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The amplitude-constrained capacity of a scalar Gaussian channel is shown 
to be achieved by a unique discrete random variable taking on a finite number 
of values. Necessary and sufficient conditions for the distribution of this 
random variable are obtained. These conditions permit determination of the 
random variable and capacity as a function of the constraint value. The capacity 
of the same Gaussian channel subject, additionally, to a nontrivial variance 
constraint is also shown to be achieved by a unique discrete random variable 
taking on a finite number of values. Likewise, capacity is determined as a 
function of both amplitude- and variance-constraint values. 
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I. INTRODUCTION 

Although the literature on the average power-constrained information 
capacity of continuous channels is extensive (at least for Gaussian channels), 
the literature on the peak-power or amplitude-limited capacity is rather 
sparse. Shannon (1948) obtained a loose lower bound for strictly-bandlimited 
Gaussian white noise channels as well as asymptotic results for large and 
small ratios of peak signal power to average noise power; Goldman (1953) 
provided a corrected version. Various mild efforts of mixed success have 
appeared in the optical and photographic literature dealing with the informa- 
tion capacity of photographic channels (inherently amplitude-limited by the 
fixed dynamic range of the photographic material). Gallager (1968) has 
verified the coding theorem and its converse for amplitude-limited channels 
(memoryless, discrete time only), and derived the capacity for a few simple 
examples. Nothing, to the author's knowledge, has appeared in the literature 
concerning the capacity of channels subject to both peak and average power 
constraints. 

This paper determines, separately, the amplitude-constrained capacity and 
the amplitude- and variance-constrained capacity of a scalar Gaussian channel. 
Section II develops all preliminary concepts. Section III treats the 
amplitude~constrained scalar Gaussian channel. 

Capacity, as used in this paper, is defined as the supremum of the mutual 
information functional over the appropriate class of input probability 
distributions. It is shown that a unique input distribution, called the 
"optimal" input, exists which achieves capacity. Necessary and sufficient 
conditions for this optimal input are then obtained by the application of 
a simple optimization theorem. These conditions are used to establish that 
the optimal input random variable is discrete taking on a finite number of 
values. Thus the capacity, for a fixed amplitude limit, is formulated as the 
maximum of a function of a finite-dimensional vector, the components of 
which are the points of increase of the optimal probability-distribution 
function and the corresponding anlounts of increase of this function at each 
point of increase. A computer program of a standard optinlization technique 
is utilized to determine the capacity and the optimal distribution at each 
of a large number of values of amplitude constraint. The resulting capacity 
is given graphically as a function of this constraint. 

Section IV treats the case where both amplitude and nontrivial variance 
constraints are imposed. The investigation parallels Section II sufficiently, 
so that little added effort is involved. The capacity is given graphically as 
a function of the two constraints. 
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II.  PRELIMINARIES 

Consider a scalar additive channel characterized by the expression 
Y ~- X + N where X, N, and Y denote the channel input, noise, and output 
random variables, respectively. Let  PN and Pr denote, respectively, the 
probability density functions of N and Y, and Fx (or simple F)  denote the 
probability distribution function of X. The  random variable N is assumed 
to be Gaussian, with zero mean and unit variance. The  random variable X 
is assumed to be constrained to take on values a.s. on [ - -A,  A/ for some 
arbitrary positive value of A. 1 Let ~ denote the corresponding class of 
distribution functions F;  i.e., F in ~ implies F(x) = 0 for all x < - - A  and 
F(x) = 1 for all x > A. The  existence of P r  follows (Smith, 1969) from 
the existence of PN, and furthermore 

f 
A 

Pr(Y) = PN(Y -- x) dF(x). 
- - A  

Conventionally, the average mutual information I between two random 
variables X and Y is denoted I(X; Y). For an additive noise channel, however, 
the output random variable Y is the sum of the input and noise random 
variables X and AT. Thus  I(X; Y) is (for a fixed channel) a function of the 
input random variable X only, or, equivalently, a function of the probability 
distribution function of the input random variable. Occasionally, in the 
literature, when different input distributions are considered, I is subscripted; 
e.g., Ix(X; Y), where F is a particular input distribution. Here, IF(X; Y) is 
written as I(F), treating the average mutual information as a functional 
on the space o~  of probability distribution functions F of the input random 
variable X. 

