On a planar Liouville-type problem in the study of selfgravitating strings

Arkady Poliakovsky, Gabriella Tarantello*
Università di Roma 'Tor Vergata', Dipartimento di Matematica, Via della Ricerca Scientifica, 1, 00133 Rome, Italy

A R T I C L E I N F O

Article history:

Received 28 July 2011
Available online 23 November 2011

Abstract

Motivated by the construction of selfgravitating strings (cf. Yang, 2001, 1994 [22,23]), we analyze a Liouville-type equation on the plane, derived in Yang (1994) [23]. We establish sharp existence and uniqueness properties for the corresponding radial solutions. We investigate also when the problem allows for non-radial solutions.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we analyze an elliptic problem of Liouville type in \mathbb{R}^{2}, whose solutions yield to selfgravitating strings for a massive W-boson model coupled to Einstein theory in account of gravitational effects (cf. [22]).

To handle the analytical difficulties posed by the corresponding string's equations, Y. Yang in [23] introduced a set of ansatz so that the corresponding string configuration obeyed to a system of Bogomolnyi-type (selfdual) first order equations coupled with Einstein's equation.

Such a construction was inspired by the work of Ambjorn and Olesen in [1-4]. It gives rise to (selfgravitating) strings that are parallel in the x_{3}-direction and whose cross section (with respect to the plane: $x_{3}=0$) is localized around some given points $p_{1}, \ldots, p_{N} \in \mathbb{R}^{2}$ (repeated according to the assigned multiplicity).

Consistently, the gravitational metric can be chosen to be conformally equivalent to the flat \mathbb{R}^{2} metric.

As a consequence, the full string's problem can be reduced to an elliptic system involving two unknown (real) functions (u, η), with η the conformal factor and e^{u} the "strength" of the W-boson

[^0]field. The location of the string at the points p_{1}, \ldots, p_{N}, requires the following "singular" behavior of u :
\[

$$
\begin{equation*}
u(x)=\ln \left(\left|x-p_{j}\right|^{2}\right)+O(1) \quad \text { as } x \rightarrow p_{j} \tag{1.1}
\end{equation*}
$$

\]

for any $j \in\{1, \ldots, N\}$.
Thus, the governing string's system takes the form:

$$
\left\{\begin{array}{l}
-\Delta u=2 m_{W}^{2} e^{\eta}+4 b^{2} e^{u}-4 \pi \sum_{j=1}^{N} \delta_{p_{j}} \tag{1.2}\\
-\frac{\Delta \eta}{8 \pi G}=\frac{2 m_{W}^{4}}{b^{2}} e^{\eta}+4 m_{W}^{2} e^{u}
\end{array}\right.
$$

with $m_{W}=$ boson's mass, $-b=$ electron charge, $G=$ gravitational constant. The details of the derivation of (1.2) can be found in [22] and [23]. In the planar case, problem (1.2) must be equipped with the (boundary) conditions:

$$
\begin{equation*}
e^{u}, e^{\eta} \in L^{1}\left(\mathbb{R}^{2}\right) \tag{1.3}
\end{equation*}
$$

in order to ensure finite (total) energy and (total) curvature. Notice that (1.3) implies that both u and η must admit a logarithmic growth at infinity (e.g. see $[14,15,13]$). Thus, by (1.2), we find that the function

$$
\begin{equation*}
w:=u-\frac{b^{2}}{m_{W}^{2} 8 \pi G} \eta-\sum_{j=1}^{N} \ln \left(\left|x-p_{j}\right|^{2}\right) \tag{1.4}
\end{equation*}
$$

defines an entire harmonic function with logarithmic growth at infinity. So w must be constant, say $w \equiv C$ with $C \in \mathbb{R}$. Therefore the system (1.2) can be further reduced to a single equation in terms of the unknown function

$$
\begin{equation*}
v=\frac{b^{2}}{m_{W}^{2} 8 \pi G} \eta+C+\ln \left(4 b^{2}\right) \tag{1.5}
\end{equation*}
$$

given as follows:

$$
\begin{equation*}
-\Delta v=\lambda e^{a v}+\prod_{j=1}^{N}\left|x-p_{j}\right|^{2} e^{v} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{m_{W}^{2} 8 \pi G}{b^{2}} \gg 1, \quad \lambda=2 m_{W}^{2} e^{-a \mu} \quad \text { and } \quad \mu=4 b^{2} e^{c} \tag{1.7}
\end{equation*}
$$

Moreover, the (boundary) conditions (1.3), can be restated in terms of v, by requiring that the righthand side of (1.6) belongs to $L^{1}\left(\mathbb{R}^{2}\right)$.

To investigate (1.6) we use its "natural" scaling property. For instance if we set:

$$
\begin{equation*}
v_{\varepsilon}(x)=v(x / \varepsilon)+2 \max \{1 / a,(N+1)\} \ln (1 / \varepsilon) \tag{1.8}
\end{equation*}
$$

with v that solves (1.6), then
(i) for $a>1 /(N+1), v_{\varepsilon}$ satisfies the equation:

$$
\begin{equation*}
-\Delta v=\lambda \varepsilon^{2((N+1) a-1)} e^{a v}+\prod_{j=1}^{N}\left|x-\varepsilon p_{j}\right|^{2} e^{v} \tag{1.9}
\end{equation*}
$$

Formally, as $\varepsilon \rightarrow 0$ we can interpret (1.9) as a "perturbation" of the (singular) Liouville equation:

$$
\left\{\begin{array}{l}
-\Delta v=|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{1.10}\\
\int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x<+\infty
\end{array}\right.
$$

Solutions of (1.10) have been completely classified in [19], and in particular they satisfy

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x=8 \pi(N+1) \tag{1.11}
\end{equation*}
$$

In this situation, Chae in [9] has been able to exploit such a "perturbation" property to obtain (as in [11]) a family of solutions V_{ε} for (1.6) such that

$$
\int_{\mathbb{R}^{2}}\left\{\lambda e^{a V_{\varepsilon}}+\prod_{j=1}^{N}\left|x-p_{j}\right|^{2} e^{V_{\varepsilon}}\right\} d x \rightarrow 8 \pi(N+1), \quad \text { as } \varepsilon \rightarrow 0 .
$$

(ii) For $0<a<1 /(N+1)$, v_{ε} satisfies the equation:

$$
\begin{equation*}
-\Delta v=\lambda e^{a v}+\varepsilon^{2(1-(N+1) a) / a} \prod_{j=1}^{N}\left|x-\varepsilon p_{j}\right|^{2} e^{v} \tag{1.12}
\end{equation*}
$$

that instead can be interpreted as a "perturbation" of the (classical) Liouville equation:

$$
\left\{\begin{array}{l}
-\Delta v=\lambda e^{a v} \quad \text { in } \mathbb{R}^{2} \tag{1.13}\\
\int_{\mathbb{R}^{2}} e^{a v} d x<+\infty
\end{array}\right.
$$

whose solutions have been completely classified in [15] and they satisfy:

$$
\begin{equation*}
\lambda \int_{\mathbb{R}^{2}} e^{a v} d x=\frac{8 \pi}{a} \tag{1.14}
\end{equation*}
$$

In principle an analogous perturbation argument as in [9] (see also [10,12,13]) could be used to obtain a family of solutions V_{ε} such that

$$
\int_{\mathbb{R}^{2}}\left\{\lambda e^{a V_{\varepsilon}}+\prod_{j=1}^{N}\left|x-p_{j}\right|^{2} e^{V_{\varepsilon}}\right\} d x \rightarrow \frac{8 \pi}{a}, \quad \text { as } \varepsilon \rightarrow 0
$$

The case $a=1 /(N+1)$ enters in this analysis as a "special" case. Indeed (1.9) and (1.12) coincide and problem (1.6) becomes, "essentially" scale invariant. It can be reduced to a "perturbation" of the $\varepsilon=0$ problem (i.e. $p_{1}=p_{2}=\cdots=p_{N}=0$), given as follows

$$
\left\{\begin{array}{l}
-\Delta v=\lambda e^{a v}+|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{1.15}\\
\lambda \int_{\mathbb{R}^{2}} e^{a v} d x+\int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x<+\infty
\end{array}\right.
$$

It is interesting to note that, when $a=1 /(N+1)$, problem (1.15) shares many properties with the "singular" Liouville problem (1.10), corresponding to the case $\lambda=0$ in (1.15).

Indeed, as established in [8] and [19], we have that, if $\lambda \geqslant 0, N>-1, a=1 /(N+1)$ and v is a solution of (1.15), then
(i) $\lambda \int_{\mathbb{R}^{2}} e^{a v} d x+\int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x=8 \pi(N+1)$,
(ii) $v_{\tau}(x)=v(\tau x)+2(N+1) \ln (\tau)$ and $\hat{v}(x)=v\left(x /|x|^{2}\right)+2(N+1) \ln \left(1 /|x|^{2}\right)$ are also solutions for (1.15),
(iii) $v(x)=\hat{v}_{\tau}(x)$, with $\tau=e^{\frac{v(0)-\hat{v}(0)}{2(N+1)}}$.

When $N=0$ and $a=1$, then problem (1.15) reduces to the "classical" Liouville equation, and the property above can be checked directly from the explicit solutions, see [14].

Explicit solutions are also known for the "singular" Liouville problem (i.e. $\lambda=0$), but to check (iii) in this case is less obvious.

Explicit solutions for (1.15) are not available, when $\lambda>0$. Even the radial solutions can be expressed only in terms of some elliptic integrals, that can be computed explicitly only when $N=1$ and $a=1 / 2$ (see (2.15) below). So far, when $a=1 /(N+1)$ and $\lambda>0$, we have no information concerning the existence of non-radial solutions for (1.15). By keeping in mind that for $\lambda=0$, the corresponding "singular" Liouville problem admits non-radial solutions if and only if N is an integer (see [19]), it is an interesting open problem to determine whether an analogous phenomenon occurs also when $\lambda>0$.

The aim of this paper is to investigate problem (1.15) when $0<a \neq 1 /(N+1)$, which relates to the N-string problem, when all the strings are superimposed at the origin. In this respect, it is relevant to identify the exact range of β 's for which problem (1.15) can be solved by a solution v satisfying:

$$
\begin{equation*}
\beta=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(\lambda e^{a v} d x+|x|^{2 N} e^{v}\right) d x \tag{1.16}
\end{equation*}
$$

We are able to answer this question in the radial case as follows:
Theorem 1.1 (Existence). Let $\lambda>0, N>-1$ and $0<a \neq 1 /(N+1)$. Problem (1.15)-(1.16) admits a radial solution if and only if:

$$
\begin{align*}
& \text { (i) } \quad \beta \in\left(\max \left\{4(N+1), \frac{4}{a}-4(N+1)\right\}, \frac{4}{a}\right) \quad \text { when } 0<a<\frac{1}{N+1}, \tag{1.17}\\
& \text { (ii) } \quad \beta \in\left(\max \left\{\frac{4}{a}, 4(N+1)-\frac{4}{a}\right\}, 4(N+1)\right) \quad \text { when } a>\frac{1}{N+1} . \tag{1.18}
\end{align*}
$$

To illustrate Theorem 1.1 we notice that

- if $\frac{1}{N+1}<a \leqslant \frac{2}{N+1}$ then $\max \left\{\frac{4}{a}, 4(N+1)-\frac{4}{a}\right\}=\frac{4}{a}$,
- if $\frac{1}{2(N+1)} \leqslant a<\frac{1}{N+1}$ then $\max \left\{4(N+1), \frac{4}{a}-4(N+1)\right\}=4(N+1)$
and by combining the above result with some suitable integral identities of Pohozaev type (see (2.9)(2.10)) we conclude:

Corollary 1.1. Let $\lambda>0$ and $N>-1$;
(a) if $\frac{1}{N+1}<a \leqslant \frac{2}{N+1}$ then problem (1.15)-(1.16) admits a solution (not necessary radial) if and only if $\beta \in$ $\left(\frac{4}{a}, 4(N+1)\right)$,
(b) if $\frac{1}{2(N+1)} \leqslant a<\frac{1}{N+1}$ then problem (1.15)-(1.16) admits a solution (not necessary radial) if and only if $\beta \in\left(4(N+1), \frac{4}{a}\right)$.

