
Procedia Engineering 23 (2011) 695 – 703

1877-7058 © 2011 Published by Elsevier Ltd.
doi:10.1016/j.proeng.2011.11.2568

Available online at www.sciencedirect.com
Available online at www.sciencedirect.com

Procedia
Engineering

 Procedia Engineering 00 (2011) 000–000

www.elsevier.com/locate/procedia

PEEA 2011

A Threshold-based Dynamic Resource Allocation Scheme for
Cloud Computing

Weiwei Lina,*, James Z. Wangb, Chen Liangc, Deyu Qia

aSchool of Computer Engineering and Science, South China University of Technology, Guangzhou, China
bSchool of Computing, Clemson University, Box 340974, Clemson, SC 29634-0974,

cUSA Department of Computer Science, Brown University, Providence, RI, USA

Abstract

Compared to traditional distributed computing paradigms, a major advantage of cloud computing is the ability to
provide more reliable, affordable, flexible resources for the applications (or users). The need to manage the
applications in cloud computing creates the challenge of on-demand resource provisioning and allocation in response
to dynamically changing workloads. Currently most of these existing methods focused on the optimization of
allocating physical resources to their associated virtual resources and migrating virtual machines to achieve load
balance and increase resource utilization. Unfortunately, these methods require the suspension of the cloud
computing applications due to the mandatory shutdown of the associated virtual machines. In this paper, we study the
resource allocation at the application level, instead of studying how to map the physical resources to virtual resources
for better resource utilization in cloud computing environment. We propose a threshold-based dynamic resource
allocation scheme for cloud computing that dynamically allocate the virtual resources (virtual machines) among the
cloud computing applications based on their load changes (instead of allocating resources needed to meet peak
demands) and can use the threshold method to optimize the decision of resource reallocation. The proposed
threshold-based dynamic resource allocation scheme is implemented by using CloudSim, and experimental results
show the proposed scheme can improve resource utilization and reduce the user usage cost.

© 2011 Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of [name organizer]
Keywords: cloud computing; dynamic resource allocation; virtual resource; scheme

1. Introduction

Resource allocation in traditional IT infrastructure often assigns fixed computing resources to a
particular application to satisfy its peak load requirement. Such peak-load-based static resource allocation
schemes often result in the underutilization of computing resources. On the other hand, average-load-

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

696 	 Weiwei Lin et al. / Procedia Engineering 23 (2011) 695 – 7032 W. Lin, J.Z. Wang, C. Liang, D. Qi / Procedia Engineering 00 (2011) 000–000

based static resource allocation schemes assign computing resources to applications based on their
average workload, sometimes, failing to satisfy their peak load requests. The emergence of cloud
computing [1, 2] offers the flexibility of managing the computing resources in a more dynamic manner
because it uses the virtualization technology to abstract, encapsulate, and partition computing resources.
However, this new computing paradigm has also raised new challenges to efficient resource allocation.

Recently, quite a few schemes [2-8] have been proposed to address the resource allocation problem in
cloud computing. Rajkumar Buyya et al. [3] proposed a market-oriented resource allocation scheme that
integrated both customer-driven service management and computational risk management to sustain
service level agreement (SLA) oriented resource allocation. However this scheme requires a market-
maker to bring service providers and consumers together, and a market registry for publishing and
discovering cloud service providers and their services. Another market-based resource allocation strategy,
RAS-M, was proposed by You et al. [4]. This scheme is based on market economy theory, where the
problem of resource allocation is transformed into finding the equilibrium price vector and corresponding
equilibrium solution, and a GA-based price adjusted algorithm is introduced to deal with the problem. But
RAS-M scheme is proposed for resource allocation at the physical level of the cloud computing, and it
only manages the CPU resource. Jean-Marc Menaud et al. [5, 6] proposed an autonomic resource manager
to control the virtualized environment which decouples the provisioning of resources from the dynamic
placement of virtual machines. This manager aims to optimize a global utility function which integrates
both the degree of SLA fulfillment and the operating costs. They resorted to a Constraint Programming
approach to formulate and solve the optimization problem. In [7], Fabien Hermenier et al. proposed a new
approach, Entropy, in a homogeneous cluster environment, which takes into account both the problem of
allocating the virtual machines (VMs) to available nodes (physical hosts) and the problem of how to
migrate the VMs to these nodes. The performance overhead is determined by the time required to choose
a new configuration and the time required to migrate VMs according to the configuration. The Entropy
resource manager can choose migrations that can be implemented efficiently, incurring a low performance
overhead. Wei et al. [8] used game theory to handle the resource allocation in cloud computing. In their
approach, a Binary Integer Programming method is proposed to solve the parallel tasks allocation problem
on unrelated machines connected across the Internet. Their algorithms take both optimization and fairness
into account and provide a relatively good compromise resource allocation. But these methods can only be
used for seeking optimal allocation solution for the complex and dynamic problems that can be divided
into multiple cooperative subtasks.