For sufficiently well-behaved channels, the average mutual information 
can be written as the difference of two entropy functions: I(X; Y) = H(Y)  -- 
H(YJ X)  or, if a particular input probability distribution function must be 
specified, Ix(X; Y ) =  H F ( Y ) -  Hr(YIX). For an additive channel, the 
latter term is a constant, denoted here by D, and HF(Y) then can be denoted 
H(F). No confusion should arise as this output entropy term is the only 
entropy term used except for the constant noise entropy D. In  addition, 

z Assume N '  has mean /~ and variance aN2 , X '  is constrained a.s. on [a, b], and 
Y' = X '  + N'. LetA zx (b__a)/2cr~v ,X  A [X'--(a + b)]2)]/o N ,N ~ (N'-t~/)/%r, 
and Y zx X + N. It can be shown that I(X; Y) = I(X'; 711). Hence, in the above 
"normalized" case, A actually represents the ratio signal amplitude/noise standard 
deviation. 
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the output density function P r ,  is a (possibly) different function of y for 
each input distribution function F. Hence, when necessary, Pr(Y) will be 
written as Pr(Y; F) to indicate the input distribution F that determined 
the output density function Pr  • 

A definition of average mutual information I(F) between channel input 
and output which suffices for an additive channel characterized by a density 
function PN is (Pinsker, 1964) for all F in 

f~fA I(F) zx PN(Y x)" P~r(y -- x) = --  log .-77-.~-F~ dF(x)dy. 
-oo --A Pr(Y; ) 

For noise with finite variance and a bounded density function, 1 can be 
written (Ash, 1965) as the difference of two finite entropy functions: 

I(F) = H ( F ) -  D, 

where H(F), the output entropy, is, for all F in ~ , 

oo 

H(F) ~ -- f pr(y;F) logpr(y;F) dy, 
- - o o  

and D, the noise entropy, is 

F D £ -- pu(Z) log p~(z) az 

which is 1/2 log(2~re) for this channel. The amplitude-constrained channel 
capacity C is defined to be 

C(A) z~ sup I(F). 
F i n ~  A 

The marginal information density and marginal entropy density, are 
defined, respectively, by 

and 

f 
oo 

i(x; F) & PN(Y x)" PN(Y -- X) dy, 
_~ -~ - -  log Pr(Y;F)  

co 

h(x;F) ~ -- f PN(Y -- x ) logpr(y;F)dy  
- -oo  
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for all x in [ - -A,  A] and for all F in o ~ .  Thus (Smith, 1969), the following 
equations hold for all F in ~A : 

i(x; F) = h(x; F) -- D, for all x in [ - -A,  A], 

A 

= f i(x; F) dF(x), I(F) 
--A 

and 
A 

H(F) = f h(x; F) dF(x). 
-A 

The results of this paper rely on a fairly simple bit of optimization theory. 
The  necessary definitions and theory are introduced in a general notation 
and then a connection drawn to relate this material to the information theory 
problem of interest. 

Let D be a convex space, f a function from $? into the real line ~ ,  x 0 a fixed 
element of D, and 0 a number in [0, 1]. Suppose there exists a mapf'~o : g? --~ 
such that 

lim t f [ (1  -- O) x o + Ox] --f(Xo) t for all x in ~ .  f'%(x) 
050 { 0 } ' 

Then f is said to be weakly differentiable in D at x0, and f'~o is the weak 
derivative in ~2 at x 0 . I f f  is weakly differentiable in Q at x o for all x 0 in ~2, f is 
said to be weakly differentiable in ~,  or simply weakly differentiable. Further- 
more, f is said (Gallager, 1968) to be convex cap (concave in some references) 
if for all x 0 and x in f2, and for all 0 in [0, 1], 

f [ (1  --  O) x o + Ox] >/ (1 - -  O)f(Xo) + Of(x). 

X2 is said to be strictly convex-cap when equality holds if and only if x = x 0 
o r 0  = 0 .  

Optimization Theorem 

L e t f  be a continuous, weakly-differentiable strictly convex-cap map from 
a compact, convex, topological space D to ~ .  Define: 

C =k sup f(x) .  
x i n D  

Then, 

(1) 
(2) 

C = maxf (x )  = f ( x 0 )  for some unique x o in ~.  
A necessary and sufficient condition for f(xo) = C is f~o(x) ~ 0 

for all x in ~Q. 



