (h0(&v&)+&w&_2&1+&z&_2&1)

�&A0& &w&2&
1
4

| &z&2&|
0

F0(x, v) dx+c=&1h0(&v&)

�&A0& r2
1+\d &A0&&

1
4

|+ &z&2&|
0

F0(x, v) dx

+&A0& *
H 2

0(&v&)
1+&v&2+c=&1h2

0(&v&)

�&A0& r2
1+\d &A0&&

1
4

|+ &z&2+h2
0(&v&) \c&

�0 F0(x, v) dx
h2

0(&v&) + .

In view of Lemma 3.3, for r2 small, there exist =0>0, 0<r3<r2 , such that

I(u)�&
=0

2
for &v&2+&z&2�r2

3 , u # N;

I(u)<0 for &v&2+&z&2�r2
3 , u # N;

I(u)�&=0 for &v&2+&z&2=r2
2 , u # N.

The remainder of the proof is similar to that of [22], we just give the
sketch. First, the inwardness of the negative gradient flow on �11 and the
estimates of I(u) around 12 imply that I 0 & N is a strong deformation
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retraction of N and that I 0 & N"[0] can be deformed to I &3=0"4 & N,
where

I&3=0"4 & N/N1 :=[u # N : &v&2+&z&2�r2
3]/I 0 & N"[0].

Evidently, N1 can be deformed to 12 , hence,

Cq(I, 0)$Hq(I0 & N, I 0 & N"[0])

$Hq(N, I 0 & N"[0])

$Hq(N, 12)

$$q, +0+&0
F.

(ii) Define

M :={u: &z&2&d &w&2&*
H 2

0(&v&)
1+&v&2�r2

1 , &w&2+&v&2�r2
2= ,

11={u: &z&2&d &w&2&*
H 2

0(&v&)
1+&v&2=r2

1 , &w&2+&v&2�r2
2= ,

1r={u: &z&2&d &w&2&*
H 2

0(&v&)
1+&v&2�r2

1 , &w&2+&v&2=r2= .

Then �M=11 & 1r2
and the normal vector of 11 is &=&(u)=z&dw&

*!$(&v&)(v�&v&) with !(t)=H 2
0(t)�(1+t2). By a similar computation, we

can determine *, r1 and r2 such that (I$(u), &)<0 on �11 , which implies
that the negative gradient of I is outward on �11 . Moreover, there exist
=0>0, r4<r3<r2 such that

I(u)�
=0

2
for &w&2+&v&2�r2

4 , u # M,

I(u)>0 for &w&2+&v&2�r2
4 , u # M,

I(u)�=0 for &w&2+&v&2�r2
3 , u # M.

Let M1 :=M & [u: &w&2+&v&2�r2
4] _ 1r3

, then it is evident by a geometric
deformation, that there exists a strong deformation retraction of M onto M1 .
On the other hand, let '(t, u) be the negative gradient flow, {~ 1(u) be the
time of reaching 11 , and {~ 2(u) be the time of reaching I0. Then {~ (u)=
min[{~ 1(u), {~ 2(u)] induces a flow as

_~ 1(u, t)={'(u, t{~ (u)),
u,

if u # M1 , {~ (u)>0,
if u # M1 , {~ (u)=0.
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By the estimates of I(u) around 1r3
, _~ 1 provides a strong deformation retrac-

tion of M1 to M2 :=M & I0 _ 1r3
. Finally, the flow _~ 2(u, t) :='(u, t{~ 1(u))

shows that 1r3
is a strong deformation retraction of M2"[0]. Combining

the above arguments,

Cq(I, 0)$Hq(I 0 & M, I0 & M"[0])

$Hq((I 0 & M) & 1r3
, 1r3

& (I 0 & M"[0]))

$Hq(M1 , 1r3
& (I 0 & M"[0]))

$Hq(M, 1r3
& (I 0 & M"[0]))