Nonetheless, most of these existing methods focused on the optimization of allocating physical
resources to their associated virtual resources and migrating virtual machines to achieve load balance and
increase resource utilization. Unfortunately, these methods require the suspension of the cloud computing
applications due to the mandatory shutdown of the associated virtual machines. To address this problem, a
different approach to resource allocation in cloud computing environment has become more attractive.
This new approach uses virtual machine as the minimum resource allocation unit. When a user starts an
application, a virtual machine that satisfies the minimum resource requirement for the application is
allocated. When workload of the application increases, a new virtual machine is allocated for this
application. Unlike the existing resource allocation schemes, which allocate more physical resources
(CPU, Memory, etc.) to the exiting virtual machine, this new approach does not need to shutdown the
existing virtual machine for resource reallocation. This new approach is more practical [14] because most
of the mission critical applications, such as online Web services, cannot afford any downtime. Therefore,
this paper focuses on studying the resource allocation at the application level, instead of studying how to
map the physical resources to virtual resources for better resource utilization in cloud computing
environment. The goal is to dynamically allocate the virtual resources among the cloud computing
applications based on their load changes to improve resource utilization and reduce the user usage cost.

697Weiwei Lin et al. / Procedia Engineering 23 (2011) 695 – 703 W. Lin, J.Z. Wang, C. Liang, D. Qi / Procedia Engineering 00 (2011) 000–000 3

The rest of the paper is organized as follows. In Section 2, we propose the threshold-based dynamic
resource allocation scheme for cloud computing and discuss its principle and implementation
considerations. Then, in Section 3, we discuss how to implement the proposed threshold-based dynamic
resource allocation scheme under CloudSim environment. In section 4, we conduct performance studies
using simulation, and analyze the performance of the proposed resource allocation scheme under different
resource usage sceneries. Finally, we give our concluding remarks and discuss future studies in section 5.

2. Threshold-based Dynamic Resource Allocation Scheme

2.1. The principle of the threshold-based dynamic resource allocation

In general, the workload of network applications (such as Web applications) fluctuates over the
application lifetime. If we use a static resource allocation scheme to assign fixed resources to an
application, the application may be slowed down sometimes due to insufficient resources, or excessive
resources are wasted when application is not at its peak load. Therefore, it is ideal to design a dynamic
resource allocation scheme that can adjust the resources allocated to an application according to its
workload, thus, improving the resource utilization.

The main idea of the proposed threshold-based dynamic resource allocation scheme is to monitor and
predict the resource needs of the cloud applications and adjust the virtual resources based on application’s
actual needs. A dynamic resource allocation scheme needs to address two issues: when to reallocate
resources and how much resource to be adjusted.

2.2. When to reallocate cloud resources

Since reallocating virtual resources for cloud applications cost computing time and physical resources,
over-frequent allocation of resources may reduce the efficiency of cloud applications. Therefore, when to
reallocate the virtual resources becomes critical to the efficiency of the resource allocation scheme. If the
time interval between two resource re-allocation events is too large, the system may not be able to
respond the load changes timely. Such a slow response may either affect the performance of certain
applications or waste virtual resources. On the other hand, if the time interval between two allocation
events is too short, the overhead for resource allocation is too much.

In the proposed dynamic resource allocation scheme, the interval between two consecutive allocation
events is set to be adaptive to the load change of a cloud application. If the load of an application changes
slowly in a steady pace, a longer interval is selected. If the load of an application changes rapidly, a
shorter interval is used. However, sometimes, the load of an application oscillates during the application’s
lifetime. If we schedule merely based on current workload, the system may have to frequently reallocate
the virtual resources, resulting extra overhead. To avoid the unnecessary overhead caused by the
application’s workload oscillation, a threshold is used to regulate the timing of resource reallocation.

