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Motivated by the construction of selfgravitating strings (cf. Yang,
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plane, derived in Yang (1994) [23]. We establish sharp existence
and uniqueness properties for the corresponding radial solutions.
We investigate also when the problem allows for non-radial solu-
tions.
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1. Introduction

In this paper we analyze an elliptic problem of Liouville type in R
2, whose solutions yield to self-

gravitating strings for a massive W-boson model coupled to Einstein theory in account of gravitational
effects (cf. [22]).

To handle the analytical difficulties posed by the corresponding string’s equations, Y. Yang in [23]
introduced a set of ansatz so that the corresponding string configuration obeyed to a system of
Bogomolnyi-type (selfdual) first order equations coupled with Einstein’s equation.

Such a construction was inspired by the work of Ambjorn and Olesen in [1–4]. It gives rise to
(selfgravitating) strings that are parallel in the x3-direction and whose cross section (with respect to
the plane: x3 = 0) is localized around some given points p1, . . . , pN ∈ R

2 (repeated according to the
assigned multiplicity).

Consistently, the gravitational metric can be chosen to be conformally equivalent to the flat R
2-

metric.
As a consequence, the full string’s problem can be reduced to an elliptic system involving two

unknown (real) functions (u, η), with η the conformal factor and eu the “strength” of the W-boson
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field. The location of the string at the points p1, . . . , pN , requires the following “singular” behavior
of u:

u(x) = ln
(|x − p j|2

) + O (1) as x → p j (1.1)

for any j ∈ {1, . . . , N}.
Thus, the governing string’s system takes the form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
−�u = 2m2

W eη + 4b2eu − 4π

N∑
j=1

δp j ,

− �η

8πG
= 2m4

W

b2
eη + 4m2

W eu

(1.2)

with mW = boson’s mass, −b = electron charge, G = gravitational constant. The details of the deriva-
tion of (1.2) can be found in [22] and [23]. In the planar case, problem (1.2) must be equipped with
the (boundary) conditions:

eu, eη ∈ L1(
R

2) (1.3)

in order to ensure finite (total) energy and (total) curvature. Notice that (1.3) implies that both u and
η must admit a logarithmic growth at infinity (e.g. see [14,15,13]). Thus, by (1.2), we find that the
function

w := u − b2

m2
W 8πG

η −
N∑

j=1

ln
(|x − p j|2

)
(1.4)

defines an entire harmonic function with logarithmic growth at infinity. So w must be constant, say
w ≡ C with C ∈ R. Therefore the system (1.2) can be further reduced to a single equation in terms of
the unknown function

v = b2

m2
W 8πG

η + C + ln
(
4b2) (1.5)

given as follows:

−�v = λeav +
N∏

j=1

|x − p j|2ev (1.6)

where

a = m2
W 8πG

b2
� 1, λ = 2m2

W e−aμ and μ = 4b2eC . (1.7)

Moreover, the (boundary) conditions (1.3), can be restated in terms of v , by requiring that the right-
hand side of (1.6) belongs to L1(R2).

To investigate (1.6) we use its “natural” scaling property. For instance if we set:

vε(x) = v(x/ε) + 2 max
{

1/a, (N + 1)
}

ln (1/ε) (1.8)

with v that solves (1.6), then
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(i) for a > 1/(N + 1), vε satisfies the equation:

−�v = λε2((N+1)a−1)eav +
N∏

j=1

|x − εp j|2ev . (1.9)

Formally, as ε → 0 we can interpret (1.9) as a “perturbation” of the (singular) Liouville equation:

⎧⎪⎨
⎪⎩

−�v = |x|2N ev in R
2,∫

R2

|x|2N ev dx < +∞. (1.10)

Solutions of (1.10) have been completely classified in [19], and in particular they satisfy

∫
R2

|x|2N ev dx = 8π(N + 1). (1.11)

In this situation, Chae in [9] has been able to exploit such a “perturbation” property to obtain (as
in [11]) a family of solutions Vε for (1.6) such that

∫
R2

{
λeaVε +

N∏
j=1

|x − p j|2eVε

}
dx → 8π(N + 1), as ε → 0.

