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The S-wave scattering length and the effective range of the Higgs boson in Standard Model are 
studied using effective-field-theory approach. After incorporating the first-order electroweak correction, 
the short-range force between two Higgs bosons remains weakly attractive for MH = 126 GeV. It is 
interesting to find that the force range is about two order-of-magnitude larger than the Compton 
wavelength of the Higgs boson, almost comparable with the typical length scale of the strong interaction.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The ground-breaking discovery of a new particle with mass 
around 126 GeV by the Atlas and CMS Collaborations at CERN 
Large Hadron Collider (LHC) in July 2012 [1,2], heralds an excit-
ing new era of particle physics. Undoubtedly, the top priority in 
the coming years is to pin down the detailed property of this 
new boson as precisely as possible, e.g., its quantum number, de-
cay and production patterns [3]. Hopefully, one will finally be able 
to determine whether this new boson is the long-sought Brout–
Englert–Higgs boson of Standard Model (SM)2 or of some exotic 
origin.

The SM Higgs boson is an elementary scalar particle carrying 
J PC = 0++ . An enormous amount of work has been devoted to 
exploring the physics involving an individual Higgs boson, while 
the respective studies concerning the multi-Higgs-boson dynamics, 
such as double- or triple-Higgs productions at LHC experiments, 
are still in the infancy stage [3]. Nevertheless, a thorough investi-
gation of the latter is crucial in unraveling the nature of the Higgs 
potential since it directly probes the self-coupling of the Higgs 
bosons.

It is of fundamental curiosity to inquire the short-range force 
which two Higgs bosons would experience. A few decades ago, 
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Cahn and Suzuki [5], as well as Rupp [6], studied the inter-
action between two Higgs bosons by utilizing some nonper-
turbative methods, only including the Higgs self-coupling. They 
claimed that the attraction would become strong enough as MH >

1.3 TeV to bind them together into a Higgs–Higgs bound state 
(Higgsium), albeit highly unstable. Such a large Higgs mass vi-
olates the perturbative unitarity bound [4]. If the new particle 
discovered in LHC is indeed the SM Higgs boson, the Higgsium 
seems unlikely to be formed in the first place. This expectation 
is supported by the recent lattice simulation of the electroweak 
gauge model [7]. Nevertheless, Grinstein and Trott recently sug-
gested that the possibility for the existence of the light Higgsium 
might be still open due to some new physics scenario at TeV 
scale [8].

The model-independent parameters that characterize any short-
range force are scattering length and effective range. The effective-
field-theory (EFT) approach provides a systematic framework to 
expedite inferring these parameters. The aim of this paper is to 
decipher the short-range force experienced by two God particles 
following this modern doctrine. In particular, we will investigate 
the influence of the W , Z and top quark on the inter-Higgs force. 
It will be interesting if our predictions can be confronted by the 
future lattice simulation, or even by the double Higgs production 
experiments.

2. The Higgs sector in SM

After the spontaneous electroweak symmetry breaking, the 
Higgs sector in SM Lagrangian reads (in unitary gauge):
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. The tree-level diagrams for H H → H H in SM.
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where v ≈ 246 GeV is the vacuum expectation value of the Higgs 
field, MH , MW , M Z , mt signify the masses of the Higgs boson, 
W ± , Z , and the top quark, respectively. All the other fermions are 
neglected due to much weaker Yukawa coupling. We follow the 
convention of parameterizing the Higgs potential as in Refs. [17,18]

such that MH =
√

λ
2 v . For a light 126 GeV Higgs boson, the self-

coupling λ ≈ 0.52, and we have an entirely weakly-coupled Higgs 
sector.