208 SMITH 

This basic Optimization Theorem (see Smith, 1969 or Luenberger, 1969 
for proof) is valuable in determining the unconstrained optimal element 
within the convex space. I t  will also be necessary to determine an element 
which maximizes the function, subject to an additional constraint. For this 
purpose the Lagrangian Theorem is quoted below. 

Lagrangian Theorem 

Let ~2 be a convex metric space, a n d f  and g convex-cap functionals on f2 
to ~ ,  assume there exists an x I in f2 such that g(xl) < 0, and let 

C' zx sup f(x). 
xin/2 

g(x) ~o 

I f  C' is finite, then (Luenberger, 1969) there exists a constant ;~ ~> 0 such that 

C' = sup [f(x) - -  Ag(x)]. 
xin9  

Furthermore, if the supremum in the first equation is achieved by x 0 in £2 and 
g(xo) <~ 0, it is achieved by x 0 in the second equation, and Ag(Xo) = 0. 

The average mutual information between input and output random 
variables has been formulated as a map from the space ~ of probability 
distribution functions F having all points of increase on some finite interval 
[--A, A]. I t  will be established that o~  is convex and compact (in the "Levy" 
metric), and that I is a convex cap, continuous, and weakly differentiable 
functional in o ~ .  The amplitude-constrained capacity is the supremum of 
I(F) over all F in o ~ .  Thus, the optimization theorem will guarantee the 
existence of a unique maximizing input distribution and provide necessary 
and sufficient conditions for achieving this global maximum. Later, an addi- 
tional variance constraint will be imposed on the input. This will require use 
of the Lagrangian theorem. 

I I I .  AMPLITUDE-CONSTRAINED CAPACITY 

OF A SCALAR ADDITIVE GAUSSIAN CHANNEL 

The amplitude-constrained information capacity is to be determined for 
the scalar additive Gaussian channel discussed in the preceding section. 
Proposition 1 establishes that an "optimal input" exists and yields necessary 
and sufficient conditions for this input. Corollary 1 provides a more usable 
set of necessary and sufficient conditions. This result and Proposition 2 
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establish that the optimal input is discrete, taking on a finite number of values 
(although the number of values will be unknown). 

These results permit development of a programming procedure capable 
of generating the capacity and the optimal input at a large number of values 
of the constraint A. As a notational convenience, unless necessary for clarifica- 
tion, ~ and C(A) will be denoted simply as o ~ and C, respectively. 

PROPOSITION 1. 
F o in ~ ;  i.e., 

C is achieved by a unique probability distribution function 

C • m a x  I(F) = I(Fo) 
F i n ~ -  

for some unique F o in -Y. Furthermore, a necessary and sufficient condition 
for F o to achieve capacity is for all F in 

f]A i(x; Fo) dF(x) ~ I(Fo). 

Remark. I t  suffices to show that ~" is convex and compact in some topol- 
ogy, and that I :  o~ ~ ~ is strictly convex-cap, continuous, and weakly 
differentiable in ~ .  Then, the optimization theorem presented in Section I I  
establishes the existence of a unique F 0 . The second statement also follows 
from that theorem by establishing that for all F in ~-  

f 
A 

I L ( F )  - -  -A i(x; Fo) d e ( x )  - -  I(Fo).  

Proof. The convexity of Y is obvious. The compactness of ~" in the L~vy 
metric topology (see Loire,  1955 or Moran, 1968 for definitions) follows from 
Helley's Weak Compactness Theorem and from the fact that convergence 
in the L6vy metric is equivalent to complete convergence which on a finite 
interval is equivalent to weak convergence. 

