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Abstract 

For a small category C with multilimits for finite diagrams, a conceptual description of its free 
coproduct completion C(C) is given as the category of those set-valued functors of a finitely 
accessible category with connected limits which preserve these limits and filtered colimits. In 
this way we recognize the free coproduct completion as a finitely complete category and show 
that C(C) is universal with respect to existence of finite limits and of small coproducts which are 
disjoint and stable under pullback. 

1991 Math. Subj. Class.: 18A35, 18B40, 18C99, 03630 

0. Introduction 

In recent years there has been considerable interest in distributive categories (see, 
for example, [S, 20,26,28]). The paper [6] by Carboni et al. gives a good overview of 
the various approaches and analyses in particular the properties of disjointness and 
pullback-stability of finite coproducts (see also [4]). They point out that (finite) 
coproducts in the free completion of a category under (finite) coproducts have the said 
properties, including the existence of very particular limits: pullbacks along coproduct 
injections. 

In this paper we consider the free completion 1 (C) of a small category C under all 
small coproducts (which has enjoyed recent attention too, see [7,19]) and solve the 
following problems: 

(1) When does C(C) have all finite limits? 
(2) For finitely complete C(C), when does the coproduct-preserving extension 

F! : 1 (C) + B of a functor F : C + B into a category B with coproducts preserve these 
finite limits? 
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(3) Is there a conceptual description of C(C) as a “double-dual”, in the spirit of 
[13]? 

The quite surprising answer to (3) is that for a familially finitely complete category 
C (so that C has multilimits in the sense of Diers [9] for all finite diagrams), the free 
coproduct completion C(C) is equivalent to the category 

ConnFilt(C*, set) 

of functors C* + Set that preserve all small connected limits and filtered colimits, 
with C* = Flat(C) the category of flat functors C + Set (see Theorem 2.4). The 
categories of type C* are known to be finitely accessible (see [23]), and with 
C familially finitely complete, they are exactly the finitely accessible categories with 
small connected limits or, equivalently, the locally finitely multi-presentable catego- 
ries in the sense of Diers [lo] (see Theorem 1.2). Limit-colimit commutation in Set 

enables us to show that ConnFilt(C*, Set) is a category with finite limits and all small 
coproducts. More precisely, every object in this category is coproduct of coprime 
objects (i.e., of objects whose representables preserve coproducts; see [S]), and these 
are exactly the objects of C (when embedded into ConnFilt(C*, Set)). 

In particular, in showing (3) we also obtain a complete answer to question (l), since 
the sufficient condition of familial finite completeness of C is easily seen to be also 
necessary for the finite completeness of C(C). 

For the answer to problem (2), disjointness and pullbacks stability of coproducts 
turn out to be the needed characteristic properties. More precisely, coproducts in 
B need to satisfy these properties in order for us to show that every functor F : C + B 

merging multilimits of finite diagrams has a left Kan extension F! : C(C) --, B which 
preserves finite limits. The proof is quite tedious. 

In all of the above, “finite” may be traded for “less than IC”, with any infinite regular 
cardinal number K. We can then summarize our answer to (1) and (2) as in Theorem 
3.6, which describes 1 (C) as the free rc- co -1extensiue completion of the small familially 
Ic-multicomplete category C. Here we extend a terminology used in [6] where 
lextensive (lex-extensive) categories are described as categories with finite limits and 
finite coproducts which are disjoint and stable under pullback; we have traded “finite 
limits” for “r&nits”, “finite coproducts” for “small coproducts”, and “pullback” for 
“x-wide pullback”. Stability of coproducts under x-wide pullbacks seems to be a new 
notion which entails an infinite distributive law for product-coproduct commutation 
in categories. For lattices it amounts to complete distributivity (when generalized over 
all rc). 

1. Accessible categories with connected limits 

Let K be an infinite regular cardinal. Recall from [ 1 l] that an object A of a category 
A is K-presentable if the representable functor A (A, -) :A + Set preserves K-filtered 
colimits. A is rc-accessible if A has K-filtered colimits and if there is a small subcategory 
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C of A consisting of K-presentable objects such that every object of A is a Ic-filtered 
colimit of a diagram of objects in C. A category is accessible if it is rc-accessible for 
some K (see [12, 231). A functor between accessible categories is accessible if it 
preserves rc-filtered colimits for some K. 