$Hq(M, 1r3
)

$$q, +0
F. K

Proof of Theorem 1.3. By the proof of Theorem 1.1, there exists
�: H0�H & � H+ such that I(u+�(u))=minw # H+ I(u+w). Consider
reduction functional I� : H0�H& � R defined by I� (u)=I(u+�(u)). Noting
that lim |t| � �(F(x, t)�t2)=0 and that

lim inf
n � �

�0 F(x, un) dx
H�(&un&)

>0

for un=zn+vn with zn # H &, vn # H 0, &un& � � and zn �&un& � 0, then it
is easy to prove that &I, hence &I� , is bounded below on H &�H0. Since
I satisfies (PS) condition then so does &I� (see Remark 2.1), there exists
u* # H&�H0 which is a minimum of &I� on H&�H0. Suppose now that
u* is an isolated critical point of &I� , hence u*+�(u*) is an isolated critical
point of I (see Lemma 2.1 of [16]) and there exist two neighborhood U1 and
U2 of u* and u*+�(u*), respectively, such that

deg(I, U2 , 0)=deg(I� , U1 , 0)=(&1)+�+&�,

where deg denotes the Leray�Schauder degree. By the relation between the
critical groups and the degree (cf. [21]),

:
�

q=0

(&1)q dim Cq(I, u*+�(u*))=(&1)+�+&�.
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Therefore, the hypotheses of Theorem 1.3 imply that u*+�(u*){0. Assume
that (B+

2 ) holds and that there is no other critical point, then combining
Lemma 3.2, Lemma 3.4, and Morse relations, we have that

(C +
2 ) implies that (&1)+0+&0+(&1)+�+&�=(&1)+�+&� ;

(C &
2 ) implies that (&1)+0+(&1)+�+&�=(&1)+�+&� ;

these are impossible! K

Proof of Theorem 1.4. For u=w+v # H+�H0 with w # H+, v # H 0

we see that

I(u)�&u&2 \c \&w&
&u&+

2

&
�0 F(x, u) dx

&u&2 + .

Evidently, I(u) � � as &u& � � with &w&�&u& � c{0. But, if &w&�&u& �
c=0, it follows by Lemma 2.1 that lim&u& � �(&�0 F(x, u) dx)=�, hence
I(u) � �, which implies that I is bounded below on H+ �H0. On the
other hand, it is obvious that I(u) � &� as u # H& with &u& � �. By
Saddle Point Theorem and its characteristics of the critical groups (see
[24, 30]), there is a critical point u1 such that C+�

(I, u1){0. By (D&) and
Lemma 2.2, we can prove that the Morse index m(u1) of u1 is great or
equal to +� . By Gromoll-Meyer Theorem (cf. [31]), m(u1)=+� . Shifting
Theorem (cf. [21, 25]) implies that Cq(I, u1)=Cq&+�

(I0 , 0), where I0 is
defined on the null space of I"(u1). Then C0(I0 , 0){0 means that 0 is a
minimizer of I0 . Consequently, Cq(I, u1)=$q, +�

F. Now (C +
2 ) and Lemma

3.4 imply that u1 {0 if +0+&0 {+� . Furthermore, if there is no other critical
point, Morse relation reads as (&1)+0+&0+(&1)+�=(&1)+�, a contradic-
tion! Similarly we can prove the case of (C &

2 ). K

Proof of Theorem 1.5. By combining Lemma 3.2 and Lemma 3.4, it is
easy to check that each case of Theorem 1.5 implies that Cq(I, 0){
Cq(I, �) for some q. Then Morse inequalities imply the existence of one
nontrivial solution. K

Proof of Theorem 1.6. Combining Lemma 2.1, Lemma 3.1, Lemma 3.2,
and Lemma 3.4 and using a similar argument as that in the proof of
Lemma 2.4, we can prove that

(E\
�) implies that Cq(I, �)=$q, +�+($1, �1) &�

F;

(E \
0 ) implies that Cq(I, 0)=$q, +0+($1, �1 ) &0

F.

Then the conclusion follows immediately from Morse inequalities. K
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