The convex-cap property follows from the fact that for anyF  1 and Fz in ~-, 
and any 0 in [0, 1], 

Pr[Y; (1 - -  O)F 1 + OFz)] -~ (1 - -  O) py(y;F~) + Opr(y;F~) , 

and (by Lemma 8.3.1 of Ash, 1965) 

oo 

-- f pr(y;Fk) logpr(y;Fo) dy is finite for k = .1 ,  2, 
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because, then, 

(1 - -  0) H(F1)  + OH(Fe) <~ H[(1  - -  O)F~ q- OF2] 

with equality if and only if Pr(Y; F ~ ) =  pr(y;Fo). Since the characteristic 
function of the Gaussian noise-random variable is positive pointwise, then, 
for arbitrary F x and F~ in ~-, pointwise equality of Pr(Y; F0  and PY(Y; F2) 
occurs if and only if the L6vy metric between F 1 and F2, denoted d(F1, F2) , 
is zero, Thus, the strict convex-cap property holds. 

The continuity of H: ~ --~ ~ (and hence I: ~ --~ ~ )  follows essentially 
(Smith, 1969) from the Helly-Bray theorem (Lo~ve, 1955 or Moran, 1968) 
(which yields that d(F~, F ) 7 0  implies p y ( y ; F ~ ) 7 p y ( y ; F )  for arbitrary 
F~, F in o~), and from the boundedness and continuity o fp r  (which follows 
from the boundedness and continuity OfpN ) and of - -Pr  logPr • 

Finally, it can be established (Smith, 1969) that for arbitrary F 1 and F 2 
in ~- and 0 in [0, 1] 

lim i i[(1 _ O)F1 + OF~] _ I(F~) I = fA i(x;Fa) dF~(x) __ I(F1)" 
o~o 0 -A 

Thus, I: o~ ~ ~ is weakly differentiable and for all F 1 and F~ in o ~ 

;A i(x; F1) d f  z(x) --  I(Fa). I~1(F2) = -~ Q.E.D. 

COROLLARY 1. Let F o be an arbitrary probability distribution function in o~. 
Let E o denote the points of increase o f f  o on [--A,  A]. Then, F o is "optimal" if  
and only if  

i(x; Fo) <~ I(Fo) for all x in [--A, A], 

i(x; Fo) = I(Fo) for all x in E 0 . 

Remark. Clearly, if both conditions hold, F o must be optimal because 
the necessary and sufficient condition of Proposition 1 is satisfied. It remains 
to prove the converse. 

Proof. Assume that F o is optimal but the first equation of Corollary 1 is 
not true. Then, there exists x 1 in [--A, A] such that i(x 1 ;F  o ) >  I(Fo). 
Let Fl(x ) zx ~ (x  --  xl) (a unit step function at xl). Then, 

~-f~A i(x; Fo) dFl(x ) = i(xl ;F0) > I(Fo). 
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This contradicts Proposition 1. Thus, the first equation is valid. Now, 
assume that F 0 is optimal, but the second equation is not true. Then, because 
of the first statement, i(x; Fo) < I(Fo) for all x in E'  where E' is some subset 
of E o with positive measure; i.e., re" dFo(x) = 3 > 0. Since f~o_ E, dFo(x ) = 
1 -  S and i ( x ;Fo)=I (Fo)  on E 0 - - E ' ,  clearly I (Fo)<I (F0)  which is a 
contradiction. Thus, the second equation is valid. Q.E.D. 

PROPOSITION 2. E o is a finite set of points. 

Remark. This proposition says that the optimum random variable is 
discrete, that the optimal probability distribution function F 0 is simple, and 
that the capacity C is a function of a finite number of variables. The proof 
rests on the results of Corollary 1, and two classical theorems: the Identity 
Theorem of Complex Functions and the Bolzano Weierstrass Theorem. 

Proof. In part, Corollary 1 implies that h(x; F0) = I(Fo) + D on E 0 . The 
extension of h(x; Fo) to the entire complex plane is well-defined: 

oo 

h(z;Fo) ~ --  f Pw(Y --  z ) l ogpr (y ;Fo)  dy 
- - o o  

and analytic (Smith, 1969). I f  E o is infinite, then since E 0 C [--A, A], E 0 has 
a limit point by the Bolzano-Weierstrass Theorem (Bartle, 1964) and, hence, 
h(z; Fo) = I(Fo) + D on the entire complex plane by the Identity Theorem 
(Knopp, 1945). Thus, in particular, h(x;Fo) = I(Fo) + D on the real line 2 .  
It  can be shown (Smith, 1969) that this is possible if and only if 

PY(Y; Fo) -~ e-l(F°)-9 for all y in ~ .  