(ii) For 0 < a < 1/(N + 1), vε satisfies the equation:

−�v = λeav + ε2(1−(N+1)a)/a
N∏

j=1

|x − εp j|2ev (1.12)

that instead can be interpreted as a “perturbation” of the (classical) Liouville equation:

⎧⎪⎨
⎪⎩

−�v = λeav in R
2,∫

R2

eav dx < +∞ (1.13)

whose solutions have been completely classified in [15] and they satisfy:

λ

∫
R2

eav dx = 8π

a
. (1.14)

In principle an analogous perturbation argument as in [9] (see also [10,12,13]) could be used to obtain
a family of solutions Vε such that

∫
2

{
λeaVε +

N∏
j=1

|x − p j|2eVε

}
dx → 8π

a
, as ε → 0.
R
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The case a = 1/(N + 1) enters in this analysis as a “special” case. Indeed (1.9) and (1.12) coincide
and problem (1.6) becomes, “essentially” scale invariant. It can be reduced to a “perturbation” of the
ε = 0 problem (i.e. p1 = p2 = · · · = pN = 0), given as follows

⎧⎪⎨
⎪⎩

−�v = λeav + |x|2N ev in R
2,

λ

∫
R2

eav dx +
∫
R2

|x|2N ev dx < +∞. (1.15)

It is interesting to note that, when a = 1/(N + 1), problem (1.15) shares many properties with the
“singular” Liouville problem (1.10), corresponding to the case λ = 0 in (1.15).

Indeed, as established in [8] and [19], we have that, if λ � 0, N > −1, a = 1/(N + 1) and v is a
solution of (1.15), then

(i) λ
∫

R2 eav dx + ∫
R2 |x|2N ev dx = 8π(N + 1),

(ii) vτ (x) = v(τ x) + 2(N + 1) ln (τ ) and v̂(x) = v(x/|x|2) + 2(N + 1) ln (1/|x|2) are also solutions
for (1.15),

(iii) v(x) = v̂τ (x), with τ = e
v(0)−v̂(0)

2(N+1) .

When N = 0 and a = 1, then problem (1.15) reduces to the “classical” Liouville equation, and the
property above can be checked directly from the explicit solutions, see [14].

Explicit solutions are also known for the “singular” Liouville problem (i.e. λ = 0), but to check (iii)
in this case is less obvious.

Explicit solutions for (1.15) are not available, when λ > 0. Even the radial solutions can be ex-
pressed only in terms of some elliptic integrals, that can be computed explicitly only when N = 1 and
a = 1/2 (see (2.15) below). So far, when a = 1/(N + 1) and λ > 0, we have no information concerning
the existence of non-radial solutions for (1.15). By keeping in mind that for λ = 0, the corresponding
“singular” Liouville problem admits non-radial solutions if and only if N is an integer (see [19]), it is an
interesting open problem to determine whether an analogous phenomenon occurs also when λ > 0.

The aim of this paper is to investigate problem (1.15) when 0 < a �= 1/(N + 1), which relates to the
N-string problem, when all the strings are superimposed at the origin. In this respect, it is relevant
to identify the exact range of β ’s for which problem (1.15) can be solved by a solution v satisfying:

β = 1

2π

∫
R2

(
λeav dx + |x|2N ev)

dx. (1.16)

We are able to answer this question in the radial case as follows:

Theorem 1.1 (Existence). Let λ > 0, N > −1 and 0 < a �= 1/(N + 1). Problem (1.15)–(1.16) admits a radial
solution if and only if :

(i) β ∈
(

max

{
4(N + 1),

4

a
− 4(N + 1)

}
,

4

a

)
when 0 < a <

1

N + 1
, (1.17)

(ii) β ∈
(

max

{
4

a
,4(N + 1) − 4

a

}
,4(N + 1)

)
when a >

1

N + 1
. (1.18)

To illustrate Theorem 1.1 we notice that

• if 1
N+1 < a � 2

N+1 then max{ 4
a ,4(N + 1) − 4

a } = 4
a ,

• if 1
2(N+1)

� a < 1
N+1 then max{4(N + 1), 4

a − 4(N + 1)} = 4(N + 1)
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and by combining the above result with some suitable integral identities of Pohozaev type (see (2.9)–
(2.10)) we conclude:

Corollary 1.1. Let λ > 0 and N > −1;

(a) if 1
N+1 < a � 2

N+1 then problem (1.15)–(1.16) admits a solution (not necessary radial) if and only if β ∈
( 4

a ,4(N + 1)),

(b) if 1
2(N+1)

� a < 1
N+1 then problem (1.15)–(1.16) admits a solution (not necessary radial) if and only if

β ∈ (4(N + 1), 4
a ).