Concerning the uniqueness issue, we obtain the following
Theorem 1.2 (Uniqueness). Let $\lambda>0$ and $N>0$.
(i) If $a \geqslant \frac{N+2}{2(N+1)}$ and β satisfies (1.18), then problem (1.15)-(1.16) admits a unique radial solution.
(ii) If $\left(\frac{1}{N+1}<\right) \frac{2}{N+2}<a<\frac{N+2}{2(N+1)}$ and $\beta \in\left(-\infty, \frac{2 N}{1-a}\right.$] satisfies (1.18), then (1.15)-(1.16) admits a unique radial solution.

Remark 1.1. (a) We shall show that the claimed unique radial solution is also non-degenerate (in a suitable sense) in the space of radial functions, but (in some cases) not necessarily so when nonradial functions are also taken into account.
(b) Observe that if $0<a \neq \frac{1}{N+1} \leqslant \frac{2}{N+2}$ then (1.17) or (1.18) could imply that: $\beta>\frac{2 N}{1-a}$, and by our method, no uniqueness property can be claimed in this case. Actually, we suspect that multiplicity may occur in this case.

For $\frac{2}{N+2}<a<\frac{N+2}{2(N+1)}$ the value $\beta=\frac{2 N}{1-a}$ satisfies (1.18) and it gives a "special" value in relation to problem (1.15). Indeed, we shall find suitable pairs (a, N) for which problem (1.15)-(1.16) with $\beta=\frac{2 N}{1-a}$ admits a branch of non-radial solutions bifurcating from the (unique) radial one. In particular, the "linearized" problem around the radial solution admits a nontrivial kernel formed by non-radial functions. See Section 4 for details.

If $-1<N \leqslant 0$, then by a straightforward application of the moving plane technique (cf. [14]), we see that every solution of (1.15) must be radially symmetric. Moreover by exploiting a "natural" duality property of the radial problem (see (2.13), (2.17)-(2.20) below), we can formulate the following uniqueness result:

Theorem 1.3. Let $\lambda>0$.

(i) If $-1<N<0$, then every solution of (1.15) is radially symmetric about the origin and (1.17), (1.18) define necessary and sufficient conditions for the solvability of (1.15)-(1.16). Furthermore, if $0<a \leqslant \frac{2}{N+2}$ or if $\frac{2}{N+2}<a<\frac{N+2}{2(N+1)}\left(<\frac{1}{N+1}\right)$ and $\beta \leqslant \frac{2|N|}{a-1}$ then (1.15)-(1.16) admits a unique radial solution.
(ii) If $N=0$ and $a \neq 1$ then the problem:

$$
\left\{\begin{array}{l}
-\Delta v=\lambda e^{a v}+e^{v} \quad \text { in } \mathbb{R}^{2}, \tag{1.19}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(\lambda e^{a v}+e^{v}\right) d x=\beta
\end{array}\right.
$$

admits a solution if and only if $\beta \in I(a)$, where:

$$
\text { if } 0<a<1 \quad \text { then } I(a)=\left(\max \left\{4, \frac{4(1-a)}{a}\right\}, \frac{4}{a}\right)
$$

$$
\text { if } a>1 \text { then } I(a)=\left(\max \left\{\frac{4}{a}, \frac{4(a-1)}{a}\right\}, 4\right) .
$$

Moreover, for any $\beta \in I$ (a) problem (1.19) admits a unique radial solution about the origin, and any other solution is obtained by a translation of the radial one.

Obviously the assumption $a \neq 1$ is essential for the validity of (ii) in the above result. Indeed, for $N=0$ and $a=1$, problem (1.19) reduces to the well-known Liouville equation, which is scale invariant (no uniqueness) and, under (1.16), solvable only for $\beta=4$, see [14,15].

When $N>0$ and $a=1$ then (1.15) becomes a particular case of the class of problems:

$$
\left\{\begin{array}{l}
-\Delta v=K(|x|) e^{v} \quad \text { in } \mathbb{R}^{2} \tag{1.20}\\
\beta=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} K(|x|) e^{v} d x
\end{array}\right.
$$

which has attracted much attention in the context of the prescribed Gauss curvature problem in \mathbb{R}^{2} (see e.g. [18] and references therein).

According to our results, we have that,
Corollary 1.2. Let $K(|x|)=1+|x|^{2 N}, N>0$; then problem (1.20) admits a radial solution if and only if $\beta \in(4 \max \{1, N\}, 4(N+1))$. Moreover for such β 's the corresponding radial solution is unique. Furthermore, for $0<N \leqslant 1$ the interval above is optimal for the solvability of (1.20), among also non-radial functions.

To emphasize the subtle issues connected to such an existence and uniqueness result, let us observe that if we choose instead the weight function $K(|x|)=\left(1+|x|^{2}\right)^{N}$, then the nature of problem (1.20) changes dramatically, as N increases.

Indeed, the problem:

$$
\left\{\begin{array}{l}
-\Delta v=\left(1+|x|^{2}\right)^{N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{1.21}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(1+|x|^{2}\right)^{N} e^{v} d x=\beta
\end{array}\right.
$$

has been analyzed in [16] in connection with a "singular" mean field equation on the sphere S^{2} of interest in the study of gauge field vortices (see [21] for details, and [6,17] for "sharp" symmetry results).

When $0<N \leqslant 1$ or $N>1$ and $\beta \in(4 N, 4(N+1))$, then the existence and uniqueness properties of (1.20) are unaffected by either choice of $K(r)=1+r^{2 N}$ or $K(r)=\left(1+r^{2}\right)^{N}$. Indeed according to a result of C.S. Lin [18] the following holds:

Theorem 1.4. (See [18].) Assume that $K=K(r)>0$ is a C^{1}-function satisfying:
(a) $\frac{r K^{\prime}(r)}{K(r)}$ is nondecreasing and not identically constant,
(b) $\lim _{r \rightarrow+\infty} \frac{r K^{\prime}(r)}{K(r)}=2 N$.

If $0<N \leqslant 1$ then problem (1.20) admits a solution if and only if $\beta \in(4,4(N+1))$. Moreover for each of such β 's, there exists a unique radial solution of (1.20). If $N>1$ then (1.20) admits a unique radial solution, for any $\beta \in(4 N, 4(N+1))$.

Such a result applies to our case (where $K(r)=\left(1+r^{2 N}\right)$) and gives the statement of Corollary 1.2. It was obtained in [18] by a clever use of Alexandroff-Bol's inequality, as indicated for the first time by Bandle in [5]. This approach however has no chance to be extended to the case $0<a \neq 1$, considered here. In fact, to obtain Theorem 1.2 we have to device a suitable "comparison principle" (see Proposition 2.1) that allows us to obtain the same information as those derived by Alexandroff-Bol's isoperimetric inequality for the case $a=1$. In particular it allows us to provide an alternative proof of Theorem 1.4, as shown in Section 3.

Obviously, Lin's result also applies to the weight function $K(r)=\left(1+r^{2}\right)^{N}$, and for $N>1$ establishes a uniqueness result analogous to Corollary 1.2 when $\beta \in(4 N, 4(N+1))$. But now, such an interval is no longer the optimal interval for the existence (and uniqueness) of radial solutions.

Indeed, by summarizing the results in [16], one finds that, for $N>1$ there exists a value $\beta_{N} \in$ $(2(N+1), 4 N)$ such that, for $\beta \in\left(\beta_{N}, 4 N\right)$ problem (1.21) admits at least two radially symmetric solutions (multiplicity). Actually for such β 's the number of radial (and non-radial) solutions increases as N increases, and an explicit bifurcation diagram can be obtained for the specific value $\beta=2(N+2)$.

So for $N>1$ large, the nature of (1.21) is quite different from that described by Corollary 1.2 concerning problem (1.20) with $K(|x|)=1+|x|^{2 N}$, under exam here. Therefore, we'll have to really exploit the specific structure of (1.15), in order to establish Theorems 1.1 and 1.2.

The paper is organized as follows, in Section 2 we provide some preliminary information about the solutions of (1.15)-(1.16). Section 3 is devoted to the proof of the theorems stated above. While in Section 4 we carry out the construction of non-radial solutions and formulate some open questions and their connections to problems treated in [6] and [16].

2. Preliminaries

In this section we collect some known properties about solutions of problem (1.15)-(1.16).
By taking into account the scaling properties in (1.9) and (1.12) we see that,

$$
\begin{equation*}
\text { for } a \neq \frac{1}{N+1} \text { without loss of generality we can take } \lambda=1 \text {. } \tag{2.1}
\end{equation*}
$$

Hence, for $N>-1$ and $0<a \neq 1 /(N+1)$, we consider

$$
\left\{\begin{array}{l}
-\Delta u=e^{a u}+|x|^{2 N} e^{u} \quad \text { in } \mathbb{R}^{2} \tag{2.2}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(e^{a u}+|x|^{2 N} e^{u}\right) d x=\beta
\end{array}\right.
$$

By following the approach of [15], Chen, Guo and Sprin in [8] obtained the following:
Lemma 2.1. (See [8].) If u is a solution of (2.2) then:

$$
\begin{align*}
& \text { (i) }|u(x)+\beta \ln (|x|+1)| \leqslant C \text { in } \mathbb{R}^{2}, \tag{2.3}\\
& \text { (ii) } \int_{\mathbb{R}^{2}}\left\{2\left(\frac{1}{a}-1\right) e^{a u}+2 N|x|^{2 N} e^{u}\right\}=\pi \beta(\beta-4) \tag{2.4}
\end{align*}
$$

More precisely in [8] the authors were able to complete the information in (2.3) and give a more accurate description about the asymptotic behavior of the solution as $|x| \rightarrow+\infty$. In particular,

$$
u(x)=-\beta \ln (|x|)+O(1) \quad \text { as }|x| \rightarrow+\infty(\text { see }[8]) ;
$$

and by the integral condition in (2.2) we obtain that

$$
\begin{equation*}
\beta>\max \left\{\frac{2}{a}, 2(N+1)\right\} . \tag{2.5}
\end{equation*}
$$

Furthermore from (2.4) we easily deduce that,

- if $a=1 /(N+1)$ then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(e^{a u}+|x|^{2 N} e^{u}\right) d x=4(N+1) \tag{2.6}
\end{equation*}
$$

- if $0<a \neq 1 /(N+1)$ then:

$$
\begin{gather*}
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{a u} d x=\frac{\beta a}{4} \cdot \frac{4(N+1)-\beta}{a(N+1)-1}, \tag{2.7}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N} e^{u} d x=\frac{\beta a}{4} \cdot \frac{\beta-4 / a}{a(N+1)-1} . \tag{2.8}
\end{gather*}
$$

Consequently,

$$
\begin{align*}
\text { if } 0<a<\frac{1}{N+1} \text { then } 4(N+1)<\beta<\frac{4}{a}, \tag{2.9}\\
\text { if } a>\frac{1}{N+1} \text { then } \frac{4}{a}<\beta<4(N+1) . \tag{2.10}
\end{align*}
$$

We shall see that these bounds on β are actually "sharp" for the solvability of (3.2), if and only if $\frac{1}{2(N+1)}<a \neq \frac{1}{N+1}<\frac{2}{N+1}$.