This follows because - - logpr(y ;Fo)  and h(x;Fo) , being locally integrable 
(Schwartz, 1966), have Fourier transforms at least in the sense of distribu- 
tions, because the characteristic function of the noise is pointwise positive, 
and because/(x; Fo) = I(Fo) + D can be written 

09 

f PN(Y - -  x)[--I°gPY(y;Fo) --  h(x;Fo)] dy = O. 

Thus, assuming E o is not finite leads to the conclusion that the output 
density function PY(Y; Fo) is uniform on the real line, which is an obvious 
impossibility. Q.E.D. 



212 SMITU 

A Finite Dimensional Optimization Problem 

I t  has been established that for each fixed amplitude limit A, an optimal 
input random variable X o or, equivalently, an optimal input distribution 
function F 0 exists which satisfies certain necessary and sufficient conditions. 
Furthermore, it has been established that X o a.s. takes on only a finite number  
of values. This finite set, denoted E 0 , represents, equivalently, the collection 
of points of increase of F 0 (traditionally called the mass point positions). 
The  optimum values of these points of increase are unknown. The  opt imum 
amount of increase (traditionally called the mass point values) of F 0 at each 
mass point is also unknown. In  addition, the number of these points of increase 
is unknown, but this problem will be ignored momentarily. 

Initially, the problem was the determination of an optimal distribution 
function and the average mutual information generated when that input 
distribution was used. The  problem has essentially been reduced to the 
determination of a finite number of values. Thus,  the capacity, for a fixed 
amplitude limit, can be formulated as the maximum of a function of a finite- 
dimensional vector, the components of which are the mass point positions 
and the mass point values. 

Suppose the correct number n = no(A ) of mass points is known for a 
particular value of A. Let x 1 , x~ ,..., x n denote the mass point positions of an 
arbitrary input distribution F, and let Q1, Q~ .... , Q~ denote the corresponding 
mass point values. Then, F can be written as 

F(x) = ~ Q ,~(x  - x,). 
i = 1  

Let the vector Z = (Z 1 ,..., Z2~ ) consist of components Z i = Qi for all 
i = 1, 2 ..... n, and Z~+i = x i  for all i = 1, 2,...,n. The  output density 
function Pr  will depend upon the vector-value of Z 

Pr(Y; Z) = ~ Q~p:v(y - xi). 

The information map I can be treated as a function of the vector Z: 

oo 

I(Z) = - -  f Pr(Y; Z) l ogp r (y ;  Z) dy -- D. 
- - c o  

Let G o denote the region of the 2n-dimensional Euclidean space in which Z, 
as defined, must lie. The  determination of G 0 is straightforward. I f  x, is 
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a mass point position then I xi I ~ A for all i = 1, 2 ..... n. I f  Qi is a mass 
point value, then Q~ ~ 0 for all i = 1, 2,..., n, and 

•Qi= 1. 
z = l  

Thus,  ~o  is simply the intersection of all the 3n + 1 restriction sets within 
which these constraints are satisfied. Then, the capacity C is 

C = max I(Z). 
Z i n  G 0 

Many optimization algorithms have been implemented as computer 
programs which solve problems of this form: maximize a known function 
I(Z) over all vectors Z = (Z1 ..... Z2~ ) which lie in a well-defined restriction 
region ~0 • Thus, the determination of the capacity at a fixed value of A is 
now, in principle, straightforward. Unfortunately, one aspect has been 
neglected; the correct number of mass points and, hence, the dimensionality 
of the vector at any fixed amplitude limit is not known. Thus, in practice, 
the determination of capacity as a function of amplitude limit requires a 
programming procedure such as is described next. 

A .Programming Procedure 

I t  can be shown that i(x;Fo) is concave-cup for A sufficiently small 
(d  ~ .1). This leads to the conclusion, from the necessary and sufficient 
conditions of Corollary 1, that the optimal set of mass points for A sufficiently 
small is an equal pair of mass points at the interval extremes ~ A .  This 
is intuitively appealing--in a very noisy environment, the mass points are 
separated as much as is permissible. This result provides a starting point for 
the program. 