Recall that for a small category C, a functor F : C + Set is ~-flat, if it is a rc-filtered 
colimit of representable functors (see [17, 231). As shown in [23], a category A is 
K-accessible iff it is equivalent to a category of the form ~-Flat(C) with C small; here 
~-Flat(C) is the category of rc-flat functors from C to Set. 

Finally, recall from [9] that a diagram D :D + A of an arbitrary category A is said 
to have a multicolimit if the functor A + Set which assigns to every object A the set of 
cocones on D, with vertex A, is isomorphic to a small coproduct of representable 
functors. The corresponding representing family of A-objects is then called the 
multicolimit of D. 

The multilimit of D in A is simply a multicolimit of Do* in A’*. Hence it is given by 
a small family of cones 

li: ALi + D (iEl) 

such that any cone a: AA + D factors though a unique Li by a unique morphism 
A + Lie A is said to be familially K-complete if every diagram D : D + A with #D < ic 
has a multilimit. 

It is easy to see that when A has small coproducts, every multilimit must actually be 
a limit, that is, the indexing system I must be a singleton set. Consequently, for 
a functor F : A + B into any category B with small coproducts, one cannot expect the 
application of F to the multilimit in A to yield a multilimit in B, unless the multilimit 
in A was actually a limit. Mere multilimit preservation is therefore a concept of limited 
importance. The following notion, however, turns out to be useful: the functor 
F :A -+ B merges the multilimit of D if the coproduct L = uisl F(Li) exists in B and 
the induced cone I : AL + F 0 D is a limit cone in B. Note that if F merges multilimits 
for some type D, then it preserves in particular D-limits. We say that F merges 
ic-multilimits or briefly, is K-merging if F merges all multilimits of diagrams of size less 
than rc (for the case B = Set, see [lo]). 

The following proposition is crucial: 

Proposition 1.1. For a small familially x-complete category C, a finctor F: C + Set 
merges Ic-multilimits if and only ifit is K-Jlat. 

Proof. With cl(F) = l/F denoting the element category of F (see [17]), the functor 
F is K-flat if and only if (el(F))“P is rc-filtered, that is, if every diagram G : D + cl(F) 

with #D < K admits a cone. This property follows immediately when F merges 
Ic-multilimits. One simply forms the multilimit of D = U 0 G, with U : cl(F) + C the 
canonical functor. The canonical natural transformation t : Al + F 0 U then yields an 
element x: 1 + L = uisl F(Li) with Izo Ax = t 0 G. Hence, for a uniquely determined 
iEZ, the cone Izi: ALi -P UOG can be lifted to a cone A(Li, x) + G. 
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Conversely, let F be K-flat and therefore a K-filtered colimit 

F z colim C(Cj, -) 
jsJ 

of representable functors. Since in Set such colimits commute with both coproducts 
and rc-limits, the fact that representable functors merge K-multilimits gives the same 
property for F: 

J’J F(Li) E u colimjC(Cj, Li) E colimj IJ C(Cj, Li) 
‘ I I 

E colimj lim C(Cj,-) 0 D z lim(colimj C(Cj, -) 0 D) z lim F 0 D. 0 

For C with K-multilimits, Proposition 1.1 says that the rc-accessible category 
~-Flat(C) contains exactly the set-valued Ic-merging functors on C. Since small 
connected limits commute with coproducts in Set, this implies the existence of small 
connected limits in ~-Flat(C). Hence we have shown half of the following character- 
ization theorem for accessible categories with small connected limits. 

Theorem 1.2. For an infmite regular cardinal K, a category A is u-accessible and has 
small connected limits if and only ifA is equivalent to the category x-Flat(C), for some 
small familially rc-complete category C. 

In order to show that other half of the theorem, first we study the category 

ConnFilt,(A, Set) 

of all set-valued functors on a Ic-accessible category A with small connected limits 
which preserve these and rc-filtered colimits. Since rc-limits and coproducts commute 
with connected limits and K-filtered colimits in Set, this category is closed under 
K-limits and coproducts in the functor category (A, Set). As a K-accessible functor, 
each FE ConnFilt,(A, Set) satisfies the solution-set condition (see [23]). Now recall 
Diers’ [9] General Multiadjoint Functor Theorem: for any (locally small) category 
A with small connected limits, a functor G : A -P B has a left multiadjoint if and only if 
G satisfies the solution-set condition and preserves connected limits. In case B = Set, 
such a functor is in particular multirepresentable (or, familially representable, in the 
recently more popular terminology of [24, 14, 73). This means that every FE Conn- 
Filt,(A, Set) for A K-accessible with small connected limits is a small coproduct of 
representable functors A(Ai, -), i E I. Furthermore, since F preserves K-filtered 
colimits, the same holds true for each representable A(Ai, -), i.e., Ai is K-presentable. 