In the study of (2.2) it is useful to introduce the change of variable $r=e^{t}$ with $r=|x|$, and so consider the new unknown function,

$$
\begin{equation*}
v(t, \theta):=u\left(e^{t} \cos (\theta), e^{t} \sin (\theta)\right) \tag{2.11}
\end{equation*}
$$

which satisfies

$$
\left\{\begin{array}{l}
-\left(\partial_{t t}^{2} v+\partial_{\theta \theta}^{2} v\right)=\exp (2 t+a v)+\exp (2(N+1) t+v) \quad \text { for } t \in \mathbb{R}, \theta \in[-\pi, \pi] \tag{2.12}\\
v(t, \cdot) \text { is } 2 \pi \text {-periodic } \forall t \in \mathbb{R} \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{\mathbb{R}}(\exp (2 t+a v)+\exp (2(N+1) t+v)) d t d \theta=\beta
\end{array}\right.
$$

In particular radial solutions of (2.2) can be described through the solutions $v=v(t)$ of the boundary value problem

$$
\left\{\begin{array}{l}
v_{t t}+\exp (2 t+a v)+\exp (2(N+1) t+v)=0 \text { for } t \in \mathbb{R}, \tag{2.13}\\
v_{t}(-\infty)=0, \quad v_{t}(+\infty)=-\beta
\end{array}\right.
$$

When $a=1 /(N+1)$ then $\beta=4(N+1)$ (see (2.6)) and we can use the transformation: $w(t)=v(t)+$ $2(N+1) t$ to arrive at the autonomous problem

$$
\left\{\begin{array}{l}
w_{t t}+\exp (w(t) /(N+1))+\exp (w(t))=0 \text { for } t \in \mathbb{R} \tag{2.14}\\
w_{t}(-\infty)=2(N+1), \quad w_{t}(+\infty)=-2(N+1)
\end{array}\right.
$$

Thus, for the unique $\bar{t}: w_{t}(\bar{t})=0$ we find $(\bar{t}-t) w_{t}(t)>0 \forall t \neq \bar{t}$ and $w(\bar{t}+t)=w(\bar{t}-t)$. We can use those properties together with the energy identity: $w_{t}^{2} / 2+(N+1) \exp (w /(N+1))+\exp (w)=$ $2(N+1)^{2}$, to obtain an explicit expression for $w(t)$ in terms of suitable elliptic integrals. When $N=1$ and $a=1 / 2$, we can actually explicitly derive $w(t)$. Thus, we leave to the reader to check that, after some calculations, one obtains the following family of radial solutions:

$$
\begin{equation*}
u(x)=2 \ln \left(\frac{\tau^{2}}{1+\frac{\lambda}{8}|\tau x|^{2}+\frac{1}{32}\left(1+\frac{\lambda^{2}}{8}\right)|\tau x|^{4}}\right) \tag{2.15}
\end{equation*}
$$

for the problem:

$$
\left\{\begin{array}{l}
-\Delta u=\lambda e^{u / 2}+|x|^{2} e^{u} \quad \text { in } \mathbb{R}^{2} \\
\lambda e^{u / 2}+|x|^{2} e^{u} \in L^{1}\left(\mathbb{R}^{2}\right)
\end{array}\right.
$$

Notice that (2.15) reduces to the well-known radial solution for the singular Liouville problem (1.10) when $\lambda=0$ and $N=1$ (see [19]).

In order to identify the range of β 's for which (2.13) is solvable, we point out the following modified versions of the "energy identity".

Lemma 2.2. Let $N>-1,0<a \neq 1 /(N+1)$ and v be a solution of (2.13). There holds
(a) $\frac{d}{d t}\left(\frac{1}{2} v_{t}\left(v_{t}+\frac{4}{a}\right)+\frac{1}{a} \exp (2 t+a v)+\exp (2(N+1) t+v)\right)$

$$
=\frac{2}{a}((N+1) a-1) \exp (2(N+1) t+v)
$$

(b) $\frac{d}{d t}\left(\frac{1}{2} v_{t}\left(v_{t}+4(N+1)\right)+\frac{1}{a} \exp (2 t+a v)+\exp (2(N+1) t+v)\right)$

$$
=-\frac{2}{a}((N+1) a-1) \exp (2 t+a v)
$$

Proof. Multiplying the equation in (2.13) by v_{t} we obtain:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{1}{2} v_{t}^{2}+\frac{1}{a} \exp (2 t+a v)+\exp (2(N+1) t+v)\right) \\
& \quad=\frac{2}{a} \exp (2 t+a v)+2(N+1) \exp (2(N+1) t+v) \\
& \quad=-\frac{2}{a} v_{t t}+2\left((N+1)-\frac{1}{a}\right) \exp (2(N+1) t+v)
\end{aligned}
$$

from which we deduce (a).

Similarly by observing that

$$
\begin{aligned}
& \frac{2}{a} \exp (2 t+a v)+2(N+1) \exp (2(N+1) t+v) \\
& \quad=-2(N+1) v_{t t}+2\left(\frac{1}{a}-(N+1)\right) \exp (2 t+a v)
\end{aligned}
$$

we obtain (b).

We have already noticed how, in the analysis of (2.13), we need to distinguish between the cases:

$$
0<a<\frac{1}{N+1} \quad \text { or } \quad a>\frac{1}{N+1} \quad(N>-1) .
$$

As matter of fact, those describe two dual situations, and we can go from one to the other via transformation:

$$
\begin{equation*}
v(t) \rightarrow \hat{v}(t)=\operatorname{av}\left(\frac{t}{N+1}+\tau\right)+\ln (\mu) \tag{2.16}
\end{equation*}
$$

with

$$
\tau=\frac{1-a}{2((N+1) a-1)} \ln \left(\frac{a}{(N+1)^{2}}\right) \quad \text { and } \quad \mu=\left(\frac{a}{(N+1)^{2}}\right)^{\frac{N a}{(N+1) a-1}}
$$

Indeed, it can be easily checked, that if v satisfies (2.13) then \hat{v} solves the analogous problem:

$$
\left\{\begin{array}{l}
\hat{v}_{t t}+\exp (2 t+\hat{a} \hat{v})+\exp (2(\hat{N}+1) t+\hat{v})=0 \quad \text { for } t \in \mathbb{R} \tag{2.17}\\
\hat{v}_{t}(-\infty)=0, \quad \hat{v}_{t}(+\infty)=-\hat{\beta}
\end{array}\right.
$$

with

$$
\begin{equation*}
\hat{a}=\frac{1}{a}, \quad \hat{N}=-\frac{N}{N+1}>-1 \quad \text { and } \quad \hat{\beta}=\frac{a \beta}{N+1} . \tag{2.18}
\end{equation*}
$$

Moreover, the following transformation rules hold:

$$
\begin{gather*}
a=\frac{1}{N+1} \quad \Leftrightarrow \quad \hat{a}=\frac{1}{\hat{N}+1} \\
0<a<\frac{1}{N+1} \quad \Leftrightarrow \quad \hat{a}>\frac{1}{\hat{N}+1} \\
\left(a>\frac{1}{N+1} \quad \Leftrightarrow \quad 0<\hat{a}<\frac{1}{\hat{N}+1}\right) . \tag{2.19}
\end{gather*}
$$

For later use, let us observe also that:

$$
\begin{gather*}
\frac{1}{N+1}<a<\frac{2}{N+1} \quad \Leftrightarrow \quad \frac{1}{2(\hat{N}+1)}<\hat{a}<\frac{1}{\hat{N}+1}, \\
a>\frac{2}{N+1} \quad \Leftrightarrow \quad 0<\hat{a}<\frac{1}{2(\hat{N}+1)} . \tag{2.20}
\end{gather*}
$$

So, via the transformation (2.16)-(2.18), without loss of generality, we only have to account for the case:

$$
\begin{equation*}
N>-1 \quad \text { and } \quad a>\frac{1}{N+1} \tag{2.21}
\end{equation*}
$$

We know that for a solution v of (2.13), its derivative v_{t} decreases from 0 to $-\beta$. Consequently by (2.5) and (2.10), there exist unique values $t_{ \pm}=t_{ \pm}(v)$ such that

$$
\begin{gather*}
-\infty<t_{-}<t_{+}<+\infty \text { and } v^{\prime}\left(t_{-}\right)=-\frac{2}{a}, \quad v^{\prime}\left(t_{+}\right)=-2(N+1) \text { and } \\
\Lambda(v)=\left\{t \in \mathbb{R}:-2(N+1)<v^{\prime}(t)<-\frac{2}{a}\right\}=\left(t_{-}(v), t_{+}(v)\right) \tag{2.22}
\end{gather*}
$$

As a consequence of Lemma 2.2 we find:
Lemma 2.3. Assume (2.21) and let v be a solution of (2.13).
(a) If $s \in \mathbb{R}$ satisfies $v_{t}(s)>-2(N+1)$ (i.e. $\left.s<t_{+}(v)\right)$, then

$$
\begin{aligned}
& \frac{1}{2} v_{t}(s)\left(v_{t}(s)+\frac{4}{a}\right)+\frac{1}{a} \exp (2 s+a v(s))+\exp (2(N+1) s+v(s)) \\
& \quad<\frac{2}{a}((N+1) a-1) \frac{\exp (2(N+1) s+v(s))}{2(N+1)+v_{t}(s)}
\end{aligned}
$$

(b) If $s \in \mathbb{R}$ satisfies $v_{t}(s)<-2 / a$ (i.e. $s>t_{-}(v)$), then

$$
\begin{aligned}
& \frac{1}{2} v_{t}(s)\left(v_{t}(s)+4(N+1)\right)+\frac{1}{a} \exp (2 s+a v(s))+\exp (2(N+1) s+v(s))+\frac{1}{2} \beta(4(N+1)-\beta) \\
& \quad<\frac{2}{a}((N+1) a-1) \frac{\exp (2 s+a v(s))}{\left|2+a v_{t}(s)\right|}
\end{aligned}
$$

Proof. We start to observe that, if $v_{t}(s)>-2(N+1)$, then

$$
\begin{align*}
\int_{-\infty}^{s} \exp (2(N+1) t+v(t)) d t & =\int_{-\infty}^{s} \exp \left(\left(2(N+1)+v_{t}(s)\right) t\right) \exp \left(v(t)-v_{t}(s) t\right) d t \\
& <\exp \left(v(s)-v_{t}(s) s\right) \int_{-\infty}^{s} \exp \left(\left(2(N+1)+v_{t}(s)\right) t\right) d t \\
& =\frac{\exp (2(N+1) s+v(s))}{2(N+1)+v_{t}(s)} \tag{2.23}
\end{align*}
$$

and the inequality above follows by observing that the function $v(t)-v_{t}(s) t$ attains its strict maximum value at $t=s$.