Assume the maximum workload of a virtual machine (virtual resource) is maxL , we define its normal
workload normL as: normL = maxL × normrate , where]1,0[ratenorm ∈ is called the normal workload rate
and this value is predefined by the system administrator according to application’s workloads. In general,
we assign physical resources to virtual machines so that applications on these virtual machines are around
their normal workloads. In essential, the system reserves some virtual resources to anticipate the sudden
increase of the application’s load (a similar approach is used in many of the Web applications). We
further define: thresholdL = maxthreshold)1(rate LKratenorm ××−× (1),

698 	 Weiwei Lin et al. / Procedia Engineering 23 (2011) 695 – 7034 W. Lin, J.Z. Wang, C. Liang, D. Qi / Procedia Engineering 00 (2011) 000–000

where K is the current number of virtual machines, thresholdrate is a threshold rate ranging between 0 to 1.

A resource reallocation takes place only if the application’s load changes (up or down) is over thresholdL .

2.3. Threshold-based dynamic resource allocation scheme

The proposed threshold-based dynamic resource allocation scheme consists of two procedures,
Datacenter and Broker. The broker procedure runs on user’s machine with the application. The datacenter
procedure, which works as the manager of the cloud computing resources, runs on the datacenter's central
computer. These two procedures interact with each other to dynamically manage the virtual resources for
cloud applications.

In this scheme, the Datacenter procedure, which manages the physical resources such as CPU and
RAM, waits for requests from brokers, and provides extra virtual resources (VMs) or revoke excessive
virtual resources (VMs) based on the requests from brokers. The broker procedure determines whether an
application needs more virtual resources or excessive virtual resources owned by an application need to
be revoked based on application’s load changes. The pseudo code of these two procedures is depicted as
follows:

Fig. 1. (a) the pseudo code of Datacenter; (b) the pseudo code of Broker

3. Performance Study

3.1. The simulation model for performance evaluation

To evaluate the efficiency of our proposed dynamic resource allocation scheme, we simulate various
resource allocation sceneries under CloudSim [9] environment. We model a cloud application as a set of
tasks, which have the same completion deadline, require the same amount of memory, CPU, and
bandwidth, etc. The number of tasks represents the workload of the cloud application. We further model
the load variation of a cloud application by varying the user task request intervals. Without losing the
generality, we assume all virtual machines have the same workload capacity.

3.2. The threshold-based dynamic resource allocation scheme in CloudSim environment

In CloudSim environment, we need to implement two essential aspects of the threshold-based dynamic
resource allocation scheme. First, we need to simulate the interaction between the datacenter and brokers.
We also need to simulate the load variation of the cloud application by varying the user resource request

699Weiwei Lin et al. / Procedia Engineering 23 (2011) 695 – 703 W. Lin, J.Z. Wang, C. Liang, D. Qi / Procedia Engineering 00 (2011) 000–000 5

and release intervals. To achieve these two tasks, we implement two simulation classes by extending the
original Datacenter class and the Datacenterbroker class in the CloudSim Toolkit. We discuss the
extensions we made to the original Cloudsim classes here.

1)Extended Datacenter Class
The extended datacenter class can be presented as:
public class myDatacenter extends Datacenter {

private LinkedList<myVm> vmlist; ...
protected void myprocessVMCreate(){... }
public VirtualMachineList askForVMs(){... }
protected void releaseVMs(int[] temp){... }
…

}
Compared to the original datacenter class in Cloudsim Toolkit, we added a member variable vmlist to

hold the allocated virtual machines. We implemented a method createVMs() to initialize the vmlist based
on the parameters for describing the virtual machines, and to allocate physical resources to these virtual
machines. We also added a method askForVMs(), which is invoked when the Datacenter receives
requests from brokers for more virtual machines. We note here that the virtual machines maintained in
Datacenter's vmlist contain only the descriptions of virtual machines, such as the amount of memory,
CPU, and bandwidth needed to create the virtual machines. However, like in the original Cloudsim
Toolkit, Datacenter does not allocate physical resources to a virtual machine until broker has requested
the virtual machine. Finally, we added a method releaseVMs() for the datacenter to release the virtual
machine’s physical resources when a broker releases a virtual machine.