We use the terminology of [3, 51 to formulate these facts conveniently. An object 
B of a category B is called coprime if B(B, -) : B + Set preserves small coproducts (the 
term “coproduct presentable” was used in [13]). It is easy to see that any coproduct 
that is coprime must actually be isomorphic to one of its summands. One says that 
a category B with coproducts is based if every object of B is a coproduct of coprime 
objects. With this terminology we have shown: 
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Proposition 1.3. For a x-accessible category A with small connected limits, the category 
ConnFilt,(A, Set) is a based category with x-limits. Its full subcategory of coprime 
objects is equivalent to Azp, the opposite of the fill subcategory of u-presentable objects 
ofA. 

Now it is easy to complete the proof of Theorem 1.2. Since one already has the 
equivalence 

A E Ic-Flat(Azp) 

for A K-accessible (see [23]), it suffices to show the existence of K-multicolimits in A, 
when A has small connected limits. Hence we consider a diagram D : D + A, of size 
less than IC. The restriction Y : AEp + (A, Set) of the Yoneda embedding of A“P factors 
through the category B = ConnFilt,(A, Set) which has K-limits. Hence we can form 
the limit 

F =limYoD”P:DoP + B. 

By the Yoneda lemma, F(A) is isomorphic to the set of natural transformations 
Y(A) -+ F for each AEA,, hence it is isomorphic to the set of cones 
d(Y(A)) + YoD’P, which is isomorphic to the set of cocones on D in A, with vertex 
A. Proposition 1.3 gives a presentation of the restriction of F to A, as a coproduct of 
representables, hence the existence of a multilimit of D. 0 

Diers [lo] called a K-accessible category with small multicolimits locally rc-multi- 
presentable and showed that each categories are exactly the categories equivalent to 
the category of K-merging set-valued functors on C, for some small C with K- 
multilimits. Hence, with Proposition 1.1 one obtains 

Corollary 1.4 [23, Theorem 6.1.71. Diers’ locally x-multipresentable categories are 
exactly the K-accessible categories with connected limits. 

2. A conceptual construction of the free coproduct completion 

Recall that the free coproduct completion C(C) (also denoted by Fam(C), see 
[ 19,231) of a category C can be constructed as follows: its objects are small families 
(Xi)ier of C, and a morphism (Xi)isl + (Yj)j,Jisgivenbyafunctiont:Z -+ Jand 
morphismsfi: Xi + Yt(i) in C, with the obvious composition rule. Now C(C) has all 
small coproducts, and the canonical embedding C --) C(C) has the expected universal 
property: every fun&or F : C --) B into a category with coproducts extends essentially 
uniquely to a coproduct-preserving functor F! : C (C) + B, F! is actually the left Kan 
extension of F along the canonical embedding. We may describe this property more 
precisely by the following proposition which is indeed just a (very) special case of 
Kelly’s theorem 5.35 of [17]. 
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We denote by 

the category of coproduct-preserving functors C(C) + B. 

Proposition 2.1. The restriction functor 

R1I-I C(C),B + (C,B) ( > 
is an equivalence of categories, for every category B with small coproducts. Its quasi- 
inverse takes every functor F : C + B to its (coproduct-preserving) left Kan extension F!. 

Remark 2.2. All of the above can be modified by trading “small coproducts” for 
“1-coproducts”, that is, coproducts of families of less than I-many objects, with 1 an 
infinite regular cardinal. For B with I-coproducts, Proposition 2.1 then yields an 
equivalence 

with the obvious meaning of the left-hand-side category. 