Concerning the uniqueness issue, we obtain the following

Theorem 1.2 (Uniqueness). Let λ > 0 and N > 0.

(i) If a � N+2
2(N+1)

and β satisfies (1.18), then problem (1.15)–(1.16) admits a unique radial solution.

(ii) If ( 1
N+1 <) 2

N+2 < a < N+2
2(N+1)

and β ∈ (−∞, 2N
1−a ] satisfies (1.18), then (1.15)–(1.16) admits a unique

radial solution.

Remark 1.1. (a) We shall show that the claimed unique radial solution is also non-degenerate (in a
suitable sense) in the space of radial functions, but (in some cases) not necessarily so when non-
radial functions are also taken into account.

(b) Observe that if 0 < a �= 1
N+1 � 2

N+2 then (1.17) or (1.18) could imply that: β > 2N
1−a , and by our

method, no uniqueness property can be claimed in this case. Actually, we suspect that multiplicity
may occur in this case.

For 2
N+2 < a < N+2

2(N+1)
the value β = 2N

1−a satisfies (1.18) and it gives a “special” value in relation
to problem (1.15). Indeed, we shall find suitable pairs (a, N) for which problem (1.15)–(1.16) with
β = 2N

1−a admits a branch of non-radial solutions bifurcating from the (unique) radial one. In particular,
the “linearized” problem around the radial solution admits a nontrivial kernel formed by non-radial
functions. See Section 4 for details.

If −1 < N � 0, then by a straightforward application of the moving plane technique (cf. [14]), we
see that every solution of (1.15) must be radially symmetric. Moreover by exploiting a “natural” du-
ality property of the radial problem (see (2.13), (2.17)–(2.20) below), we can formulate the following
uniqueness result:

Theorem 1.3. Let λ > 0.

(i) If −1 < N < 0, then every solution of (1.15) is radially symmetric about the origin and (1.17), (1.18) define
necessary and sufficient conditions for the solvability of (1.15)–(1.16). Furthermore, if 0 < a � 2

N+2 or if
2

N+2 < a < N+2
2(N+1)

(< 1
N+1 ) and β � 2|N|

a−1 then (1.15)–(1.16) admits a unique radial solution.
(ii) If N = 0 and a �= 1 then the problem:

⎧⎪⎨
⎪⎩

−�v = λeav + ev in R
2,

1

2π

∫
R2

(
λeav + ev)

dx = β (1.19)

admits a solution if and only if β ∈ I(a), where:

if 0 < a < 1 then I(a) =
(

max

{
4,

4(1 − a)

a

}
,

4

a

)
,
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if a > 1 then I(a) =
(

max

{
4

a
,

4(a − 1)

a

}
,4

)
.

Moreover, for any β ∈ I(a) problem (1.19) admits a unique radial solution about the origin, and any other
solution is obtained by a translation of the radial one.

Obviously the assumption a �= 1 is essential for the validity of (ii) in the above result. Indeed, for
N = 0 and a = 1, problem (1.19) reduces to the well-known Liouville equation, which is scale invariant
(no uniqueness) and, under (1.16), solvable only for β = 4, see [14,15].

When N > 0 and a = 1 then (1.15) becomes a particular case of the class of problems:

⎧⎪⎪⎨
⎪⎪⎩

−�v = K
(|x|)ev in R

2,

β = 1

2π

∫
R2

K
(|x|)ev dx (1.20)

which has attracted much attention in the context of the prescribed Gauss curvature problem in R
2

(see e.g. [18] and references therein).
According to our results, we have that,

Corollary 1.2. Let K (|x|) = 1 + |x|2N , N > 0; then problem (1.20) admits a radial solution if and only if
β ∈ (4 max {1, N},4(N + 1)). Moreover for such β ’s the corresponding radial solution is unique. Furthermore,
for 0 < N � 1 the interval above is optimal for the solvability of (1.20), among also non-radial functions.

To emphasize the subtle issues connected to such an existence and uniqueness result, let us
observe that if we choose instead the weight function K (|x|) = (1 + |x|2)N , then the nature of prob-
lem (1.20) changes dramatically, as N increases.