The  necessary and sufficient conditions of Corollary 1 provide a test to 
determine whether the actual number n equals the correct number no(A ). 
To determine C(A) for A ~ .1, increment A by some small amount 3. 
Using the same two mass points, with the increased value of A, test to see if 
the necessary and sufficient conditions are satisfied. I f  the test is valid, 
this F o is still optimum (Corollary 1), and C(A) =I(F0) .  Thus, _d can be 
incremented by 3 again and the test repeated. Failure of this test at some value 
of d indicates that this F 0 is no longer optimum and the present number of 
mass points is no longer sufficient. Thus,  the number of mass points must be 
increased by one, and the distribution function F o which maximizes the infor- 
mation rate (subject to the mass point number restriction) is determined. 
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The test is then repeated. I f  the necessary and sufficient conditions are 
satisfied, the number of mass points is correct. If  not, the number must be 
increased by one, and the procedure repeated. The programming procedure 
is outlined in Fig. 1. 

.... INITIALIZE WITH [ INCREMENT A BY ~1~ RECORD 
SMALL A SMALL 8 C(A) = I (F o) 

STARTWTH!WOEQUALJ ~' ~ ~ 
MASSPO,NTSAT A !A 

FAIL 

CALCULATE i(x, Eo) FOR ~ T E S T F C ) R _ ~ x  

INCREMENT A BY ~ ~ T F ~  RECORD 
,, SMALL ~ C (A) = I (Fo) 

FIG. 1. 

Results 

Outline of programming procedure. 

The capacity C(A) of a scalar zero mean unit variance Gaussian channel 
with input amplitude constraint At is plotted in Fig. 2 in nats/symbol. The 
correct number no(At ) of mass points at each At was determined using the 
programming procedure described. The optimization algorithm used is 
described in detail by Fiacco and McCormick (1968). (The computer 
program implementation of this algorithm is available in the University of 
California Computer Library at Berkeley, California. I t  is titled, 
H2 CAL SUMT.) Optimum mass points at selected values of At are shown 
in Fig. 3. 

The asymptote of C(At), as A increases, is the same as the information rate 
due to a uniformly distributed input. This verifies the argument by Shannon 
(1948) that for large At, 

H(X) ~ H(Y), and C(A) ~ log 2A --  log V'2~e. 
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at selected values of amplitude constraint A. 

This  follows from the fact that the entropy of an absolutely continuous 
random variable a.s. limited to a finite interval is maximized by a uniform 
distribution over the interval. 

Finally, it may be added that these results do not rely strictly on the 
"Gaussianness" of the noise, but only on its general "smoothness." The  
capacity of non-Gaussian channels is discussed by Smith (1969). 
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IV. AMPLITUDE- AND VARIANCE-CONSTRAINED CAPACITY 

OF A SCALAR-ADDITIVE GAUSSIAN CHANNEL 

For  any amplitude limit A and variance limit a ~, the amplitude- and 
variance-constrained capacity, denoted C(A, as), is z 

where 

C(A, a S) ~ sup I(F) ,  
F in ~A 

f 
A 

aF ~ & x ~ dF(x). 
--A 

Alternately, defining ] :  ~A -+  ~ by J(F) ~ cry2 - az yields by the Lagrangian 
theorem quoted in Section II, a second expression for capacity; i.e., there 
exists a nonnegative constant ~ = A(A, a2) for J(F) ~ 0 such that 

c(A, ~ )  = sup [~(F) - -  ~](F)] .  
F in "~A 

Again, where no confusion can arise, C(A, a ~) and ~ are simply denoted by 
C and i f ,  respectively. 

PROPOSITION 3. The value C is achieved by a unique input distribution 
function F o in ~ satisfying the variance constraint; i.e., 

C(A,  a 2) = m a x  [ I ( F )  - -  A J ( F ) ]  = I(Fo) - -  AJ(Fo). 
Fin~  

A necessary and sufficient condition for C ~- I(Fo) is that for some constant 
~>~0 ,  

f~A [i(x; Fo) - -  ~x ~] dF(x) ~ I(Fo) - -  Aa 2 for all F in ~ .  