Similarly, if $v_{t}(s)<-2 / a$ we find:

$$
\begin{align*}
\int_{s}^{+\infty} \exp (2 t+a v(t)) d t & =\int_{s}^{+\infty} \exp \left(\left(2+a v_{t}(s)\right) t\right) \exp \left(a\left(v(t)-v_{t}(s) t\right)\right) d t \\
& <\exp \left(a\left(v(s)-v_{t}(s) s\right)\right) \int_{s}^{+\infty} \exp \left(\left(2+a v_{t}(s)\right) t\right) d t \\
& =-\frac{\exp (2 s+a v(s))}{2+a v_{t}(s)}=\frac{\exp (2 s+a v(s))}{\left|2+a v_{t}(s)\right|} \tag{2.24}
\end{align*}
$$

At this point, inequality (a) follows by integrating the identity (a) of Lemma 2.2 in $(-\infty, s]$ and by using (2.23). While inequality (b) follows by integrating the identity (b) of Lemma 2.2 in $[s,+\infty$) and by using (2.24).

From Lemma 2.3 we get:
Corollary 2.1. For any $s \in \Lambda(v)$ we have:

$$
\begin{equation*}
\beta(4(N+1)-\beta)<\frac{2\left(v_{t}(s)\right)^{2}((N+1) a-1)}{\left|v_{t}(s)\right| a-2} \tag{2.25}
\end{equation*}
$$

Proof. We obtain (2.25) by using together the inequalities (a) and (b) of Lemma 2.3.
Indeed, for $s \in \Lambda(v)$, we can rewrite (a) equivalently as follows

$$
\begin{align*}
& \frac{1}{2} v_{t}(s)\left(a v_{t}(s)+4\right)\left(2(N+1)+v_{t}(s)\right)+\left(2(N+1)+v_{t}(s)\right) \exp (2 s+a v(s)) \\
& \quad+\left(2+a v_{t}(s)\right) \exp (2(N+1) s+v(s))<0 \tag{2.26}
\end{align*}
$$

While (b) takes the form:

$$
\begin{align*}
& \frac{1}{2} \beta(4(N+1)-\beta)\left(2+a v_{t}(s)\right)+\frac{1}{2} v_{t}(s)\left(v_{t}(s)+4(N+1)\right)\left(2+a v_{t}(s)\right) \\
& \quad+\left(2(N+1)+v_{t}(s)\right) \exp (2 s+a v(s))+\left(2+a v_{t}(s)\right) \exp (2(N+1) s+v(s))>0 \tag{2.27}
\end{align*}
$$

So, for $s \in \Lambda(v)$, we can subtract (2.26) from (2.27) to deduce

$$
2\left(v_{t}(s)\right)^{2}(1-a(N+1))<\beta(4(N+1)-\beta)\left(2+a v_{t}(s)\right)
$$

from which (2.25) easily follows.
Corollary 2.2. Let $N>-1$.
(i) If $a>\frac{2}{N+1}$ then $\beta>4(N+1)-\frac{4}{a}$ is a necessary condition for the solvability of (2.13).
(ii) If $0<a<\frac{1}{2(N+1)}$ then $\beta>\frac{4}{a}-4(N+1)$ is a necessary condition for the solvability of (2.13).

Remark 2.1. Notice that $4(N+1)-\frac{4}{a}>\frac{4}{a} \Leftrightarrow a>\frac{2}{N+1}$; and similarly $\frac{4}{a}-4(N+1)>4(N+1) \Leftrightarrow 0<$ $a<\frac{1}{2(N+1)}$. Therefore, at least in the radial case, the lower bounds on β provided by Corollary 2.2, improve those in (2.9) and (2.10), and we can conclude the following:

Corollary 2.3. Let $N>-1$.
(i) If $a>\frac{1}{N+1}$ then a necessary condition for the solvability of (2.13) is that

$$
\beta \in(\max \{4 / a, 4(N+1)-4 / a\}, 4(N+1)) .
$$

(ii) If $0<a<\frac{1}{N+1}$ then a necessary condition for the solvability of (2.13) is that

$$
\beta \in(\max \{4(N+1), 4 / a-4(N+1)\}, 4 / a) .
$$

Proof of Corollary 2.2. We start to establish (i). To this purpose we use (2.25), and in order to estimate its right-hand side, we consider the function:

$$
f(x)=2((N+1) a-1) \frac{x^{2}}{a x-2}, \quad x \in(2 / a, 2(N+1))
$$

We see that f attains its minimum value at $x_{0}=4 / a$; and for $a>\frac{2}{N+1}$ we find that $x_{0}=4 / a \in$ $(2 / a, 2(N+1))$. Therefore, from (2.25), we obtain

$$
\begin{equation*}
\beta(4(N+1)-\beta)<f(4 / a)=((N+1) a-1)\left(\frac{4}{a}\right)^{2} \tag{2.28}
\end{equation*}
$$

At this point we deduce (i) by using (2.28) together with the fact that $\beta>2(N+1)$.
To obtain (ii) we use simply the duality (2.16)-(2.18). Namely, by (2.20) we can apply (i) to β in order to check that (ii) holds for $\hat{\beta}$. Indeed, $\hat{\beta}=\frac{a \beta}{N+1}>4 a-\frac{4}{N+1}=\frac{4}{\hat{a}}-4(\hat{N}+1)$.

The information of Corollary 2.2 will be crucial to establish Theorem 1.1. To proceed further, we need to link the boundary value problem (2.13) to the Cauchy problem:

$$
\left\{\begin{array}{l}
v_{t t}(t)+\exp (2 t+a v(t))+\exp (2(N+1) t+v(t))=0 \quad \text { for } t \in \mathbb{R}, \tag{2.29}\\
\lim _{t \rightarrow-\infty} v(t)=\alpha, \quad \lim _{t \rightarrow-\infty} v_{t}(t)=0
\end{array}\right.
$$

It is not difficult to check that $\forall \alpha \in \mathbb{R}$, problem (2.29) admits a unique solution v_{α} globally defined, and such that $v_{\alpha}^{\prime}:=\frac{d v_{\alpha}}{d t}$ admits a finite limit as $t \rightarrow+\infty$, see [23] and [8] for details. So, v_{α} also satisfies (2.13) with suitable

$$
\begin{equation*}
\beta(\alpha):=-\lim _{t \rightarrow+\infty} v_{\alpha}^{\prime}(t) \tag{2.30}
\end{equation*}
$$

Clearly $\beta(\alpha)$ defines a smooth function of α. Similarly, it is not difficult to check that:

$$
\begin{equation*}
w_{\alpha}=\frac{\partial}{\partial \alpha}\left(v_{\alpha}\right) \tag{2.31}
\end{equation*}
$$

is well defined and identifies an element of the kernel of the linearized operator around $v=v_{\alpha}$. In other words, if we consider the problem

$$
\begin{equation*}
-w_{t t}=(a \exp (2 t+a v)+\exp (2(N+1) t+v)) \cdot w \quad \text { for } t \in \mathbb{R} \tag{2.32}
\end{equation*}
$$

then w_{α} satisfies (2.32) with $v=v_{\alpha}$, together with the boundary conditions:

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} w_{\alpha}^{\prime}(t)=0, \quad \lim _{t \rightarrow+\infty} w_{\alpha}^{\prime}(t)=-\beta^{\prime}(\alpha) . \tag{2.33}
\end{equation*}
$$

As expected, the linearized problem (2.32) will enter in a crucial way in the analysis of the uniqueness issue. To this purpose, let

$$
\begin{equation*}
Q(t)=a \exp (2 t+a v(t))+\exp (2(N+1) t+v(t)) . \tag{2.34}
\end{equation*}
$$

Then for $v=v_{\alpha}$ and $y(t)=w_{\alpha}^{\prime}(t)$ we have:

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{1}{Q(t)} y^{\prime}(t)\right)+y(t)=0 \quad \text { for } t \in \mathbb{R} \tag{2.35}\\
& \lim _{t \rightarrow-\infty} y(t)=0, \quad \lim _{t \rightarrow+\infty} y(t)=-\beta^{\prime}(\alpha) \tag{2.36}
\end{align*}
$$

We shall control the "nodal" regions of $y=y(t)$, by means of the following "comparison" principle.
Proposition 2.1. Let $I:=(a, b) \subseteq \mathbb{R}$, with $-\infty \leqslant a<b \leqslant+\infty, U(t) \in C^{1}(I)$ with $U>0$ in I, and $V \in C(I)$. Suppose that $y(t) \in C^{2}(I)$ satisfies

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(U(t) y^{\prime}(t)\right)+V(t) y(t) \geqslant 0 \quad \forall t \in I, \\
\lim _{t \rightarrow a^{+}} y(t)=0=\lim _{t \rightarrow b^{-}} y(t) \\
y(t)>0 \quad \forall t \in I
\end{array}\right.
$$

If there exists a function $z=z(t) \in C^{2}(I)$ such that

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(U(t) z^{\prime}(t)\right)+V(t) z(t) \leqslant 0 \quad \forall t \in I, \\
U(t) z^{\prime}(t) \in L^{\infty}(I)
\end{array}\right.
$$

then one of the following holds:
(i) $z(t) \equiv C y(t) \forall t \in I$ for a suitable constant $C \in \mathbb{R}$.
(ii) $\exists t_{0} \in I: z\left(t_{0}\right)<0$.

Proof. Assume that $z(t) \geqslant 0$ for every $t \in I$, then we will prove that $z(t) \equiv C y(t)$. Indeed, since $y(t)>0$ and $z(t) \geqslant 0$ for every $t \in I$, we have

$$
\begin{equation*}
\frac{d}{d t}\left\{U(t)\left(z(t) y^{\prime}(t)-y(t) z^{\prime}(t)\right)\right\} \geqslant 0 \quad \forall t \in I \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow a^{+}} U(t) z^{\prime}(t) y(t)=\lim _{t \rightarrow b^{-}} U(t) z^{\prime}(t) y(t)=0 \tag{2.38}
\end{equation*}
$$

Furthermore, there exist a sequence $\left\{a_{n}\right\}_{n=1}^{+\infty} \subset I$ such that $\lim _{n \rightarrow \infty} a_{n}=a$ and $y^{\prime}\left(a_{n}\right)>0$; and a sequence $\left\{b_{n}\right\}_{n=1}^{+\infty} \subset I$ such that $\lim _{n \rightarrow \infty} b_{n}=b$ and $y^{\prime}\left(b_{n}\right)<0$. Thus,

$$
\begin{equation*}
U\left(a_{n}\right) z\left(a_{n}\right) y^{\prime}\left(a_{n}\right) \geqslant 0 \quad \text { and } \quad U\left(b_{n}\right) z\left(b_{n}\right) y^{\prime}\left(b_{n}\right) \leqslant 0 . \tag{2.39}
\end{equation*}
$$

Plugging (2.39) into (2.38) we obtain

$$
\begin{gather*}
\underline{\lim }_{n \rightarrow \infty} U\left(a_{n}\right)\left(z\left(a_{n}\right) y^{\prime}\left(a_{n}\right)-y\left(a_{n}\right) z^{\prime}\left(a_{n}\right)\right) \geqslant 0 \text { and } \\
\overline{\lim }_{n \rightarrow \infty} U\left(b_{n}\right)\left(z\left(b_{n}\right) y^{\prime}\left(b_{n}\right)-y\left(b_{n}\right) z^{\prime}\left(b_{n}\right)\right) \leqslant 0 . \tag{2.40}
\end{gather*}
$$