Indeed, the problem:

⎧⎪⎪⎨
⎪⎪⎩

−�v = (
1 + |x|2)N

ev in R
2,

1

2π

∫
R2

(
1 + |x|2)N

ev dx = β (1.21)

has been analyzed in [16] in connection with a “singular” mean field equation on the sphere S2 of
interest in the study of gauge field vortices (see [21] for details, and [6,17] for “sharp” symmetry
results).

When 0 < N � 1 or N > 1 and β ∈ (4N,4(N + 1)), then the existence and uniqueness properties
of (1.20) are unaffected by either choice of K (r) = 1 + r2N or K (r) = (1 + r2)N . Indeed according to a
result of C.S. Lin [18] the following holds:

Theorem 1.4. (See [18].) Assume that K = K (r) > 0 is a C1-function satisfying:

(a)
rK ′(r)
K (r)

is nondecreasing and not identically constant, (1.22)

(b) lim
r→+∞

rK ′(r)
K (r)

= 2N. (1.23)

If 0 < N � 1 then problem (1.20) admits a solution if and only if β ∈ (4,4(N + 1)). Moreover for each of
such β ’s, there exists a unique radial solution of (1.20). If N > 1 then (1.20) admits a unique radial solution,
for any β ∈ (4N,4(N + 1)).
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Such a result applies to our case (where K (r) = (1 + r2N )) and gives the statement of Corollary 1.2.
It was obtained in [18] by a clever use of Alexandroff–Bol’s inequality, as indicated for the first time
by Bandle in [5]. This approach however has no chance to be extended to the case 0 < a �= 1, con-
sidered here. In fact, to obtain Theorem 1.2 we have to device a suitable “comparison principle” (see
Proposition 2.1) that allows us to obtain the same information as those derived by Alexandroff–Bol’s
isoperimetric inequality for the case a = 1. In particular it allows us to provide an alternative proof of
Theorem 1.4, as shown in Section 3.

Obviously, Lin’s result also applies to the weight function K (r) = (1 + r2)N , and for N > 1 es-
tablishes a uniqueness result analogous to Corollary 1.2 when β ∈ (4N,4(N + 1)). But now, such an
interval is no longer the optimal interval for the existence (and uniqueness) of radial solutions.

Indeed, by summarizing the results in [16], one finds that, for N > 1 there exists a value βN ∈
(2(N + 1),4N) such that, for β ∈ (βN ,4N) problem (1.21) admits at least two radially symmetric
solutions (multiplicity). Actually for such β ’s the number of radial (and non-radial) solutions increases
as N increases, and an explicit bifurcation diagram can be obtained for the specific value β = 2(N +2).

So for N > 1 large, the nature of (1.21) is quite different from that described by Corollary 1.2
concerning problem (1.20) with K (|x|) = 1 + |x|2N , under exam here. Therefore, we’ll have to really
exploit the specific structure of (1.15), in order to establish Theorems 1.1 and 1.2.

The paper is organized as follows, in Section 2 we provide some preliminary information about
the solutions of (1.15)–(1.16). Section 3 is devoted to the proof of the theorems stated above. While in
Section 4 we carry out the construction of non-radial solutions and formulate some open questions
and their connections to problems treated in [6] and [16].

2. Preliminaries

In this section we collect some known properties about solutions of problem (1.15)–(1.16).
By taking into account the scaling properties in (1.9) and (1.12) we see that,

for a �= 1

N + 1
without loss of generality we can take λ = 1. (2.1)

Hence, for N > −1 and 0 < a �= 1/(N + 1), we consider

⎧⎪⎨
⎪⎩

−�u = eau + |x|2N eu in R
2,

1

2π

∫
R2

(
eau + |x|2N eu)

dx = β. (2.2)

By following the approach of [15], Chen, Guo and Sprin in [8] obtained the following:

Lemma 2.1. (See [8].) If u is a solution of (2.2) then:

(i)
∣∣u(x) + β ln

(|x| + 1
)∣∣ � C in R

2, (2.3)

(ii)
∫
R2

{
2

(
1

a
− 1

)
eau + 2N|x|2N eu

}
= πβ(β − 4). (2.4)