Proof. J:  f f  --~ ~2 is clearly linear and bounded and, hence, convex-cap, 
continuous, and weakly differentiable in # -  with J'~I(F~)= J ( F ~ ) -  J(F1). 
In  addition, for any x, such that I xl [ < a, let t ingFl(x ) A~ ~ ( x  - -  xl) implies 
that J(F1) < 0. Then  by the Lagrangian theorem, since C(A, a ~) is finite, 
there exists some constant A such that the second expression for capacity 

The second moment constraint is the same as the variance constraint since the 
"optimal" input must be zero mean because of the symmetry ofp/~. 



A M P L I T U D E - C O N S T R A I N E D  C A P A C I T Y  217 

holds. Further,  I -  A f is strictly convex-cap, continuous, and weakly 
differentiable. Thus,  by the Optimization Theorem there exists a unique 
distribution function F o in f f  such that C(A, ~2)= i(Fo ) _ Aj(F0)" The  
necessary and sufficient condition becomes leo(F ) - -  AJ~o(F) ~ 0 for all F 
in ~-, or, for all F in ~ -  

[i(x; F0) Ax 2] dF(x) ~ I(Fo) Aa2e~ . 

2 I f  aeo < a s, the variance constraint is trivial and the constant A is zero i.e., 
J(Fo) ~ O, but AJ(Fo) = 0 ) .  Thus, the necessary and sufficient condition is 
established. Q.E.D. 

COROLLARY 2. Let F o be an arbitrary probability distribution function in 
satisfying the variance constraint. Let E o denote the points of increase o f f  o on 
[ - -A,  .//]. Then F o is optimal i f  and only if, for some A ~ O, 

i(x; Fo) ~ I(Fo) + A(x z --  ~2) for all x in [ - - d ,  A], 

i(x; Fo) = I(Fo) q- A(x z - -  a 2) for all x in E 0 . 

The  proof  parallels that of Corollary 1, and, thus, is not included. 

PROPOSITION 4. The value E o is a finite set of points. 

Proof. The  proof closely parallels the proof of Proposition 2 Assuming, 
as before, that E 0 is not finite leads to the conclusion that the output density 
function p r (Y;  F0) must be Gaussian with variance 1 ~ a 2. I t  is not possible 
to achieve this output with an amplitude constrained input, and, hence, E 0 
must  be finite. 

Programming Procedure 

The  capacity to be determined can now be formulated as the max imum 
of a function of a finite-dimensional vector. The  components and restrictions 
are as before, except for an added restriction to include the variance constraint. 

T h e  necessary and sufficient conditions of Corollary 2 provide a test, 
comparable to the test discussed in Section I I I ,  to determine whether the 
actual number  n of mass points equals, at any pair (A, aS), the correct 
number  no(A , a~). I f  n = no(A, or2), then the optimization algorithm will 
produce a distribution function F 0 which satisfies the necessary and sufficient 
condition for the constant A determined by solving the second of the two 
equations of the necessary and sufficient condition at any x 0 in E 0 , except 
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x 0 = ~. Further ,  I(Fo) will equal C(A, a2). If  n < n0(A, a~), the optimization 
algorithm will produce a distr ibution function F o which will not satisfy 
the above test, for ~ calculated as above, and I(Fo) will be less than C(A, a~). 

The  starting point  can be established by showing that for A sufficiently 
small and A2/a ~ sufficiently small the opt imum set of mass points are a pair 
of equal mass points at ~_d and one at the origin. This  third mass point has 
enough mass to satisfy the variance constraint. 

FIG. 4. 
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Amplitude- and variance-constrained capacity of a scalar Gaussian channel. 
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FIG. 5. Optimum mass points at selected values of amplitude constraint ~ with 
= A / v ~ .  
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Capacity C ( A ,  ~2) is plot ted in Fig. 4 in nats/symbol as a function of 
a 2 in dB for a fixed ratio of A 2 / a  ~ ---- 2. Op t imum mass points at selected 
values of -// are shown in Fig. 5. A plot of the curve log V/1 + a~ is also 
included in Fig. 4. This  represents the l imiting curve as . /t2/a 2 --~ oo. The  
interesting result is that  the curves are so close. For  example, restricting the 
peak power /12  to no more than twice the average power a 2, for a z ~ 10 
dB results in less than a 7% loss in capacity. Furthermore,  only five mass 
points are required at a s -~ l0  dB to achieve C(v/2--~, a2). Note that any 
greater ratios of d 2 / a  ~ will yield curves lying between the two curves given. 
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