2)Extended DatacenterBroker
The extended DatacenterBroker class can be depicted as:
public class myDatacenterBroker extends DatacenterBroker{

protected int calVMs(){...}
protected void bindToVMs(){...}
void resourceRequest(){…}

}
A broker is responsible for determining when to reallocate resources for an application and how much

resource to be allocated. Three methods are added to the original DatacenterBroker class of the CloudSim
ToolKit. Method calVMs() is used to determine how many virtual machines is needed for an application.
It uses the capability of virtual machine, the number of tasks, and the deadline of tasks to calculate the
norm workload, and then the number of virtual machines needed is determined. After determining the
number of needed virtual machines using calVMs(), a broker uses method resourceRequest() to request
or release virtual machines. Method bindToVMs() is added to bind a task to a specific virtual machine.

3.3. The simulation model for performance evaluation

We compare our threshold-based dynamic resource allocation scheme with a peak-load-based static
resource allocation scheme in terms of the resource utilization, total resource cost, and overhead of the
resource allocation. The resource utilization is defined as the number of tasks finished by all virtual
machines divided by the capacity of all virtual machines. The total resource cost (TRC) is defined as

resstomem NumpricesizepricesizeTRC ××+×=)(stomem
 (2)

700 	 Weiwei Lin et al. / Procedia Engineering 23 (2011) 695 – 7036 W. Lin, J.Z. Wang, C. Liang, D. Qi / Procedia Engineering 00 (2011) 000–000

where memsize is memory size of virtual machine, stosize is storage size of virtual machine,

memprice is the unit memory price, stoprice is the unit storage price and resNum is the number of the

virtual machines.
Numerous studies [10,11,12] have shown that workloads of Internet applications can be highly

dynamic with variations at multiple timescales. One popular workload variation pattern is oscillation, in
which application workload varies in a small range around a certain load level. Such a workload pattern
can be found in applications like as online banking, ATM machines, etc. Another popular workload
variation pattern is Gaussian distribution, in which user requests increase when the application gains
popularity and user interests dry down when the time goes by. This workload pattern happens in
applications like movie on demand. In this paper, we simulate the proposed dynamic resource allocation
scheme under these two workload sceneries and study its performance under different system conditions.

3.3.1 Experiment under oscillating workloads
In this experiment, we assume that the workload of cloud application follows the pattern depicted in

Figure 2. Initial workload is at 100 tasks. The number of tasks increases to 120 and drops back
periodically. Occasionally, we see a workload spike and then the load drops back to the oscillating pattern
after that. In one of the points of time, load dramatically increases and then goes back down and begin to
oscillate again. Aiming at the oscillations in cloud application, and to avoid the extra cost created by the
oscillations, we apply our threshold-based dynamic resource allocation scheme and set different
thresholds for comparison.

Some parameters in this experiment are: the deadline of tasks is 150s, the capability of CPU provided
by datacenter is 16000 mips, 40 available virtual machines are created, the capability of every virtual
machine is 400mips. Assume that it takes 15s for a virtual machine to process a task. Thus the maximum
workload (maxL) of single virtual machine is 10 (10=150s/15s).

Fig.2. cloud application under oscillating workloads Fig.3 virtual resources committed to cloud application with
threshold rate 0.95

Assume the norm workload rate is 0.8 and the threshold rate is 0.95. At the first point of time, the
workload is at 100 tasks and normL =0.8× maxL =8. Then we can get the number of virtual resources
committed to cloud application. At the time of 2, we can get thresholdL =24.7 based on Eq. (1). The
application’s workload change (from 100 to 120) is under thresholdL , so the number of virtual resources
committed to cloud application is still 13(does not change). At the time of 6, the application’s workload
change (from 100 to 180) is over thresholdL , so a resource reallocation takes place and the number of
virtual resources committed to cloud application is 23 (23=⌈180/8⌉). Therefore, we get the numbers of
virtual resources committed to cloud application at all points of time, which are shown in Figure 3.

Assume the norm workload rate is 0.8 and the threshold rate is 0.50. Then we calculate the numbers of
virtual resources committed to cloud application based on Eq. (1), which are shown in Figure 4. We can

701Weiwei Lin et al. / Procedia Engineering 23 (2011) 695 – 703 W. Lin, J.Z. Wang, C. Liang, D. Qi / Procedia Engineering 00 (2011) 000–000 7

see that the number of virtual resources reallocated with threshold rate 0.95 is different from the case with
threshold rate 0.50.

Fig.4 virtual resources committed to cloud application with
threshold rate 0.50

Fig.5 Resource utilization of three resource allocation
algorithms

If static resource allocation is applied, virtual resources committed to cloud application are required to
reach 23 (for normL =8, we can get ⌈180/8⌉=23) since the peak load is 180 tasks. Based on the definition
of resource utilization, the resource utilizations of three allocations are shown in Figure 5.