More precisely in [8] the authors were able to complete the information in (2.3) and give a more
accurate description about the asymptotic behavior of the solution as |x| → +∞. In particular,

u(x) = −β ln
(|x|) + O (1) as |x| → +∞ (

see [8]
);
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and by the integral condition in (2.2) we obtain that

β > max

{
2

a
,2(N + 1)

}
. (2.5)

Furthermore from (2.4) we easily deduce that,

• if a = 1/(N + 1) then

1

2π

∫
R2

(
eau + |x|2N eu)

dx = 4(N + 1); (2.6)

• if 0 < a �= 1/(N + 1) then:

1

2π

∫
R2

eau dx = βa

4
· 4(N + 1) − β

a(N + 1) − 1
, (2.7)

1

2π

∫
R2

|x|2N eu dx = βa

4
· β − 4/a

a(N + 1) − 1
. (2.8)

Consequently,

if 0 < a <
1

N + 1
then 4(N + 1) < β <

4

a
, (2.9)

if a >
1

N + 1
then

4

a
< β < 4(N + 1). (2.10)

We shall see that these bounds on β are actually “sharp” for the solvability of (3.2), if and only if
1

2(N+1)
< a �= 1

N+1 < 2
N+1 .

In the study of (2.2) it is useful to introduce the change of variable r = et with r = |x|, and so
consider the new unknown function,

v(t, θ) := u
(
et cos (θ), et sin (θ)

)
(2.11)

which satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(
∂2

tt v + ∂2
θθ v

) = exp(2t + av) + exp
(
2(N + 1)t + v

)
for t ∈ R, θ ∈ [−π,π ],

v(t, ·) is 2π-periodic ∀t ∈ R,

1

2π

2π∫
0

∫
R

(
exp(2t + av) + exp

(
2(N + 1)t + v

))
dt dθ = β.

(2.12)

In particular radial solutions of (2.2) can be described through the solutions v = v(t) of the boundary
value problem

{
vtt + exp(2t + av) + exp

(
2(N + 1)t + v

) = 0 for t ∈ R,
(2.13)
vt(−∞) = 0, vt(+∞) = −β.
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When a = 1/(N + 1) then β = 4(N + 1) (see (2.6)) and we can use the transformation: w(t) = v(t) +
2(N + 1)t to arrive at the autonomous problem

{
wtt + exp

(
w(t)/(N + 1)

) + exp
(

w(t)
) = 0 for t ∈ R,

wt(−∞) = 2(N + 1), wt(+∞) = −2(N + 1).
(2.14)

Thus, for the unique t̄: wt(t̄) = 0 we find (t̄ − t)wt(t) > 0 ∀t �= t̄ and w(t̄ + t) = w(t̄ − t). We can
use those properties together with the energy identity: w2

t /2 + (N + 1)exp(w/(N + 1)) + exp(w) =
2(N + 1)2, to obtain an explicit expression for w(t) in terms of suitable elliptic integrals. When N = 1
and a = 1/2, we can actually explicitly derive w(t). Thus, we leave to the reader to check that, after
some calculations, one obtains the following family of radial solutions:

u(x) = 2 ln

(
τ 2

1 + λ
8 |τ x|2 + 1

32 (1 + λ2

8 )|τ x|4
)

(2.15)

for the problem:

{
−�u = λeu/2 + |x|2eu in R

2,

λeu/2 + |x|2eu ∈ L1(
R

2).
Notice that (2.15) reduces to the well-known radial solution for the singular Liouville problem (1.10)
when λ = 0 and N = 1 (see [19]).

In order to identify the range of β ’s for which (2.13) is solvable, we point out the following modi-
fied versions of the “energy identity”.

Lemma 2.2. Let N > −1, 0 < a �= 1/(N + 1) and v be a solution of (2.13). There holds

(a)
d

dt

(
1

2
vt

(
vt + 4

a

)
+ 1

a
exp(2t + av) + exp

(
2(N + 1)t + v

))

= 2

a

(
(N + 1)a − 1

)
exp

(
2(N + 1)t + v

)
,

(b)
d

dt

(
1

2
vt

(
vt + 4(N + 1)

) + 1

a
exp(2t + av) + exp

(
2(N + 1)t + v

))

= −2

a

(
(N + 1)a − 1

)
exp(2t + av).