Therefore,

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty} \int_{a_{n}}^{b_{n}} \frac{d}{d t}\left\{U(t)\left(z(t) y^{\prime}(t)-y(t) z^{\prime}(t)\right)\right\} d t \\
& \quad=\varlimsup_{n \rightarrow \infty}\left\{U\left(b_{n}\right)\left(z\left(b_{n}\right) y^{\prime}\left(b_{n}\right)-y\left(b_{n}\right) z^{\prime}\left(b_{n}\right)\right)-U\left(a_{n}\right)\left(z\left(a_{n}\right) y^{\prime}\left(a_{n}\right)-y\left(a_{n}\right) z^{\prime}\left(a_{n}\right)\right)\right\} \\
& \quad \leqslant \overline{\lim }_{n \rightarrow \infty} U\left(b_{n}\right)\left(z\left(b_{n}\right) y^{\prime}\left(b_{n}\right)-y\left(b_{n}\right) z^{\prime}\left(b_{n}\right)\right)-\underline{\lim }_{n \rightarrow \infty} U\left(a_{n}\right)\left(z\left(a_{n}\right) y^{\prime}\left(a_{n}\right)-y\left(a_{n}\right) z^{\prime}\left(a_{n}\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
\leqslant 0 \tag{2.41}
\end{equation*}
$$

Thus, by (2.41) and (2.37) we conclude that

$$
\begin{equation*}
\int_{I} \frac{d}{d t}\left\{U(t)\left(z(t) y^{\prime}(t)-y(t) z^{\prime}(t)\right)\right\} d t=0 . \tag{2.42}
\end{equation*}
$$

Using again (2.37), we deduce that the function $U(t)\left(z(t) y^{\prime}(t)-y(t) z^{\prime}(t)\right)$ must be a constant, and by (2.40), we find that necessarily,

$$
\begin{equation*}
U(t)\left(z(t) y^{\prime}(t)-y(t) z^{\prime}(t)\right) \equiv 0, \quad \forall t \in I . \tag{2.43}
\end{equation*}
$$

Since $U(t)>0$ and $y(t)>0$ for all $t \in I$ we conclude:

$$
\frac{d}{d t}\left(\frac{z(t)}{y(t)}\right)=\frac{1}{y^{2}(t)}\left(y(t) z^{\prime}(t)-z(t) y^{\prime}(t)\right) \equiv 0 \quad \forall t \in I,
$$

and so, for a suitable constant $C, z(t) \equiv C y(t)$ for all $t \in I$, as claimed.

As an application of the above comparison principle, and to illustrate also the ideas of our uniqueness result, we provide a crucial estimate that yields to an alternative proof of Lin's uniqueness result, as stated in Theorem 1.4. Radial solution of (1.20) corresponds (with the change of variable $r=e^{t}$) to solution of the problem:

$$
\left\{\begin{array}{l}
-\frac{d^{2} v}{d t^{2}}(t)=G(t) \exp (v(t)) \quad \text { for } t \in \mathbb{R} \tag{2.44}\\
v^{\prime}(-\infty):=\lim _{t \rightarrow-\infty} v^{\prime}(t)=0, \\
\frac{d v}{d t}(+\infty):=\lim _{t \rightarrow+\infty} v^{\prime}(t)=-\beta
\end{array}\right.
$$

with $G(t)=e^{2 t} K\left(e^{t}\right)$. We consider the following boundary value problem, related to the "linearization" of (2.44):

$$
\left\{\begin{array}{l}
-\frac{d^{2} w}{d t^{2}}(t)=(G(t) \exp (v(t))) w(t) \quad \text { for } t \in \mathbb{R} \tag{2.45}\\
w^{\prime}(-\infty):=\lim _{t \rightarrow-\infty} w^{\prime}(t)=0 \\
\frac{d w}{d t}(+\infty):=\lim _{t \rightarrow+\infty} w^{\prime}(t)=0
\end{array}\right.
$$

By recalling (1.22) and (1.23) we give below an alternative proof of the crucial Lemma 3.3 in [18]. Such lemma was proved in [18] by means of an improved Alexandroff-Bol's isoperimetric inequality, valid for radial functions.

Proposition 2.2. Let $G \in C^{2}(\mathbb{R})$ be such that $G(t)>0$ for every $t \in \mathbb{R}$. Suppose that the function $F(t):=G^{\prime}(t) / G(t)$ is nondecreasing and satisfies $F(-\infty):=\lim _{t \rightarrow-\infty} F(t)=2$ and $F(+\infty):=\lim _{t \rightarrow+\infty}=$ $2(N+1)$ for some $N>0$. Let v be a solution to (2.44) and assume that (2.45) has a nontrivial solution $w \neq 0$. Then there exists $t_{0} \in \mathbb{R}$ such that $w^{\prime}(t) \neq 0 \forall t \in\left(-\infty, t_{0}\right), w^{\prime}\left(t_{0}\right)=0$, and $v^{\prime}\left(t_{0}\right)<-4$.

Proof. Let

$$
\begin{equation*}
Q(t):=G(t) \exp (v(t))>0, \quad \forall t \in \mathbb{R} ; \tag{2.46}
\end{equation*}
$$

so that $Q(-\infty)=Q(+\infty)=0$ and (2.44) reads as follows:

$$
\left\{\begin{array}{l}
\frac{d^{2} v}{d t^{2}}(t)+Q(t)=0 \quad \text { for } t \in \mathbb{R} \tag{2.47}\\
v^{\prime}(-\infty)=0 \\
v^{\prime}(+\infty)=-\beta
\end{array}\right.
$$

Moreover, letting

$$
\begin{equation*}
Y(t):=w^{\prime}(t) \quad \forall t \in \mathbb{R}, \tag{2.48}
\end{equation*}
$$

from (2.45), we find:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{Q(t)} \frac{d Y}{d t}(t)\right)+Y(t)=0 \quad \text { for } t \in \mathbb{R}, \quad Y(-\infty)=0, \quad Y(+\infty)=0 \tag{2.49}
\end{equation*}
$$

Define

$$
\begin{equation*}
Z(t):=-4 v^{\prime}(t)-\left(v^{\prime}(t)\right)^{2}=-v^{\prime}(t)\left(v^{\prime}(t)+4\right) \tag{2.50}
\end{equation*}
$$

By (2.47) we see that

$$
\begin{equation*}
\frac{d Z}{d t}(t):=2 Q(t)\left(v^{\prime}(t)+2\right) \tag{2.51}
\end{equation*}
$$

and consequently,

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{Q(t)} \frac{d Z}{d t}(t)\right)+Z(t)=-2 Q(t)-4 \cdot v^{\prime}(t)-\left(v^{\prime}(t)\right)^{2}:=-D(t), \tag{2.52}
\end{equation*}
$$

where

$$
\begin{equation*}
D(t)=2 G(t) \exp (v(t))+4 \cdot v^{\prime}(t)+\left(v^{\prime}(t)\right)^{2} \quad \forall t \in \mathbb{R} \quad \text { and } \quad D(-\infty):=\lim _{t \rightarrow-\infty} D(t)=0 \tag{2.53}
\end{equation*}
$$

Moreover, by straightforward calculations we find:

$$
\begin{equation*}
\frac{d D}{d t}(t)=2 G(t) \exp (v(t))\left(\frac{1}{G(t)} \frac{d G}{d t}(t)-2\right)=2 G(t) \exp (v(t))(F(t)-2) \geqslant(\neq) 0 \quad \forall t \in \mathbb{R} \tag{2.54}
\end{equation*}
$$

since by assumption, $G>0$ and $F(t):=G^{\prime}(t) / G(t) \geqslant(\neq) 2$. Recalling that $D(-\infty)=0$, we find: $D(t) \geqslant(\neq) 0 \forall t \in \mathbb{R}$, and from of (2.52), we conclude:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{Q(t)} \frac{d Z}{d t}(t)\right)+Z(t) \leqslant(\neq) 0 \quad \forall t \in \mathbb{R} \tag{2.55}
\end{equation*}
$$

Next let $X(t):=Q(t), \forall t \in \mathbb{R}$. We calculate:

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{1}{Q(t)} \frac{d X}{d t}(t)\right)+X(t) \\
& \quad=\frac{d}{d t}\left(\frac{1}{G(t) \exp (v(t))}\left(G(t) \exp (v(t)) \cdot \frac{d v}{d t}(t)+\frac{d G}{d t}(t) \cdot \exp (v(t))\right)\right)-\frac{d^{2} v}{d t}(t) \\
& \quad=\frac{d}{d t}\left(\frac{1}{G(t)} \frac{d G}{d t}(t)\right)=F^{\prime}(t) \geqslant 0 \quad \forall t \in \mathbb{R} . \tag{2.56}
\end{align*}
$$

Notice that F^{\prime} cannot be identically zero, since, by assumption, the image of F must cover the interval $(2,2(N+1))$. Furthermore, $X(t)>0$ for every $t \in \mathbb{R}$ and $X(-\infty)=X(+\infty)=0$. So, we can apply Proposition 2.1, first with $I=\mathbb{R}, y(t)=X(t)$ and $z(t)= \pm Y(t)$ to conclude that $\exists t_{0} \in \mathbb{R}: w^{\prime}(t)=$ $Y(t) \neq 0, \forall t \in\left(-\infty, t_{0}\right)$ and $w^{\prime}\left(t_{0}\right)=Y\left(t_{0}\right)=0$. At this point, we apply again Proposition 2.1, now with $I=\left(-\infty, t_{0}\right), y(t)=|Y(t)|$ and $z(t)=Z(t)=-v^{\prime}\left(4+v^{\prime}\right)$, and arrive at the desired conclusion by observing that v^{\prime} is negative and decreasing.

3. The proofs

We shall focus first with the case

$$
\begin{equation*}
a>\frac{1}{N+1}, \quad N>-1 \tag{3.1}
\end{equation*}
$$

and by recalling (2.29) and (2.30), we denote by $u_{\alpha}=u_{\alpha}(|x|)$ the unique radial solution satisfying:

$$
\left\{\begin{array}{l}
-\Delta u=e^{a u}+|x|^{2 N} e^{u} \quad \text { in } \mathbb{R}^{2}, \tag{3.2}\\
u(0)=\underset{\mathbb{R}^{2}}{ }(u)=\alpha, \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(e^{a u}+|x|^{2 N} e^{u}\right) d x=\beta(\alpha),
\end{array}\right.
$$

see [23]. Our first task will be to determine the limit values of $\beta(\alpha)$ as $\alpha \rightarrow \pm \infty$.

First of all recall that, when (3.1) holds, then

$$
\begin{equation*}
\beta(\alpha) \in(\max \{4 / a, 4(N+1)-4 / a\}, 4(N+1)), \quad \forall \alpha \in \mathbb{R} \tag{3.3}
\end{equation*}
$$

(see Corollary 2.3).
Proposition 3.1. Assume (3.1), and let $\beta(\alpha)$ be defined in (3.2). We have:

$$
\begin{equation*}
\lim _{\alpha \rightarrow-\infty} \beta(\alpha)=4(N+1), \quad \lim _{\alpha \rightarrow+\infty} \beta(\alpha)=\max \{4 / a, 4(N+1)-4 / a\} \tag{3.4}
\end{equation*}
$$

Proof. We shall show that (3.4) holds along any sequence $\alpha_{n} \rightarrow \pm \infty$. To this purpose, set $u_{n}=u_{\alpha_{n}}$ and $\beta_{n}=\beta\left(\alpha_{n}\right)$.