3. Nonrelativistic EFT for Higgs boson

We are interested in the near-threshold elastic scattering be-
tween two Higgs bosons, thereby only the S-wave channel needs 
to be retained. Since the momentum of each Higgs boson is much 
lower than the remaining mass scales MH ∼ MW ∼ M Z ∼ mt ∼ v , 
it seems legitimate to integrate out the contribution from all the 
relativistic (hard) modes, and construct the following low-energy 
EFT which only involves the nonrelativized Higgs field [12]:

LNREFT = Ψ ∗
(

i∂t + ∇2

2MH
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t
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)
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4

(
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) + · · · , (2)

where Ψ (∗) field annihilates (creates) a Higgs boson. The 126 GeV 
Higgs boson appears to have a narrow width (< 10 MeV) [9] so 
that we treat it as a stable particle. This EFT is organized by a 
velocity expansion, and remains valid as long as the momentum 
carried by the Higgs boson is smaller than the UV cutoff of this 
NREFT, Λ, which a priori is expected to be of the same size as 
the inverse of the force range, ∼ 1/r < MH . The S-wave scatter-
ing is mediated by the two 4-boson operators with the Wilson 
coefficients C0 and C2. By naturalness one assumes C0 ∼ 4π

MH Λ
, 

C2 ∼ 4π
MH Λ3 . The two-body operator containing ∂2

t in the paren-
thesis of (2) signals the relativistic correction. With this spe-
cific form, the Higgs state in our NREFT is understood to tacitly 
obey the relativistic normalization condition, i.e., 〈H(k)|H(p)〉 =√

k2 + M2
H/MH (2π)3δ3(p − k).

It is worth emphasizing the legitimacy of integrating out W , 
Z and t in our NREFT. Suppose in a fictitious world in which 
MW (M Z , mt) were very close to MH , or MW (M Z , mt) were roughly 
half of MH , one would be forced to retain the nonrelativistic 
W (Z , t) fields as active degree of freedom in (2), in order to 
properly account for the near-threshold reactions such as H →
W W (Z Z , tt̄), H H → W W (Z Z , tt̄). Fortunately, in the real world, 
none of the above coincidence arises, so we are justified to only 
keep the nonrelativistic Higgs field in the NREFT.
The S-wave amplitude can be calculated order by order in ve-
locity (loop) expansion from (2), with the UV divergence conve-
niently subtracted in the MS scheme. In a NREFT that only contains 
contact interactions, an all-order result is available by summing the 
infinite number of bubble diagrams as a geometric series [10,11]. 
Remarkably, that nonperturbative result is only subject to slight 
change when the relativistic correction is included [12]:

AS-wave
NREFT = −

[
1

C0 + C2k2 + · · · + iMH

8π
γ −1k

]−1

, (3)

where k denotes the momentum in the center-of-mass frame, and 
γ ≡

√
1 + k2/M2

H is a Lorentz dilation factor, which embodies the 
full relativistic correction.

A traditional way of parameterizing the S-wave elastic ampli-
tude mediated by a short-range interaction is through the S-wave 
phase shift:

AS-wave
ERE = 8π

MH

[
k cot δ0 − iγ −1k

]−1

= 8π

MH

[
− 1

a0
+ r0

2
k2 + · · · − iγ −1k

]−1

. (4)

δ0 implies the S-wave phase shift, while a0 and r0 signify the 
S-wave scattering length and effective range, each of which is phys-
ical observable. The second line specifies the so-called effective 
range expansion, valid only for small k. Again, a factor of γ −1 is 
included to recover the Lorentz invariance [12].

Equating (3) and (4), one determines a0 and r0 via

a0 = MH

8π
C0, r0 = 16π

MH

C2

C2
0

. (5)

Our central goal is then to deduce the coefficients C0 and C2 to 
next-to-leading order (NLO) in electroweak couplings. This can be 
achieved through matching the S-wave amplitude of H H → H H in 
SM onto that in NREFT to one-loop order.