Proof. Multiplying the equation in (2.13) by vt we obtain:

d

dt

(
1

2
v2

t + 1

a
exp(2t + av) + exp

(
2(N + 1)t + v

))

= 2

a
exp(2t + av) + 2(N + 1)exp

(
2(N + 1)t + v

)
= −2

a
vtt + 2

(
(N + 1) − 1

a

)
exp

(
2(N + 1)t + v

)

from which we deduce (a).
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Similarly by observing that

2

a
exp(2t + av) + 2(N + 1)exp

(
2(N + 1)t + v

)
= −2(N + 1)vtt + 2

(
1

a
− (N + 1)

)
exp(2t + av)

we obtain (b). �
We have already noticed how, in the analysis of (2.13), we need to distinguish between the cases:

0 < a <
1

N + 1
or a >

1

N + 1
(N > −1).

As matter of fact, those describe two dual situations, and we can go from one to the other via trans-
formation:

v(t) → v̂(t) = av

(
t

N + 1
+ τ

)
+ ln (μ) (2.16)

with

τ = 1 − a

2((N + 1)a − 1)
ln

(
a

(N + 1)2

)
and μ =

(
a

(N + 1)2

) Na
(N+1)a−1

.

Indeed, it can be easily checked, that if v satisfies (2.13) then v̂ solves the analogous problem:

{
v̂tt + exp(2t + âv̂) + exp

(
2(N̂ + 1)t + v̂

) = 0 for t ∈ R,

v̂t(−∞) = 0, v̂t(+∞) = −β̂
(2.17)

with

â = 1

a
, N̂ = − N

N + 1
> −1 and β̂ = aβ

N + 1
. (2.18)

Moreover, the following transformation rules hold:

a = 1

N + 1
⇔ â = 1

N̂ + 1
,

0 < a <
1

N + 1
⇔ â >

1

N̂ + 1
,

(
a >

1

N + 1
⇔ 0 < â <

1

N̂ + 1

)
. (2.19)

For later use, let us observe also that:

1

N + 1
< a <

2

N + 1
⇔ 1

2(N̂ + 1)
< â <

1

N̂ + 1
,

a >
2

N + 1
⇔ 0 < â <

1
ˆ . (2.20)
2(N + 1)
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So, via the transformation (2.16)–(2.18), without loss of generality, we only have to account for the
case:

N > −1 and a >
1

N + 1
. (2.21)

We know that for a solution v of (2.13), its derivative vt decreases from 0 to −β . Consequently
by (2.5) and (2.10), there exist unique values t± = t±(v) such that

−∞ < t− < t+ < +∞ and v ′(t−) = −2

a
, v ′(t+) = −2(N + 1) and

Λ(v) =
{

t ∈ R: −2(N + 1) < v ′(t) < −2

a

}
= (

t−(v), t+(v)
)
. (2.22)

As a consequence of Lemma 2.2 we find:

Lemma 2.3. Assume (2.21) and let v be a solution of (2.13).

(a) If s ∈ R satisfies vt(s) > −2(N + 1) (i.e. s < t+(v)), then

1

2
vt(s)

(
vt(s) + 4

a

)
+ 1

a
exp

(
2s + av(s)

) + exp
(
2(N + 1)s + v(s)

)

<
2

a

(
(N + 1)a − 1

)exp(2(N + 1)s + v(s))

2(N + 1) + vt(s)
.

(b) If s ∈ R satisfies vt(s) < −2/a (i.e. s > t−(v)), then

1

2
vt(s)

(
vt(s) + 4(N + 1)

) + 1

a
exp

(
2s + av(s)

) + exp
(
2(N + 1)s + v(s)

) + 1

2
β
(
4(N + 1) − β

)
<

2

a

(
(N + 1)a − 1

)exp(2s + av(s))

|2 + avt(s)| .

Proof. We start to observe that, if vt(s) > −2(N + 1), then

s∫
−∞

exp
(
2(N + 1)t + v(t)

)
dt =

s∫
−∞

exp
((

2(N + 1) + vt(s)
)
t
)

exp
(

v(t) − vt(s)t
)

dt

< exp
(

v(s) − vt(s)s
) s∫
−∞

exp
((

2(N + 1) + vt(s)
)
t
)

dt

= exp(2(N + 1)s + v(s))

2(N + 1) + vt(s)
(2.23)

and the inequality above follows by observing that the function v(t) − vt(s)t attains its strict maxi-
mum value at t = s.