Claim 1.

$$
\begin{equation*}
\text { If } \alpha_{n} \rightarrow-\infty \quad \text { then } \quad \beta_{n} \rightarrow 4(N+1) \tag{3.5}
\end{equation*}
$$

To establish the claim, let

$$
\begin{equation*}
\tau_{n}=e^{-\frac{\alpha_{n}}{2(N+1)}} \rightarrow+\infty \quad \text { and } \quad v_{n}(x)=u_{n}\left(\tau_{n} x\right)-\alpha_{n} \tag{3.6}
\end{equation*}
$$

Then v_{n} defines a blow-down of u_{n} and satisfies:

$$
\left\{\begin{array}{l}
-\Delta v_{n}=e^{(a-1 /(N+1)) \alpha_{n}} e^{a v_{n}}+|x|^{2 N} e^{v_{n}} \quad \text { in } \mathbb{R}^{2} \\
v_{n}(0)=\max _{\mathbb{R}^{2}}\left(v_{n}\right)=0, \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left\{e^{(a-1 /(N+1)) \alpha_{n}} e^{a v_{n}}+|x|^{2 N} e^{v_{n}}\right\} d x=\beta_{n}
\end{array}\right.
$$

As in [7], we use well-known Harnack-type inequalities, (e.g. see [20, Corollary 5.2.9]) together with elliptic estimates and a diagonalization process, in order to find a function V such that (along a subsequence):

$$
v_{n} \rightarrow V \quad \text { in } C_{\operatorname{loc}}^{2, \gamma}\left(\mathbb{R}^{2}\right)
$$

and V satisfies:

$$
\left\{\begin{array}{l}
-\Delta V=|x|^{2 N} e^{V} \quad \text { in } \mathbb{R}^{2} \tag{3.7}\\
V(0)=\max _{\mathbb{R}^{2}}(V)=0, \quad \int_{\mathbb{R}^{2}}|x|^{2 N} e^{V} d x<+\infty
\end{array}\right.
$$

As already mentioned, solutions of (3.7) satisfy: $\int_{\mathbb{R}^{2}}|x|^{2 N} \exp (V) d x=8 \pi(N+1)$ (cf. [19]). Consequently, by Fatou's Lemma and (3.3) we find:

$$
4(N+1) \leqslant \varlimsup_{n \rightarrow+\infty} \beta_{n} \leqslant \varlimsup_{n \rightarrow+\infty} \beta_{n} \leqslant 4(N+1)
$$

and Claim 1 follows.

Claim 2.

$$
\begin{equation*}
\text { If } \alpha_{n} \rightarrow+\infty \quad \text { then } \quad \beta_{n} \rightarrow \max \{4 / a, 4(N+1)-4 / a\} \tag{3.8}
\end{equation*}
$$

To establish Claim 2 we use a blow-up argument and let

$$
\sigma_{n}=\exp \left(-a \alpha_{n} / 2\right) \rightarrow 0 \quad \text { as } n \rightarrow+\infty \quad \text { and } \quad w_{n}(x)=u_{n}\left(\sigma_{n} x\right)-\alpha_{n}
$$

Then w_{n} satisfies:

$$
\left\{\begin{array}{l}
-\Delta w_{n}=e^{a w_{n}}+e^{-((N+1) a-1) \alpha_{n}}|x|^{2 N} e^{w_{n}} \quad \text { in } \mathbb{R}^{2} \\
w_{n}(0)=\max _{\mathbb{R}^{2}}\left(w_{n}\right)=0, \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left\{e^{a w_{n}}+e^{-((N+1) a-1) \alpha_{n}}|x|^{2 N} e^{w_{n}}\right\} d x=\beta_{n}
\end{array}\right.
$$

As above, we see that (along a subsequence),

$$
w_{n} \rightarrow W \quad \text { in } C_{\mathrm{loc}}^{2, \gamma}\left(\mathbb{R}^{2}\right)
$$

with W satisfying:

$$
\left\{\begin{array}{l}
-\Delta W=e^{a W} \quad \text { in } \mathbb{R}^{2} \\
W(0)=\max _{\mathbb{R}^{2}}\{W\}=0, \quad \int_{\mathbb{R}^{2}} e^{a W} d x<+\infty
\end{array}\right.
$$

In particular, $\int_{\mathbb{R}^{2}} \exp (a W)=8 \pi / a(c f .[14,15])$. By the uniform convergence of $w_{n} \rightarrow W$ on compact set, we obtain that:
for every $\varepsilon>0$, there exist $R_{\varepsilon} \gg 1$ and $n_{\varepsilon} \in \mathbb{N}$:

$$
\int_{\left\{y \in \mathbb{R}^{2}:|y| \leqslant R_{\varepsilon}\right\}}\left\{e^{a w_{n}(y)}+e^{-((N+1) a-1) \alpha_{n}} \cdot|y|^{2 N} e^{w_{n}(y)}\right\} d y \geqslant \frac{8 \pi}{a}-\varepsilon, \quad \forall n \geqslant n_{\varepsilon}
$$

Equivalently,

$$
\int_{\left.:|x| \leqslant \sigma_{n} R_{\varepsilon}\right\}}\left\{e^{a u_{n}(x)}+|x|^{2 N} e^{u_{n}(x)}\right\} d x \geqslant \frac{8 \pi}{a}-\varepsilon, \quad \forall n \geqslant n_{\varepsilon}
$$

Argue by contradiction and, in account of (3.3), assume that (along a subsequence):

$$
\begin{equation*}
\beta_{n} \rightarrow \bar{\beta}>\max \{4 / a, 4(N+1)-4 / a\} \tag{3.9}
\end{equation*}
$$

Observe that

$$
\sup _{\left\{x \in \mathbb{R}^{2}:|x| \leqslant \sigma_{n} R_{\varepsilon}\right\}}\left\{u_{n}(x)+\frac{2}{a} \ln (|x|)\right\} \leqslant \sup _{\left\{y \in \mathbb{R}^{2}:|y| \leqslant R_{\varepsilon}\right\}}\left\{w_{n}(y)+\frac{2}{a} \ln (|y|)\right\} \leqslant \frac{2}{a} \ln \left(R_{\varepsilon}\right)
$$

and therefore,

$$
\begin{aligned}
\int_{\left\{x \in \mathbb{R}^{2}:|x| \leqslant \sigma_{n} R_{\varepsilon}\right\}}|x|^{2 N} e^{u_{n}} d x & \leqslant R_{\varepsilon}^{2 / a} \int_{\left\{x \in \mathbb{R}^{2}:|x| \leqslant \sigma_{n} R_{\varepsilon}\right\}}|x|^{2 N-2 / a} d x \\
& =\frac{\pi a}{((N+1) a-1)} R_{\varepsilon}^{2(N+1)} \sigma_{n}^{\frac{2}{n}((N+1) a-1)} .
\end{aligned}
$$

Thus,

$$
\int_{\left.:|x| \leqslant \sigma_{n} R_{\varepsilon}\right\}} e^{a u_{n}} d x \geqslant \frac{8 \pi}{a}-\varepsilon-\frac{\pi a}{((N+1) a-1)} R_{\varepsilon}^{2(N+1)} \sigma_{n}^{\frac{2}{a}((N+1) a-1)} .
$$

By recalling (2.7), we obtain:

$$
\begin{aligned}
0 & \leqslant \int_{\left\{x \in \mathbb{R}^{2}:|x| \geqslant \sigma_{n} R_{\varepsilon}\right\}} e^{a u_{n}} d x \leqslant \int_{\mathbb{R}^{2}} e^{a u_{n}} d x-\frac{8 \pi}{a}+\varepsilon+\frac{\pi a}{((N+1) a-1)} R_{\varepsilon}^{2(N+1)} \sigma_{n}^{\frac{2}{a}((N+1) a-1)} \\
& =\frac{\pi}{2} a \beta_{n} \cdot \frac{4(N+1)-\beta_{n}}{a(N+1)-1}-\frac{8 \pi}{a}+\varepsilon+\frac{\pi a}{((N+1) a-1)} R_{\varepsilon}^{2(N+1)} \sigma_{n}^{\frac{2}{a}((N+1) a-1)}
\end{aligned}
$$

Hence, by passing to the limit first, as $n \rightarrow+\infty$, and then as $\varepsilon \rightarrow 0$, we arrive at the desired contradiction as follows:

$$
0 \leqslant \frac{\pi}{2} a \bar{\beta} \cdot \frac{4(N+1)-\bar{\beta}}{a(N+1)-1}-\frac{8 \pi}{a}=-\frac{\pi a}{2(a(N+1)-1)}\left(\bar{\beta}-\frac{4}{a}\right)\left(\bar{\beta}-\left(4(N+1)-\frac{4}{a}\right)\right)<0 .
$$

Thus also Claim 2 is established. Since both Claim 1 and Claim 2 hold along any sequence, we conclude (3.4).

Proof of Theorem 1.1 and Corollary 1.1. When $a>1 /(N+1)$, then the statement of Theorem 1.1 and Corollary 1.1 readily follows by the continuity of $\beta(\alpha)$, Proposition 3.1 and Corollary 2.3.

When $0<a<1 /(N+1)$, then we use the duality properties (2.16)-(2.19), and apply the result already established to $\hat{a}=1 / a>1 /(\hat{N}+1)$ and $\hat{\beta}=a \beta /(N+1)$, to deduce the desired statement for β.

Next we turn to analyze the uniqueness issue. The goal is to show that under the given assumptions, the function $\beta(\alpha)$ is strictly monotone decreasing. To this purpose, we need to locate the possible zeros of β^{\prime}.

By recalling (2.31), (2.32) and (2.33), we see that, if there exists $\bar{\alpha} \in \mathbb{R}: \beta^{\prime}(\bar{\alpha})=0$, then $\bar{w}=$ $\left.\frac{\partial v_{\alpha}}{\partial \alpha}\right|_{\alpha=\bar{\alpha}}$ will be a bounded solution of the linearized equation (2.32) with $v=v_{\bar{\alpha}}$. As a consequence, $Y(t)=\bar{w}^{\prime}(t)$ will define a nontrivial solution for the problem:

$$
\begin{cases}\frac{d}{d t}\left(\frac{1}{Q(t)} Y^{\prime}(t)\right)+Y(t)=0 & \text { for } t \in \mathbb{R}, \tag{3.10}\\ Y(-\infty):=\lim _{t \rightarrow-\infty} Y(t)=0, & Y(+\infty):=\lim _{t \rightarrow+\infty} Y(t)=0\end{cases}
$$

with

$$
\begin{equation*}
Q(t)=a \exp (2 t+a v(t))+\exp (2(N+1) t+v(t)) \tag{3.11}
\end{equation*}
$$

and $v=v_{\bar{\alpha}}$.
To show that this is impossible we start by showing the following:

Proposition 3.2. Let v be a solution of (2.13) with $a>1 /(N+1), N>-1$, and $Y=Y(t) \neq 0$ satisfy (3.10), with $Q=Q(t)$ defined in (3.11). Then $Y(t)$ cannot change sign in \mathbb{R}.