Let us now return to the setting of Section 1 with C small and familially x-complete. 
Our aim is to give an alternative description of C (C), using the ingredients of Section 
1. First recall (see [17, 231) that the category 

C* = n-Flat(C) 

is indeed the free completion of Cop under K-filtered colimits. More precisely, composi- 
tion with the (restricted) Yoneda embdding Cop + C* yields an equivalence of 
categories 

I : Filt, (C*, Set) --+ (Cop, Set) 

with quasi-inverse J. Composition of J with the Yoneda embedding C + (COP, Set) 
leads to a full embedding C + Filt,(C*, Set). Since J(Y(C)): C* + Set preserves 
connected limits, for every C E C, we actually have a full embedding 

E: C + ConnFilt,(C*, Set), 

which is the evaluation functor C H (F H F(C)). From Theorem 1.2 and Proposition 
1.3 we now obtain for A = C*: 

Proposition 2.3. For every small familially k-complete category C, the evaluation 
functor E: C + ConnFilt,(C*, Set) gives a full, dense and n-merging embedding of C 
into a category with small coproducts and n-limits. Moreover, ConnFilt,(C*, Set) is a 
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based category whose coprime objects are the objects isomorphic to the (embedded) 
objects of C. 

An easy application of Proposition 2.1 to the functor E now gives the main result of 
this section: 

Theorem 2.4. For every small familially n-complete category C, the left Kan extension 

E! : C(C) + ConnFilt,(C*, Set) 

of E is an equivalence of categories. 

Proof. E! takes an object (Ci)iel to the coproduct UisI E(Ci) in ConnFilt,(C*, Set). 
But, according to Proposition 2.3, every FE ConnFilt,(C*, Set) is isomorphic to such 
a coproduct, hence E! is essentially surjective on objects. In order to show that E! is full 
and faithful, one considers a morphism 

f: u E(Ci) + JJ E(Dj) 
icl jeJ 

in ConnFilt,(C*, Set). For every i E I, coprimity of E(Ci) gives a uniquely determined 
t(i) E J and fi : Ci + Dt(i) with fi Pi = qt(i) 0 E( fi) (with Pi, qt(i) coproduct injections). 
Hence f = E!(t, (h)iet) for a unique morphism (t, (fi)iel) in C(C). 0 

Corollary 2.5. The free coproduct completion C(C) of a small category C is n-complete 
tfand only if C is familially n-complete. In this case, C --f C(C) is a n-merging functor. 

Proof. The “if” part follows from Proposition 2.4, and the “only if” part can be easily 
checked directly. 0 

It seems natural now to restrict the functor R of Proposition 2.1 to the category 

lim,U C(C),B ( > 
of functors C(C) + B which preserve K-limits and coproducts. Here we first consider 
the case B = Set. [7 

Proposition 2.6. For every small familially tc-complete category C, the restriction 
functor 

R:lim.u(z(C),Set) + (C,Set) 

is full and faithful, and its essential image contains exactly the n-merging functorsfiom 
c to set. 
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Proof. According to Propositions 1.1 and 2.1, it suffices to show that the essential 
image of R is the category ~-Flat(C) = C*. First, for every M Elim, u(C(C), Set), 

R(M) = Mlc is indeed K-flat, i.e., the category (el(R(M))“P is K-filtered. Hence, for 
every diagram G : D -+ el(R(M)) with #D < K we must find a cone. This can be done 
completely analogously to the first part of the proof of Proposition 1.1, by first 
forming the limit cone 

inC(C)(withI:C + C(C) and U : el(R(M)) + C), with L = u i,lLi and Li E C, and 
then by applying both preservation properties of M. 

Conversely, every FE ~-Flat(C) is a K-filtered colimit of representables: F g 
limj,J C(Cj, -). Since lim, u(C(C), Set) h as K-filtered colimits, which are formed 
pointwise and are therefore preserved by R, one has R(M) g F with M = 

limjd C(C)(Cj, -). 0 

Corollary 2.7. The category lim, u(C(C), Set) is K-accessible with connected limits, and 
its full subcategory of K-presentable objects is equivalent to Cop. 

Proof. lim, IJ(C (C), Set) is equivalent to ~-Flat(C). 0 

3. Free Ic-cdextensive completion 

Recall that a coproduct B = IJ jeJ Bj with coproduct injections tj: Bi + B is said to 
be stable under pullback (or universal) if for every morphism p: A + B the pullback 
diagrams 

Aj*A 

I I 
P 

BjAB 

exit and describe A as a coproduct of (Aj)j,,. The coproduct of B is disjoint if all 
injections are manic, and if the pullback of (tj, tJ for any j # k exists and is an initial 
object of B. 