4. LO results for a0 and r0

At tree level, there arise only 4 tree diagrams for the Higgs–
Higgs elastic scattering (in any gauge), as shown in Fig. 1. Only the 
physical Higgs field is involved. The corresponding amplitude is [4]
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H
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+ 3M2
H

t − M2
H

+ 3M2
H

u − M2
H

)

≈ 12M2
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3
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M2
H

)
+ O

(
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where s, t , u are Mandelstam variables. In the second line, we have 
carried out the threshold expansion by treating k2/M2

H , t/M2
H , 

u/M2
H as small perturbations. Near the threshold, the above ex-

pansion automatically projects out the S-wave contribution, up to 
O (k4).
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Fig. 2. Some sample NLO diagrams for H H → H H in Feynman gauge. The dashed line stands for the Higgs boson (or the Goldstone bosons inside the loop), the wavy lines 
for the W /Z bosons, the dotted curve for the ghosts, and the solid line for the t quark. The crosses represent the counterterms for the H3, H2, and H4 vertices, respectively.
The tree-level S-wave amplitude in the NREFT side can be ob-
tained by expanding (3) accordingly: A(0)

S-wave,NREFT = −C0 − C2k2 +
· · · . Comparing it with (6), one extracts the Wilson coefficients at 
LO: C (0)

0 = − 3
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2 = 8
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LO S-wave scattering length the and effective range as
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We observe that the short-range inter-Higgs force is weakly attrac-
tive. The magnitude of the scattering length is much smaller than 
the Compton wavelength of Higgs boson, while the effective range 
is much larger, and |a0|

r0
= 27

1024π2
M4

H
v4 = 27λ2

4096π2 
 1. It is somewhat 
surprising that the effective range is considerably (≈ 170 times) 
larger than the Compton wavelength of the Higgs boson, the typ-
ical force range of weak interaction. Note that this situation is 
drastically opposite to that for the nuclear force, where the shallow 
(virtual) bound state arises in the pn(3 S1) and pn(1 S0) channels 
due to |a0| � r0 [10,11].

For such an unnatural case, we might infer the valid range of 
our NREFT by enforcing the convergence of the effective range ex-
pansion:

1

k
tan δ0 = −a0

(
1 + a0r0

2
k2 + O

(
k4)). (8)

Since 1
2 |a0|r0 = 8

3M2
H

, the NREFT seems to apply provided that k is 

smaller than the UV cutoff Λ =
√

3
8 MH ≈ 77 GeV. This cutoff value 

is considerably greater than the naive expectation of Λ ∼ 1/r0 ≈
1 GeV. As a consequence of the wide valid range of this NREFT, it 
appears to be a virtue to explicitly retain the effect of relativistic 
correction as in (3).

It is instructive to contrast the Higgs model with the simplistic 
λφ4 theory containing a scalar field with mass m. There the inter-
particle short-range force is of course repulsive, and the effective 
range is about the same order as the Compton wavelength, quan-
titatively, a0 = 3

16π
λ
m , r0 = 16

3πm + O (λ) [12]. We thus infer that, in 
the Higgs model, it is the triple Higgs interaction in (1) that yields 
the attractive force and ultimately wins the competition against 
the repulsive quartic interaction. It is also the nontrivial pattern 
of spontaneous symmetry breaking that generates the unnaturally 
large force range.

5. NLO results for a0 and r0

We wish to assess the impact of the W , Z and top quark on the 
inter-Higgs force. It is then necessary to incorporate the first-order 
electroweak correction to H H → H H . Because the intermediate 
W W , Z Z states are permissible to go on-shell, the coefficients C (1)

0

and C (1)
2 would become complex, so are a0 and r0. This situation is 

analogous to the nucleon–antinucleon system which can annihilate 
into multiple pions [13].

We first look at the NREFT side. Expanding the nonperturbative 
expression in (3) to one-loop order, one finds the S-wave ampli-
tude now becomes

A(1)
S-wave,NREFT = −C0 − C2k2 + i

MHk

8π

[
C2

0

+ 2C0

(
C2 − C0

4M2
H

)
k2 + · · ·

]
+ · · · . (9)

The last term stems from the one-loop integration, with the first-
order relativistic correction incorporated. It is odd in powers of k, 
which is characteristic of the nonrelativistic loop integration.

We then proceed to compute the first-order electroweak cor-
rection to the near-threshold scattering between two Higgs bosons 
in the SM side. There have existed some NLO calculations for 
H H → H H with arbitrary Higgs momentum. However, the results 
appear to be either incomplete [14] or approached in an unrealistic 
limit MW , M Z → 0 [15].