Proof. We introduce the following notations:

$$
\begin{equation*}
A(t):=\exp (2 t+a v(t)) \quad \text { and } \quad B(t):=\exp (2(N+1) t+v(t)) \tag{3.12}
\end{equation*}
$$

and consider the functions:

$$
\begin{gather*}
R(t):=-v^{\prime}(t)\left(\frac{4}{a}+v^{\prime}(t)\right)-\frac{2(1-a) A(t)}{a} \tag{3.13}\\
Z(t):=-\left(\beta+v^{\prime}(t)\right)\left(4(N+1)+v^{\prime}(t)-\beta\right)+\frac{2(1-a) B(t)}{a} \tag{3.14}
\end{gather*}
$$

Then, we can express (2.26) and (2.27) in terms of the functions $R=R(t)$ and $Z=Z(t)$ as follows:

$$
\begin{aligned}
\forall s \in \Lambda(v)= & \left\{s \in \mathbb{R}: 2 / a<\left|v^{\prime}(s)\right|=-v^{\prime}(s)<2(N+1)\right\}, \quad \text { there holds: } \\
& -R(s)+2 A(s)+\frac{2}{a} \frac{\left(2+a v_{t}(s)\right)}{\left(2(N+1)+v_{t}(s)\right)} B(s) \leqslant 0 \\
& -Z(s)+2 \frac{\left(2(N+1)+v_{t}(s)\right)}{\left(2+a v_{t}(s)\right)} A(s)+\frac{2}{a} B(s) \leqslant 0
\end{aligned}
$$

From the above inequality we deduce that:

$$
\begin{equation*}
\forall s \in \Lambda(v) \quad \Rightarrow \quad-R(s)\left(2(N+1)+v_{t}(s)\right)+Z(s)\left(2+a v_{t}(s)\right) \leqslant 0 \tag{3.15}
\end{equation*}
$$

which imply in particular that R and Z cannot be simultaneously negative at a point $s \in \Lambda(v)$.
Moreover, concerning $R(t)$ and $Z(t)$ we observe that, by straightforward calculation, the following holds. Firstly,

$$
\begin{gather*}
\frac{d R}{d t}(t)=2 Q(t)\left(v^{\prime}(t)+\frac{2}{a}\right), \quad R(-\infty)=\lim _{t \rightarrow-\infty} R(t)=0 \\
R(+\infty)=\lim _{t \rightarrow+\infty} R(t)=-\beta\left(\beta-\frac{4}{a}\right)<0 \tag{3.16}
\end{gather*}
$$

and

$$
\frac{d}{d t}\left(\frac{1}{Q(t)} R^{\prime}(t)\right)+R(t)=-\left(\frac{2}{a} A(t)+2 B(t)+v^{\prime}(t)\left(v^{\prime}(t)+\frac{4}{a}\right)\right):=-\Psi(t)
$$

Since $\Psi(-\infty)=\lim _{t \rightarrow-\infty} \Psi(t)=0$ and $\Psi^{\prime}(t)=4((N+1)-1 / a) B(t)>0$, then $\Psi(t)>0 \forall t \in \mathbb{R}$ and consequently:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{Q(t)} R^{\prime}(t)\right)+R(t)<0, \quad \forall t \in \mathbb{R} \tag{3.17}
\end{equation*}
$$

Furthermore, from (3.16), we check that $R(t)$ changes sign exactly once, and more precisely, there exists $s_{0} \in \mathbb{R}$ such that:

$$
\begin{equation*}
s_{0}>t_{-}=t_{-}(v): \quad v^{\prime}\left(t_{-}\right)=-\frac{2}{a} \quad \text { and } \quad R(t)<0 \quad \Leftrightarrow \quad t>s_{0} \tag{3.18}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\frac{d Z}{d t}(t)=\frac{2}{a} Q(t)\left(v^{\prime}(t)+2(N+1)\right), \quad Z(-\infty)=-\beta(4(N+1)-\beta)<0, \quad Z(+\infty)=0 \tag{3.19}
\end{equation*}
$$

and

$$
\frac{d}{d t}\left(\frac{1}{Q(t)} Z^{\prime}(t)\right)+Z(t)=-\left(\frac{2}{a} A(t)+2 B(t)+\left(\beta+v^{\prime}(t)\right)\left(v^{\prime}(t)+4(N+1)-\beta\right)\right):=-\Phi(t)
$$

Since $\Phi(+\infty)=\lim _{t \rightarrow+\infty} \Phi(t)=0$ and $\Phi^{\prime}(t)=-4((N+1)-1 / a) A(t)<0$ we find that $\Phi(t)>0$ $\forall t \in \mathbb{R}$, and consequently:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{Q(t)} Z^{\prime}(t)\right)+Z(t)<0, \quad \forall t \in \mathbb{R} . \tag{3.20}
\end{equation*}
$$

Moreover, from (3.19), we see that

$$
\begin{equation*}
Z(t)>0 \quad \forall t>t_{+}=t_{+}(v): \quad v^{\prime}\left(t_{+}\right)=-2(N+1) . \tag{3.21}
\end{equation*}
$$

Those information about $R(t)$ and $Z(t)$, allow us to show that $Y(t)$ cannot change sign in \mathbb{R}. Indeed, if by contradiction we assume that there exist values $t_{1} \leqslant t_{2}$ such that

$$
|Y(t)|>0, \quad \forall t \in\left(-\infty, t_{1}\right) \cup\left(t_{2},+\infty\right), \quad \text { and } \quad Y\left(t_{1}\right)=Y\left(t_{2}\right)=0
$$

then we can apply Proposition 2.1 in the interval $I_{1}=\left(-\infty, t_{1}\right)$ with $y(t)=|Y(t)|$ and $z(t)=R(t)$ to obtain $s_{1} \in I_{1}: R\left(s_{1}\right)<0$. Thus from (3.18) we deduce:

$$
\begin{equation*}
t_{-}<s_{1}<t_{1} \quad \text { and } \quad R(s)<0, \quad \forall s \geqslant s_{1} . \tag{3.22}
\end{equation*}
$$

On the other hand, if we apply Proposition 2.1 in the interval $I_{2}=\left(t_{2},+\infty\right)$ with $y(t)=|Y(t)|$ and $z(t)=Z(t)$, we find $s_{2} \in I_{2}: Z\left(s_{2}\right)<0$. By (3.21) and (3.22) we have that $t_{-}<s_{1}<t_{1} \leqslant t_{2}<s_{2}<t_{+}$ and $R\left(s_{2}\right)<0, Z\left(s_{2}\right)<0$. In other words $s_{2} \in\left(t_{-}, t_{+}\right) \equiv \Lambda(v)$ and both R and Z assume negative values at s_{2}, in contradiction with (3.15). So $Y(t)$ cannot change sign, as claimed.

Proposition 3.3. Let $N \geqslant 0, a>1 /(N+1)$ and $v=v(t)$ be a solution of (2.13) such that

$$
\begin{equation*}
2 N+(a-1) \beta \geqslant 0 \tag{3.23}
\end{equation*}
$$

Then problem (3.10) with Q in (3.11) admits only the trivial solution $Y(t) \equiv 0$.
Proof. Let

$$
\tau=\frac{a(4(N+1)-\beta)}{4((N+1) a-1)} \in(0,1)
$$

and define:

$$
\begin{equation*}
X(t)=\tau R(t)+(1-\tau) Z(t)+\frac{a \beta(\beta-4 / a)(4(N+1)-\beta)}{4((N+1) a-1)} . \tag{3.24}
\end{equation*}
$$

In view of (3.16) and (3.19), we easily check that

$$
\begin{gathered}
\frac{d X}{d t}(t)=\frac{2}{a} Q(t)\left(\tau\left(2+a v^{\prime}(t)\right)+(1-\tau)\left(2(N+1)+v^{\prime}(t)\right)\right), \\
X(-\infty)=\lim _{t \rightarrow-\infty} X(t)=0, \quad X(+\infty)=\lim _{t \rightarrow+\infty} X(t)=0 .
\end{gathered}
$$

So $X(t)$ admits exactly one critical point, say t_{0}, is increasing in $\left(-\infty, t_{0}\right)$ and decreasing in $\left(t_{0},+\infty\right)$. In particular, $X(t)>0, \forall t \in \mathbb{R}$. Furthermore,

$$
\frac{d}{d t}\left(\frac{1}{Q(t)} X^{\prime}(t)\right)+X(t)=-\left(\frac{2}{a} A(t)+2 B(t)+v^{\prime}(t)\left(\beta+v^{\prime}(t)\right)\right):=-\Lambda(t)
$$

We check that assumption (3.23) implies that $\Lambda(t)<0, \forall t \in \mathbb{R}$. Indeed by straightforward calculations, we find:

$$
\frac{d \Lambda}{d t}(t)=(4(N+1)-\beta) B(t)-\left(\beta-\frac{4}{a}\right) A(t), \quad \Lambda(-\infty)=0=\Lambda(+\infty)
$$

So, if \bar{t} is a critical point of Λ then it satisfies:

$$
(4(N+1)-\beta) B(\bar{t})=\left(\beta-\frac{4}{a}\right) A(\bar{t}):=\bar{c}>0
$$

and

$$
\begin{aligned}
\frac{d^{2} \Lambda}{d t^{2}}(t) & =(4(N+1)-\beta) B(t)\left(2(N+1)+v^{\prime}(t)\right)-\left(\beta-\frac{4}{a}\right) A(t)\left(2+a v^{\prime}(t)\right) \\
& =\bar{c}\left(2 N+(a-1)\left|v^{\prime}(t)\right|\right)
\end{aligned}
$$

Clearly (3.23) implies that $\frac{d^{2} \Lambda}{d t^{2}}(\bar{t})>0$. Indeed, this is obviously the case when $a \geqslant 1$ (the condition $a>1 /(N+1)$ rules out the possibility that simultaneously: $a=1$ and $N=0)$. When $1 /(N+1)<a<1$ then $2 N+(a-1)\left|v^{\prime}(t)\right|>2 N+(a-1) \beta \geqslant 0$.

Consequently, Λ can only admit a unique strict minimum and so $\Lambda(t)<0, \forall t \in \mathbb{R}$. In other words, under the given assumption:

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(\frac{1}{Q(t)} X^{\prime}(t)\right)+X(t)>0 \\
X(t)>0, \quad X(-\infty)=0=X(+\infty)
\end{array}\right.
$$

Thus, by virtue of Propositions 2.1 and 3.2 , we conclude that problem (3.10) with $Q(t)$ in (3.11) can only admit the trivial solution $Y(t) \equiv 0$.

Remark 3.1. We observe that if β satisfies (1.18), then (3.23) always holds when $N>0$ and $a \geqslant \frac{N+2}{2(N+1)}$ or $N=0$ and $a>1$.

Proof of Theorems $\mathbf{1 . 2}$ and 1.3. Under the assumptions (i) of Theorem 1.2, we see by Remark 3.1, that (3.23) holds. So, by recalling (2.32)-(2.36), we must have that necessarily $\beta^{\prime}(\alpha) \neq 0 \forall t \in \mathbb{R}$, with $\beta(\alpha)$ the (smooth) function defined in (3.2). Therefore, by virtue of Proposition 3.1, it follows that $\beta^{\prime}<0$ and the function $\beta(\alpha)$ is strictly monotone decreasing in \mathbb{R}. The desired conclusion in part (i) of Theorem 1.2 then follows by the uniqueness of (3.2), and the fact that the range of the function $\beta(\alpha)$ covers exactly once the range of β in (1.18).

In the exact same way, uniqueness follows when $N=0$ and $a>1$ (see Remark 3.1).

Concerning part (ii) of Theorem 1.2, we see that the given assumptions on a imply that $\beta_{0}:=\frac{2 \mathrm{~N}}{1-a}$ satisfies (1.18) and (3.23). In view of Proposition 3.3 this implies that the equation $\beta(\alpha)=\beta_{0}$ admits a unique solution $\alpha_{0} \in \mathbb{R}$, and $\beta(\alpha)$ is strictly decreasing in the interval ($\alpha_{0},+\infty$). Then, as above, we can assure the uniqueness of the radial solution of (2.2), for every $\beta \leqslant \beta_{0}$ satisfying (1.18).