Assume the price of memory is 0.05/MB and the price of storage is 0.001/MB. For every virtual
machine in experiment, the size of memory is 512MB; the size of storage is 10000MB. We calculate the
resource cost of these 3 allocations based on Eq. (2). The resource cost of the dynamic allocation with
threshold rate 0.95 is 5909.6, the resource cost of the dynamic allocation whose threshold rate is 0.5 is
6265.6 and the resource cost of the static allocation is 9825.6, as shown in Figure 6.

Fig.6 Resource cost of three allocations
Fig.7 Cloud application when workload follows a Gaussion
distribution

We can conclude from the experimental results: (1)The dynamic algorithm whose threshold rate is
0.95 is better than the one whose threshold rate is 0.50 in this situation, and both are better than the static
algorithm. (2)The bigger the threshold rate is, the less resource is reserved. This means there could be
more resources available for increasing load. And then the utilization is improved. The increase of
resource utilization also reduces the cost associated with the request and exchange of virtual resources.
However, it makes it less sensitive to the change of load. The reverse situation would happen if a smaller
threshold rate were applied.

3.3.2 Experiment when workload follows a Gaussion distribution
Gaussian distribution was selected because is one of the better distributions to characterize user's

reflection time[13]. We assume that the workload of cloud application follows the pattern depicted in
Figure 7. Workload changes closely approximately follow Gaussian distribution.

Some parameters in this experiment are: the deadline of tasks is 150s, 40 available virtual machines
are created; the capability of every virtual machine is 400 MIPS. Assume that it takes 15s for a virtual
machine to process a task. Thus the capability of single virtual machine is 10. Assume the norm workload

702 	 Weiwei Lin et al. / Procedia Engineering 23 (2011) 695 – 7038 W. Lin, J.Z. Wang, C. Liang, D. Qi / Procedia Engineering 00 (2011) 000–000

rate is 0.8 and the threshold rate is 0.75. We can calculate the numbers of virtual resources committed to
cloud application based on Eq. (1), which are shown in Figure 8.

Fig.8 virtual resources committed to
cloud application with threshold rate
0.75

Fig.9 Resource utilization of two
allocation schemes

Fig.10 Overhead of resource allocation
in two experiments.

If static resource allocation is applied, virtual resources committed to cloud application are required to
reach 23 (for normL =8, we can get ⌈180/8⌉=23) since the peak workload of cloud application is 179
tasks. Based on the definition of resource utilization, the resource utilizations of two allocation schemes
are shown in Figure 9.

We also calculated the resource cost of these two resource allocation schemes. The resource cost of the
dynamic scheme is 5019.6 and the resource cost of the static scheme is 9825.6.

We can draw conclusions from the comparison:(1) The resource utilization of dynamic allocation is
better than it of static allocation; (2) The resource cost of static allocation is obviously higher than it of
dynamic allocation, that's because the static allocation scheme uses some certain amount of resource, thus
a large part of resource may be wasted.

3.4. Overhead of Threshold-based dynamic resource allocation

In order to study the overhead of Threshold-based dynamic resource allocation, we define its overhead
T as: rds TTTT ++= , where sT is the overhead of virtual resource startup, dT is the overhead of
virtual resource downtime and

rT is the overhead of the resource reallocation. The experimental results
for the overhead of Threshold-based dynamic resource allocation in the above experiments are shown in
Figure 10. We can conclude from the experimental results: (1) The overheads of dynamic resource
allocation in two experiments are low (about a few seconds); (2) At the time of 5 and 6, the overhead of
dynamic resource allocation in Experiment 1 is almost 0 because it does not require resource reallocation,
however, the overhead of dynamic resource allocation in Experiment 2 is relatively large because it need
reallocate multiple resources (virtual machines); (3) As the overheads of the resource reallocation
procedure are very low, the overhead of Threshold-based dynamic resource allocation focuses on the
control overhead of virtual resource.