In [6], categories with finite limits and finite coproducts which are disjoint and 
stable under pullback have been described as so-called Zextensive ( = lex-extensive) 
categories. For an infinite regular cardinal K, we now wish to trade finite limits for 
rc-limits and finite coproducts for arbitrary small coproducts which are disjoint and 
stable under K-wide pullbacks, as defined below. 

First recall that a K-wide pullback (or, K-Jibred product) is the limit of a 
family (f;: Bi + C)ie, of morphisms with #I < K, i.e., a family of commutative 
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diagrams 

A pi ,Bi 

with the obvious universal property; equivalently, it is a direct product in the sliced 
category of morphisms with codomain C. Given an Z-indexed family of coproducts 
Bi g aEJ, Bij with injections tij: Bij + Bi, and an Z-indexed family of arbitrary 
morphisms pi : A + Bi, first for each i E Z and j E Ji we form the (ordinary) pullback 
diagram 

and then, for every rp = ( ji)islE l-Ii,1 Ji, we form the rc-wide pullback of the family 

Csijl)isI: 

Stability of the coproducts Bi (iE I, #Z < K) under x-wide pullbacks means that for 
every family (pi)ie, the (wide) pullbacks A, and QP exist and that the morphisms 
qV exhibit A as a coproduct 

with J = ui,IJi. 

Definition 3.1. A category is called JC- co -1extensive if it has rc-limits and arbitrary 
small coproducts which are disjoint and stable under rc-wide pullbacks. 

Remark 3.2. (1) To say that an Z-indexed family of coproducts with # Z = 1 is stable 
under x-wide pullbacks means exactly that coproducts are stable under pullback in 
the ordinary sense. Inductively one shows easily that in this case also every finite 
family of coproducts (including the case Z = @!) is stable under x-wide pullbacks. 
Hence, finite families of coproducts are stable under t&-wide pullback if and only if 
coproducts are stable under pullback in the ordinary sense. 

(2) We recall for later reference that in a category with coproducts which are stable 
under pullback the initial object 0 is necessarily strict, that is, any morphism with 
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codomain 0 is an isomorphism. (Consider the case #Z = 1 and #.Z = 0 in the 
definition above.) 

(3) We remark that when the morphisms pi are product projections of A s n ior Z$, 
then stability of coproducts under K-wide pullbacks entails rc- co -distributiuity, as 
a natural extension of the notion of distributive category (cf. [6]). In fact, in this case 
one has Q, E ni,, Bij,, for every rp = ( ji)iGrEJ = flielJi, hence 

fl JJ Bij g u fl &q(i) 

iel jeJi cpeJ i61 

It is easy to see that stability of coproducts under K-wide pullbacks amounts to 
rc-co-distributivity of all slices of the category in question. 

(4) A complete lattice (when considered a category in the usual way) is rc-co- 
distributive if and only if it satisfies the infinite distributive law 

A V bij r qyJ ?, bWb 
is1 jeJ, 

with J = nier Ji and #Z < K. In case K = K e, these are exactly the frames ( = com- 

plete Heyting algebras). Complete lattices which are rc- co -distributive for every K are 
known as completely-distributive lattices. 

(5) The category Set is co -co-lextensive, that is, rc-co-lextensive for every rc. This 
follows immediately from the fact that power-set lattices satisfy the infinite distribu- 
tive law of (4) with A = n and V = U, with the additional observation that disjoint- 
ness of all unions on the left-hand side implies disjointness of the union on the 
right-hand side. Consequently, also every presheaf category (COP, Set) is co-co- 
lextensive. 

It has been observed previously that the free coproduct completion C(c) (or G(C), 
see Remark 2.2) has universal and disjoint (A-) coproducts (see [6]). Here we give 
a conceptual proof of this fact when C is small and familially K-complete, by 
embedding C(C) into the functor category (Cop, Set), as follows. 

Proposition 3.3. The left Kan extension 

Y! : c (C) + (COP, set) 

of the Yoneda embedding Y : C + (Cop, Set) is full andfaithful and preserves K-limits and 
small coproducts. Its essential image contains exactly the so-called coproduct-flat 
functors Cop + Set, i.e., those functors which are small coproducts of representables. 