We choose to work in the Feynman gauge, at a cost of in-
cluding many diagrams containing unphysical particles such as the 
Goldstone bosons and ghost particles. We use the Mathematica

package FeynArts [19] to generate all the Feynman diagrams and 
the corresponding amplitudes. For clarity, some sample diagrams 
out of the total 603 NLO diagrams are illustrated in Fig. 2. We use 
dimensional regularization to regularize UV divergence. The pack-
age FeynCalc [20] is employed to perform the tensor reduction.

We choose the standard on-shell renormalization scheme 
[16–18] to fix the counterterms for quadratic, triple, quartic Higgs 
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boson vertices. Apart from the apparent Higgs wavefunction renor-
malization constant δZ H and mass counterterm δM2

H , we still 
need 4 additional renormalization constants, δt , δsW , δM2

W , δZe , 
representing the counterterms for Higgs tadpole, Weinberg an-
gle (sW ≡ sin θW , cW ≡ cos θW ), W boson mass, and the electric 
charge, respectively [18]. Some of their analytic expressions are 
rather cumbersome.

Fortunately, it is the following specific combination of the 
renormalization constants that always enters the expressions for 
the H3 and H4 counterterms, which can be recast as

δZe − δsW

sW
− 1

2

δM2
W

M2
W

= �r + �ρ

2

− α

8π s2
W

(
6 + 7 − 4s2

W

2s2
W

ln c2
W

)

− 1

2

Σ Z Z
T (0)

M2
Z

− cW

sW

Σ A Z
T (0)

M2
Z

, (10)

where α is the fine structure constant, Σ Z Z
T (0) and Σ A Z

T (0) are the 
Z boson self energy and the photon-Z two-point function eval-
uated at zero momentum, which are much simpler than δM2

W
and δsW [18]. �r and �ρ , as constructed out of the meticulous 
combination of the various gauge boson self energies, are some fa-
miliar UV-finite parameters that can be directly fixed from the data 
[16–18].

The analytic NLO expression for H H → H H would be extremely 
involved for general kinematics. Fortunately, we are only interested 
in its near-threshold behavior. For most diagrams, particularly with 
W , Z , t circulating in the loop, one can simply expand the inte-
grand in powers of the external momentum k, prior to carrying 
out the loop integration. This leads to great simplification, since all 
the encountered loop integrals then reduce into a set of 2-point 
(or less) scalar integrals.

The s-channel loop diagrams composed entirely of the Higgs 
field, e.g., the ones in the first row of Fig. 2, deserve some spe-
cial attention. Unlike all other diagrams solely dictated by the hard
region, the nonrelativistic Higgs fields can propagate almost on-
shell in the loop, i.e., they also receive the contribution from the 
potential region, which should be fully mimicked by the one-loop 
diagrams from the low-energy NREFT. For these diagrams, we em-
ploy the method of region [21] to extract the contributions from 
the hard and potential regions separately. The resulting master in-
tegrals are also simple 2-point scalar integrals.

Upon summing all the expanded one-loop diagrams and the 
counterterm diagrams, the UV divergences are canceled as ex-
pected, and one automatically projects out the S-wave contribu-
tion through O (k2). Comparing with (9), we find its last term is 
fully reproduced by the contribution from the potential regions of 
the aforementioned s-channel diagrams. This can be viewed as a 
nontrivial check of our calculation. It is then straightforward to 
deduce the NLO coefficients C (1)

0 and C (1)
2 , subsequently convert 

into a(1)
0 and r(1)

0 in line with (5), i.e., a(1)
0 /a(0)

0 = C (1)
0 /C (0)

0 , and 
r(1)

0 /r(0)
0 = C (1)

2 /C (0)
2 −2C (1)

0 /C (0)
0 . Conceivably, their analytic expres-

sions are too lengthy to be reproduced here.
For MH = 126 GeV, Eq. (7) then implies that the LO scatter-

ing length and effective range are a(0)
0 = −4.90 × 10−5 fm, r(0)

0 =
0.267 fm.