4. Conclusions

Resource allocation in traditional IT infrastructure often assigns fixed computing resources to a
particular application to satisfy its peak load requirement. Such peak-load-based static resource allocation
schemes often result in the underutilization of computing resources. To address this problem, we propose
a new approach that uses virtual machine as the minimum resource allocation unit and the threshold-
based dynamic resource allocation scheme for cloud computing that monitor and predict the resource
needs of the cloud applications and adjust the virtual resources based on application’s actual needs. The
scheme can dynamically reconfigure the virtual resources for cloud applications according to the load

703Weiwei Lin et al. / Procedia Engineering 23 (2011) 695 – 703 W. Lin, J.Z. Wang, C. Liang, D. Qi / Procedia Engineering 00 (2011) 000–000 9

changes in cloud applications, so it can save resources and increase resource utilization. The experimental
results show that the proposed dynamic resource allocation scheme can improve resource utilization and
reduce the user usage cost. Moreover, the proposed scheme has a simple implementation and, unlike
many other approaches, it can avoid the complexity of re-allocation of physical resources.

Acknowledgements

 This work is financially supported by the Fundamental Research Funds for the Central Universities,
SCUT (No. 20092M0103), Comprehensive Strategic Cooperation of Guangdong Province and Chinese
Academy (No. 2009B091300069), Guangdong Natural Science Foundation (x2jsB6100260) and the
National Natural Science Foundation of China (No. 61070015). James Wang's work is partially supported
by NSF grant DBI-0960586.

References

[1] Michael Armbrust, Armando Fox, Rean Griffith and et al. Above the Clouds: A Berkeley View of Cloud Computing

[EB/OL], http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html, February 10, 2009.

[2] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic, Cloud Computing and

Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility, Future Generation Computer

Systems, Volume 25, Number 6, Pages: 599-616, ISSN: 0167-739X, Elsevier Science, Amsterdam, The Netherlands, June 2009.

[3] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal, Market-Oriented Cloud Computing: Vision, Hype, and

Reality for Delivering IT Services as Computing Utilities, Keynote Paper, Proceedings of the 10th IEEE International Conference

on High Performance Computing and Communications, Sept. 25-27, 2008, Dalian, China.

[4] Xindong You, Xianghua Xu, Jian Wan, Dongjin Yu, "RAS-M: Resource Allocation Strategy Based on Market

Mechanism in Cloud Computing," chinagrid, pp.256-263, 2009 Fourth ChinaGrid Annual Conference, 2009.

[5] Hien Nguyen Van, Frédéric Dang Tran, Jean-Marc Menaud, "SLA-Aware Virtual Resource Management for Cloud

Infrastructures," cit, vol. 1, pp.357-362, 2009 Ninth IEEE International Conference on Computer and Information Technology, 2009

[6] Hien Nguyen Van, Frederic Dang Tran, Jean-Marc Menaud, "Autonomic virtual resource management for service

hosting platforms," icse-cloud, pp.1-8, 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, 2009

[7] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller and J. Lawall. Entropy: a Consolidation Manager for Cluster. In proc.

of the 2009 International Conferenceon Virtual Execution Environments (VEE’09), Mar.2009.

[8] Guiyi Wei, Athanasios V. Vasilakos, Yao Zheng and Naixue Xiong. A game-theoretic method of fair resource allocation

for cloud computing services. The Journal of Supercomputing,Volume 54, Number 2, 252-269.

[9] Rodrigo N. Calheiros, Rajiv Ranjan, Cesar A. F. De Rose, and Rajkumar Buyya, “CloudSim: A Novel Framework for

modeling and Simulation of Cloud Computing Infrastuctures and Services”, 2009.

[10] Rahul Singh, Upendra Sharma, Emmanuel Cecchet and Prashant Shenoy. Autonomic Mix-Aware Provisioning for Non-

Stationary Data Center Workloads, Proceedings of the 7th IEEE International Conference on Autonomic Computing and

Communications (ICAC), Washington, DC, USA, June 7-11, 2010.

[11] J. Hellerstein, F. Zhang, and P. Shahabuddin. An Approach to Predictive Detection for Service Management. In

Proceedings of the IEEE Intl. Conf. on Systems and Network Management, 1999.

[12] D. Menasce and F. Ribeiro. In search of invariants for e-business workloads. In Proceedings of the 2nd ACM conference

on Electronic Commerce, pages 56–65,2000.

[13] Jakarta Apache. JMeter. http://jakarta.apache.org/jmeter/index.html,2010.12.

[14] H. Lim, S. Babu, J. Chase, and S. Parekh. Automated Control in Cloud Computing: Challenges and Opportunities,In

Proc. of the First Workshop on Automated Control for Datacenters and Clouds, June 2009:13-18.