Proof. The fullness and faithfulness of Y! follows from the density of C in C(C). 
Coprimity of CEC in C(C) shows that the functor Y!(-)(C):C(C) + Set preserves 
coproducts. Preservation of coproducts by Y! follows since colimits are computed 
pointwise in (Cop, Set). Similarly, one can see that Y! preserves the existing limits of 

C(C)* Cl 

By embedding Proposition 3.3 with Remark 3.2 (5) one obtains: 
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Corollary 3.4. For any small familially u-complete category C, the free coproduct- 
completion C(C) is K-oo-lextensive, and the embedding C + C(C) is a u-merging 
functor. 

Remark 3.5. Corollaries 2.5 and 3.4 hold for any (not necessarily small) familially 
rc-complete category C. This can be checked by using facts that every object of C is 
coprime of C(C) and every object of C(C) is a coproduct of objects of C. The direct 
proof is straightforward. 

The main result of this paper says that C + C(C) is universal with respect to the 
properties mentioned in Corollary 3.4. 

Theorem 3.6. Let C be a familially k-complete category. Then every k-merging functor 
F: C + B into a tc-co-lextensive category B factors essentially uniquely through a K- 
limit- and coproduct-preserving jiunctor 1 (C) + B. More precisely, restriction of such 
functors to C defines an equivalence of categories 

-+ Merg,(C, B), 

with Merg,(C, B) the category of k-merging functors from C to B. 

Proof. We want to show that the left Kan extension F! : 1 (C) + B preserves r&nits, 
for any rc-merging functor F : C + B. This is done in three steps. 

Step 1: F! preserves limits of diagrams in C of size less than rc. Indeed, for D : D + C 
with #D < K, one has a multilimit (Lj)jeJ of D which describes the limit of IO D in 
1 (C), with I : C + C(C). That F merges rc-multilimits and coproduct preservation of 
F! then yield 

limF!oIoD rlimFoD Z JJ F(Lj) E F! D Lj z F!(limIoD). 
jGJ ( > jsJ 

Since the empty diagram of C(C) factors through D, F! preserves in particular 
terminal objects. 

Step 2: F! preserves pullbacks. Consider a pullback diagram 

P-B 

1 19 
A-C 

f 
in C(C), with A z UrnGuAm, B E’ UneN B, and C z uLEK C, given as coproducts of 
coprime objects. If #N = 0 or #M = 0, then P = 0, and the pullback is trivially 
preserved by F!, because of the strictness of initial objects in C(C) and in B (see 
Remark 3.2.(2)). If #M = #N = 1, then f and g are given by C-morphisms 
f’ : A + Ck and g’ : B + Ct. For k # 1, the pullback of (C, + C, C1 + C) is 0. Since 
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there is a morphism P + 0 also P is 0, hence the pullback is trivially preserved by F!, as 
in the previous case. For k = 1, P is actually the pullback off’, g’ (since Ck -+ C is 
manic) and is therefore preserved by F!, according to Step 1. If # M > 1 and # N = 1, 
then for each nr~ M we form the pullback diagrams 

P,----+P-----+B 

I I Is 
A,,,-A-C 

r, f 

in C(C), with coproduct injections r,. Pullback stability gives P 2 HP,,,. Both 
coproducts and (according to the case considered previously) each outer pullback are 
preserved by F!. Hence, when we form the pullback R of F!(f) and F!(g) in B, we 
obtain a canonical morphism h : F!(P) + R, and each F!(P,,,) is the pullback of F!(r,,,) 
along the pullback projection R + F!(A). Pullback stability of the coproduct 
F!(A) E u F!(A,) therefore gives 

R = u F!(P,) r F!(P), 

i.e., h is an isomorphism, as required. Finally, similarly one reduces the case #M > 1 
and #N > 1 to the case just considered. 