To estimate the NLO contribution, we choose α = 1/137.036, 
G F = 1.166 × 10−5 GeV−2, MW = 80.39 GeV, M Z = 91.188 GeV, 
mt = 173.1 GeV, �r = 0.0357, �ρ ≈ 3G F m2

t

8π2
√

2
= 0.0094 [22]. And the 

NLO corrections turn out to be
a(1)
0 /a(0)

0 = −0.0355 + 0.0063i, (11a)

r(1)
0 /r(0)

0 = 0.0245 − 0.0145i. (11b)

The electroweak radiative correction has a modest effect, only 
modifying the tree-level result by a few percent. However, the 
imaginary parts for both a0 and r0 arise due to the opening of 
the inelastic channels. Incorporating the NLO correction, we then 
predict a0 = (−4.73 × 10−5 − 3.10 × 10−7i) fm, and r0 = (0.273 −
3.87 × 10−3i) fm. These are by far the most precise predictions for 
the basic parameters that characterize the inter-Higgs force.

To extract the a0 and r0, one needs a very accurate knowl-
edge of the S-wave phase shift δ0 for Higgs–Higgs elastic scat-
tering near threshold. The rather weak inter-Higgs force implies a 
nearly vanishing δ0 over a large momentum range. To determine 
a (tiny) phase of the S-matrix is always a very challenging task. 
For instance, notwithstanding tremendous efforts, it takes several 
decades to unambiguously pin down the π–π S-wave scattering 
lengths via the interference method [23].

The double Higgs boson production is one of the important 
missions in the next phase of LHC experiment, whose dominant 
production mechanism is through the parton process gg → H H
and W +W −/Z Z → H H . Due to the low production rates, it per-
haps needs a decade to finally observe the double Higgs signals. 
Even though we could accumulate sufficient amount of double 
Higgs events near threshold, it would still be difficult to envis-
age how to extract the phase of S-wave scattering amplitude 
via its interference with the D-wave amplitude from this inclu-
sive production process, not mention the intrinsic uncertainty of 
parton distribution functions of gluons and W /Z inside the pro-
ton. On the other hand, the prospective high-luminosity electron–
positron collider may offer much cleaner place to measure the 
Higgs–Higgs scattering information via the exclusive processes 
e+e− → Z H H, νν̄H H , provided that the sufficient statistics could 
be achieved.

6. Inter-Higgs force in the large MW , M Z , mt limit

It is curious to assess the influence of W , Z and t on the pro-
file of the Higgs–Higgs interaction. Taking the limit MW (M Z ) → ∞
(while keep v and sW intact) and mt → ∞,3 we find asymptoti-
cally,

a(1)
0 → −9(2M4

W + M4
Z )

64π3MH v4
+ 9m4

t

16π3MH v4
, (12a)

r(1)
0 → −32(2M4

W + M4
Z )

9π M5
H

+ 128m4
t

9π M5
H

, (12b)

where the subleading terms of order M2
Z and m2

t are neglected. 
The fourth-power mass dependence indicates that the NLO cor-
rections would rapidly dominate over the LO results as the gauge 
boson masses or top quark masses keep increasing, which defies 
the decoupling theorem. As MW (M Z ) grow, both a0 and r0 de-
crease. On the contrary, both a0 and r0 increase with increasing mt . 
When mt crosses around 300 GeV, a0 would even reverse the sign, 
so the Higgs–Higgs force would become even repulsive.

7. Summary

For the first time, we have thoroughly investigated the profile 
of the short-range force between two SM Higgs bosons within the 

3 These limits correspond to setting the couplings g1, g2, yt → ∞, in which sit-
uation the EW theory ceases to be perturbative. Nevertheless, our goal is to assess 
the leading behavior with the large gauge boson and top quark masses, so we are 
not too rigorous here.
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modern EFT context, deducing the S-wave scattering length and 
the effective range by including the first-order electroweak correc-
tion. The impact of W , Z and t on these parameters is addressed. 
The inter-Higgs force is extremely weak, yet attractive. But the 
force range is as large as 0.3 fermi, comparable with the typical 
range of the QCD force. It will be interesting, albeit challenging, 
if the future lattice simulation can test our predictions. It might 
also be of phenomenological incentive to transplant our analysis 
to some classes of new physics models.
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