At this point, we can use the duality properties (2.17), (2.18) and (2.19) in order to establish part (i) and part (ii) with $0<a<1$, of Theorem 1.3.

It is a challenging open problem to see whether the uniqueness of radial solutions remains valid without the restriction $\beta \leqslant \frac{2 N}{1-a}$.

On the other hand, the value of $\beta=\frac{2 N}{1-a}$ assumes a special role in the solvability of (2.13). This fact emerged already in [8] (see Theorem 1.3). Indeed, in the following section we show that problem (2.2) with $\beta=\frac{2 N}{1-a}$ admits a one-parameter family of non-radial solutions bifurcating from the (unique) radial one.

Proof of Theorem 1.4, i.e. Theorem 1.5 of [18]. In the radial setting, problem (1.20), (1.22) and (1.23), reduces to problem (2.44) with $G(t)=e^{2 t} K\left(e^{t}\right)$ satisfying the assumption of Proposition 2.2. Actually Proposition 2.2 provides the crucial information, as it corresponds to Lemma 3.3 of [18]. At this point, one arrives at the desired conclusion by following the arguments of [18].

4. Non-radial solutions

We are going to identify suitable pairs: $(a, N) \in(0,1) \times(1,+\infty)$ such that problem (1.15) admits non-radial solutions satisfying (1.16) with $\beta=\frac{2 N}{1-a}$.

To this purpose, let $0<a<1$, and for every $\beta_{0} \in I(a):=(\max \{4,4(1-a) / a\}, 4 / a)$ denote by $u_{0}=$ $u_{0}(r)$ the unique radial solution for the problem:

$$
\left\{\begin{array}{l}
-\Delta v=\exp (a v)+\exp (v) \quad \text { in } \mathbb{R}^{2}, \tag{4.1}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(e^{a v}+e^{v}\right) d x=\beta_{0},
\end{array}\right.
$$

see Theorems 1.2 and 1.3.
We use complex notation, and for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ we set $z=x_{1}+i x_{2}$ and $u_{0}=u_{0}(|z|)$.
Any other solution u of (4.1) must satisfy: $u(z)=u_{0}(|z+\xi|)$ with $\xi \in \mathbb{C}$. For any $m \in \mathbb{N}$, we consider:

$$
\begin{equation*}
U(z)=u_{0}\left(\left|z^{m+1}+\xi\right|\right), \quad \xi \in \mathbb{C} \tag{4.2}
\end{equation*}
$$

then for $\xi \neq 0, U$ is not radially symmetric about any point and it satisfies:

$$
\left\{\begin{array}{l}
-\Delta U=(m+1)^{2}|z|^{2 m}\left(e^{a U}+e^{U}\right) \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}(m+1)^{2}|z|^{2 m}\left(e^{a U}+e^{U}\right)=(m+1) \beta_{0}
\end{array}\right.
$$

In turn, if we let

$$
v(z)=U\left(\frac{z}{|z|^{2}}\right)+(m+1) \beta_{0} \ln \left(\frac{1}{|z|}\right)
$$

then v can be extended smoothly at the origin, to satisfy:

$$
\left\{\begin{array}{l}
-\Delta v=(m+1)^{2}\left(|z|^{a(m+1) \beta_{0}-2(m+2)} e^{a v}+|z|^{(m+1) \beta_{0}-2(m+2)} e^{v}\right) \\
\frac{1}{2 \pi}(m+1)^{2} \int_{\mathbb{R}^{2}}\left(|z|^{a(m+1) \beta_{0}-2(m+2)} e^{a v}+|z|^{(m+1) \beta_{0}-2(m+2)} e^{v}\right)=(m+1) \beta_{0}
\end{array}\right.
$$

For the particular choice of $\beta_{0}=\frac{2(m+2)}{(m+1) a}$ we obtain a (non-radial) solution for the problem:

$$
\left\{\begin{array}{l}
-\Delta v=(m+1)^{2}\left(e^{a v}+|z|^{2 N} e^{v}\right) \tag{4.3}\\
\frac{1}{2 \pi}(m+1)^{2} \int_{\mathbb{R}^{2}}\left(e^{a v}+|z|^{2 N} e^{v}\right)=\frac{2 N}{1-a}
\end{array}\right.
$$

with

$$
\begin{equation*}
N=N(m, a)=\frac{(m+2)(1-a)}{a} . \tag{4.4}
\end{equation*}
$$

Hence, for all possible choices of:

$$
\begin{equation*}
0<a<1 \quad \text { and } \quad m \in \mathbb{N}: \frac{2(m+2)}{(m+1) a} \in I(a) \tag{4.5}
\end{equation*}
$$

we obtain a 1 -parameter family of non-radial solution of (4.3), with $N>0$ given in (4.4). Notice also that in this situation, the linearized problem around the unique radial solution (corresponding to the choice $\xi=0$ in (4.2)), admits a nontrivial kernel of bounded θ-depending functions given by: $u_{0}^{\prime}(r) \cos (\theta)$ and $u_{0}^{\prime}(r) \sin (\theta)$.

Concerning the validity of (4.5), we see that it holds if

$$
\begin{gather*}
a=1 / 2 \text { and } \forall m \in \mathbb{N}, \quad \text { so that } \quad N=m+2 \in \mathbb{N} \cap[3,+\infty) \tag{4.6}\\
0<a<1 / 2 \quad \text { and } 1 \leqslant m<\frac{2 a}{1-2 a} \tag{4.7}\\
1 / 2<a<1 \text { and } 1 \leqslant m<\frac{2(1-a)}{2 a-1} \tag{4.8}
\end{gather*}
$$

and the conditions (4.7) and (4.8) are related via the transformation: $a \rightarrow(1-a)$.
From a direct inspection of (4.7) and (4.8) we derive that: for $1 / 4<a \neq 1 / 2<3 / 4$, there exists $m_{a} \in \mathbb{N}: m_{a}=m_{1-a}, m_{a} \rightarrow+\infty$ as $a \rightarrow 1 / 2$, and (4.5) holds for every $m \in\left\{1, \ldots, m_{a}\right\}$.

Consequently, for $a=1 / 2$, problem (4.3) exhibits a symmetry breaking phenomenon for every $N \in \mathbb{N}, N \geqslant 3$; quite similar to what occurs for problem (1.10) when $N \in \mathbb{N}$, see [19].

While for $1 / 4<a \neq 1 / 2<3 / 4$, such a brake of symmetry can occur only for finite values of N which are given by (4.4), with $m=1, \ldots, m_{a}$. Notice in particular that such "admissible" N 's, are always larger than 1 , and can be made as close to 1 as wanted by letting $a \rightarrow 3 / 4$.

This leads us to formulate the following conjecture:

$$
\begin{equation*}
\text { if } 0<N \leqslant 1 \text { or } N>0 \text { and } a \geqslant 1 \text {, } \tag{4.9}
\end{equation*}
$$

then every solution of problem (1.15) is radially symmetric about the origin.
A positive answer to (4.9), would imply in particular that, for $N>0$ and $a \geqslant 1$, the solvability of problem (1.15)-(1.16) is fully described by Theorems 1.2 and 1.3.

To support the above conjecture, let us consider the case $a=1=N$, given by the problem

$$
\left\{\begin{array}{l}
-\Delta v=\left(1+|z|^{2}\right) e^{v} \quad \text { in } \mathbb{R}^{2} \tag{4.10}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(1+|z|^{2}\right) e^{v}=\beta
\end{array}\right.
$$

with $\beta \in(4,8)$. By direct calculations one can check that the function: $u_{*}(x)=u_{*}(|x|)=\ln (12 /$ $\left(1+|x|^{2}\right)^{3}$) defines the unique radial solution of problem (4.10) with $\beta=6$. A recent result of Ghoussoub and Lin in [17], shows that indeed u_{*} is the unique solution for (4.10), when $\beta=6$. While in [6] it is shown that there exists $\beta_{0} \in(4,8)$ such that, for any $\beta \in\left(\beta_{0}, 8\right)$ problem (4.10) admits only radially symmetric solutions.

Acknowledgment

Supported by MIUR project: Firb-Ideas Analysis and Beyond.

References

[1] J. Ambjorn, P. Olesen, Anti-screening of large magnetic fields by vector bosons, Phys. Lett. B 214 (1988) 565-569.
[2] J. Ambjorn, P. Olesen, On electroweak magnetism, Nuclear Phys. B 315 (1989) 606-614.
[3] J. Ambjorn, P. Olesen, A magnetic condensate solution of the classical electroweak theory, Phys. Lett. B 218 (1989) 67-71.
[4] J. Ambjorn, P. Olesen, A condensate solution of the electroweak theory which interpolates between the broken and the symmetry phase, Nuclear Phys. 330 (1990) 193-204.
[5] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980.
[6] D. Bartolucci, C.S. Lin, G. Tarantello, Uniqueness and symmetry results for solutions of a mean field equation on S^{2}, via a new bubbling phenomenon, Comm. Pure Appl. Math. 64 (2011) 1677-1730.
[7] H. Bresis, F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta v=V(x) e^{u}$ in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223-1253.
[8] R.M. Chen, Y. Guo, D. Sprin, Asymptotic behavior and symmetry of condensate solutions in electroweak theory, preprint, 2010.
[9] D. Chae, Existence of a semilinear elliptic system with exponential nonlinearities, Discrete Contin. Dyn. Syst. 18 (2007) 709-718.
[10] D. Chae, Existence of multistring solutions of self-gravitating massive W-boson, Lett. Math. Phys. 73 (2005) 123-134.
[11] D. Chae, O. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000) 119-142.
[12] D. Chae, G. Tarantello, Selfgravitating electroweak strings, J. Differential Equations 213 (2005) 146-170.
[13] D. Chae, G. Tarantello, On planar selfdual electroweak vortices, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004) 187-207.
[14] W. Chen, C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in \mathbb{R}^{2}, Duke Math. J. 71 (2) (1993) 427-439.
[15] W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-623.
[16] J. Dolbeault, M.J. Esteban, G. Tarantello, Multiplicity results for the assigned Gauss curvature problem in \mathbb{R}^{2}, Nonlinear Anal. 70 (2009) 2870-2881.
[17] N. Ghoussoub, C.S. Lin, On the best constant in the Moser-Onofri-Aubin inequality, Comm. Math. Phys. 298 (2010) 869878.
[18] C.S. Lin, Uniqueness of solutions to the mean field equation for the spherical Onsager vortex, Arch. Ration. Mech. Anal. 153 (2000) 153-176.
[19] J. Prajapat, G. Tarantello, On a class of elliptic problems in \mathbb{R}^{2} : symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 967-985.
[20] G. Tarantello, Self-Dual Gauge Field Vortices: An Analitical Approach, Progr. Nonlinear Differential Equations Appl., vol. 72, Birkhäuser, Boston, Basel, Berlin, 2008.
[21] G. Tarantello, Analitical, geometrical and topological aspects of a class of mean field equations on surfaces, Discrete Contin. Dyn. Syst. 28 (3) (2010) 931-973.
[22] Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer-Verlag, New York, 2001.
[23] Y. Yang, Self duality of the gauge field equations and the cosmological constant, Comm. Math. Phys. 162 (1994) $481-498$.

[^0]: * Corresponding author.

 E-mail addresses: poliakov@mat.uniroma2.it (A. Poliakovsky), tarantel@mat.uniroma2.it (G. Tarantello).