Step 3: F! preserves K-wide pullbacks. We consider a family (A : Bi + C)i,l in C(C) 
with #Z < rc, with coproducts C r u fsk C, and Bi % IJ+J~ Bij of coprime objects for 
every ieZ. We then form the (ordinary) pullbacks A, and the rc-wide pullbacks QV, 
keeping the same notation as in the definition of stability of coproducts under #-wide 
pullbacks. Certainly, if each Bi is coprime (so that # Ji = 1 for all FEZ), then the 
pullback P is preserved by F!, by the same argumentation as in Step 2. Therefore, 
when in the general case we consider for each cp = ( ji)iel the K-wide pullback QV, 
which is easily seen to give a k--wide pullback 

then this limit is preserved by F!. Furthermore, by step 2 F! preserves the ordinary 
pullbacks Av,, for every i E I. Similarly to Step 2, we now form the rc-wide pullback 

R ” *F!(Bi) 

U 

F!(C) 
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and then, for every icZ, the ordinary pullbacks 

Ri - R 

I I Ut 

We have canonical morphisms h : F!(A) + R and hi : F! (Ag,) + Ri and obtain a rc-wide 

pullback 

The stability of the coproducts F!(Bi) r UjsJ, F!(Bg,) under K-wide pullbacks in 
B therefore yields 

R G jj F!(Q~) r F!(A), 
cp 

as desired. 
Since F! preserves terminal objects and K-wide pullbacks, F! preserves all K- 

limits. IJ 

Corollary 3.7. For any x-complete category C, a finctor F: C + B into a K-a~- 

lextensive category B merges K-multilimits i# it preserves u-limits. 

Remark 3.8. (1) In Theorem 3,6, it suffices to assume B to be NO-co-lextensive with 
K-limits and to satisfy the rc-co-distributive law (see Remark 3.2 (3)). In fact, Step 3 of 
the proof Theorem 3.6 may be replaced by a shorter argument which shows that 
F! preserves rc-products, as follows: if each Bi (ic I, # Z < K) is a coproduct 
Bi E &oJiBij of objects in C, then rc-co-distributivity in C(C) and in B and preserva- 
tion by F! of coproducts and of K-limits of objects in C show 

(2) An advantage of the argumentation given in Step 3 of the proof of Theorem 3.6 
is that it does not rely on the existence of a terminal object in C(C) but yields results 
also when we restrict ourselves to considering functors preserving certain connected 
limits. (Readers interested in these are particularly referred to [24].) More precisely, 
we have shown that, for a small familially rc-complete category C and for every functor 
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F : C --t B taking K-wide multipullbacks of C into K-wide pullbacks of B, its extension 
F! : C(C) --) B preserves K-wide pullbacks, provided B has rc-wide pullbacks and 
coproducts which are disjoint and stable under x-wide pullbacks. 

(3) When we restrict our attention to the 2-category rc-Lex of categories with 
K-limits, whose l-arrows are functors preserving r&nits and 2-arrows are all natural 
transformations between latter, the universal property of Theorem 3.6 becomes part 
of the left 2-adjoint to the inclusion 

rc-co-Lex - tc-Lex 

here rc-co-Lex is the 2-category of Ic-co-lextensive categories with the obvious mean- 
ing of l-arrows and 2-arrows. The unit of the 2-adjunction at a category C of tc-Lex is 
just the inclusion C + C(C). 

(4) The 2-categorical description above cannot be applied for familially K-complete 
categories. Indeed, assuming that we have such a 2-adjunction with the same unit 
above. For a familially k--complete category C and a category B of rc-co-Lex, the 
l-arrows from C(C) into B of Ic-co-Lex must correspond to the l-arrows between 
C and B, i.e., rc-merging functors from C into B. Therefore, the composition of 
rc-merging functors must be a x-merging functor, but this is not true in general. For 
instance, taking a category C without terminal object, then the composition of the 
inclusions C + C(C) and C(C) + x(x(C)) is not a K-merging functor. This can be 
seen as follows. Let (Ci)iEr be a multi-terminal family of C, and let B be the coproduct 
of Ci in C(C). If the composition above is a x-merging functor, then B is the coproduct 
of Ci in C(C(C)). But the identity arrow of B must factor through a unique Ci, since 
B is coprime in x(x(C)). Hence, B is isomorphic to Ci. This is contrary to the 
assumption that C has no terminal object. 

Remark 3.9. (1) Further to Remark 3.8 (3) we refer the reader to the general theory of 
completions with respect to a class of colimits as presented in [l, 181. 

(2) Categorical considerations of infinite distributive laws are to be found in [25]. It 
is clear that the results of [6,4] allow for “rc-l-fications” which we plan to outline in 
a separate paper. 
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