Similarly, if vt(s) < −2/a we find:
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+∞∫
s

exp
(
2t + av(t)

)
dt =

+∞∫
s

exp
((

2 + avt(s)
)
t
)

exp
(
a
(

v(t) − vt(s)t
))

dt

< exp
(
a
(

v(s) − vt(s)s
)) +∞∫

s

exp
((

2 + avt(s)
)
t
)

dt

= −exp(2s + av(s))

2 + avt(s)
= exp(2s + av(s))

|2 + avt(s)| . (2.24)

At this point, inequality (a) follows by integrating the identity (a) of Lemma 2.2 in (−∞, s] and by
using (2.23). While inequality (b) follows by integrating the identity (b) of Lemma 2.2 in [s,+∞) and
by using (2.24). �

From Lemma 2.3 we get:

Corollary 2.1. For any s ∈ Λ(v) we have:

β
(
4(N + 1) − β

)
<

2(vt(s))2((N + 1)a − 1)

|vt(s)|a − 2
. (2.25)

Proof. We obtain (2.25) by using together the inequalities (a) and (b) of Lemma 2.3.
Indeed, for s ∈ Λ(v), we can rewrite (a) equivalently as follows

1

2
vt(s)

(
avt(s) + 4

)(
2(N + 1) + vt(s)

) + (
2(N + 1) + vt(s)

)
exp

(
2s + av(s)

)
+ (

2 + avt(s)
)

exp
(
2(N + 1)s + v(s)

)
< 0. (2.26)

While (b) takes the form:

1

2
β
(
4(N + 1) − β

)(
2 + avt(s)

) + 1

2
vt(s)

(
vt(s) + 4(N + 1)

)(
2 + avt(s)

)
+ (

2(N + 1) + vt(s)
)

exp
(
2s + av(s)

) + (
2 + avt(s)

)
exp

(
2(N + 1)s + v(s)

)
> 0. (2.27)

So, for s ∈ Λ(v), we can subtract (2.26) from (2.27) to deduce

2
(

vt(s)
)2(

1 − a(N + 1)
)
< β

(
4(N + 1) − β

)(
2 + avt(s)

)
from which (2.25) easily follows. �
Corollary 2.2. Let N > −1.

(i) If a > 2
N+1 then β > 4(N + 1) − 4

a is a necessary condition for the solvability of (2.13).

(ii) If 0 < a < 1
2(N+1)

then β > 4
a − 4(N + 1) is a necessary condition for the solvability of (2.13).

Remark 2.1. Notice that 4(N + 1) − 4
a > 4

a ⇔ a > 2
N+1 ; and similarly 4

a − 4(N + 1) > 4(N + 1) ⇔ 0 <

a < 1
2(N+1)

. Therefore, at least in the radial case, the lower bounds on β provided by Corollary 2.2,
improve those in (2.9) and (2.10), and we can conclude the following:
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Corollary 2.3. Let N > −1.

(i) If a > 1
N+1 then a necessary condition for the solvability of (2.13) is that

β ∈ (
max

{
4/a,4(N + 1) − 4/a

}
,4(N + 1)

)
.

(ii) If 0 < a < 1
N+1 then a necessary condition for the solvability of (2.13) is that

β ∈ (
max

{
4(N + 1),4/a − 4(N + 1)

}
,4/a

)
.

Proof of Corollary 2.2. We start to establish (i). To this purpose we use (2.25), and in order to estimate
its right-hand side, we consider the function:

f (x) = 2
(
(N + 1)a − 1

) x2

ax − 2
, x ∈ (

2/a,2(N + 1)
)
.

We see that f attains its minimum value at x0 = 4/a; and for a > 2
N+1 we find that x0 = 4/a ∈

(2/a,2(N + 1)). Therefore, from (2.25), we obtain

β
(
4(N + 1) − β

)
< f (4/a) = (

(N + 1)a − 1
)(4

a

)2

. (2.28)

At this point we deduce (i) by using (2.28) together with the fact that β > 2(N + 1).
To obtain (ii) we use simply the duality (2.16)–(2.18). Namely, by (2.20) we can apply (i) to β in

order to check that (ii) holds for β̂ . Indeed, β̂ = aβ
N+1 > 4a − 4

N+1 = 4
â

− 4(N̂ + 1). �
The information of Corollary 2.2 will be crucial to establish Theorem 1.1. To proceed further, we

need to link the boundary value problem (2.13) to the Cauchy problem:

{
vtt(t) + exp

(
2t + av(t)

) + exp
(
2(N + 1)t + v(t)

) = 0 for t ∈ R,

lim
t→−∞ v(t) = α, lim

t→−∞ vt(t) = 0.
(2.29)

It is not difficult to check that ∀α ∈ R, problem (2.29) admits a unique solution vα globally defined,
and such that v ′

α := dvα
dt admits a finite limit as t → +∞, see [23] and [8] for details. So, vα also

satisfies (2.13) with suitable

β(α) := − lim
t→+∞ v ′

α(t). (2.30)

Clearly β(α) defines a smooth function of α. Similarly, it is not difficult to check that:

wα = ∂

∂α
(vα) (2.31)

is well defined and identifies an element of the kernel of the linearized operator around v = vα . In
other words, if we consider the problem

−wtt = (
a exp(2t + av) + exp

(
2(N + 1)t + v

)) · w for t ∈ R (2.32)

then wα satisfies (2.32) with v = vα , together with the boundary conditions:

lim w ′
α(t) = 0, lim w ′

α(t) = −β ′(α). (2.33)

t→−∞ t→+∞
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As expected, the linearized problem (2.32) will enter in a crucial way in the analysis of the uniqueness
issue. To this purpose, let

Q (t) = a exp
(
2t + av(t)

) + exp
(
2(N + 1)t + v(t)

)
. (2.34)

Then for v = vα and y(t) = w ′
α(t) we have:

d

dt

(
1

Q (t)
y′(t)

)
+ y(t) = 0 for t ∈ R, (2.35)

lim
t→−∞ y(t) = 0, lim

t→+∞ y(t) = −β ′(α). (2.36)

We shall control the “nodal” regions of y = y(t), by means of the following “comparison” principle.

Proposition 2.1. Let I := (a,b) ⊆ R, with −∞ � a < b � +∞, U (t) ∈ C1(I) with U > 0 in I , and V ∈ C(I).
Suppose that y(t) ∈ C2(I) satisfies

⎧⎪⎪⎨
⎪⎪⎩

d

dt

(
U (t)y′(t)

) + V (t)y(t) � 0 ∀t ∈ I,

lim
t→a+ y(t) = 0 = lim

t→b− y(t),

y(t) > 0 ∀t ∈ I.

If there exists a function z = z(t) ∈ C2(I) such that

⎧⎨
⎩

d

dt

(
U (t)z′(t)

) + V (t)z(t) � 0 ∀t ∈ I,

U (t)z′(t) ∈ L∞(I)

then one of the following holds:

(i) z(t) ≡ C y(t) ∀t ∈ I for a suitable constant C ∈ R.
(ii) ∃t0 ∈ I: z(t0) < 0.

Proof. Assume that z(t) � 0 for every t ∈ I , then we will prove that z(t) ≡ C y(t). Indeed, since
y(t) > 0 and z(t) � 0 for every t ∈ I , we have

d

dt

{
U (t)

(
z(t)y′(t) − y(t)z′(t)

)}
� 0 ∀t ∈ I; (2.37)

and

lim
t→a+ U (t)z′(t)y(t) = lim

t→b− U (t)z′(t)y(t) = 0. (2.38)

Furthermore, there exist a sequence {an}+∞
n=1 ⊂ I such that limn→∞ an = a and y′(an) > 0; and a se-

quence {bn}+∞
n=1 ⊂ I such that limn→∞ bn = b and y′(bn) < 0. Thus,

U (an)z(an)y′(an) � 0 and U (bn)z(bn)y′(bn) � 0. (2.39)

Plugging (2.39) into (2.38) we obtain
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lim
n→∞

U (an)
(
z(an)y′(an) − y(an)z′(an)

)
� 0 and

lim
n→∞ U (bn)

(
z(bn)y′(bn) − y(bn)z′(bn)

)
� 0. (2.40)

Therefore,

lim
n→∞

bn∫
an

d

dt

{
U (t)

(
z(t)y′(t) − y(t)z′(t)

)}
dt

= lim
n→∞

{
U (bn)

(
z(bn)y′(bn) − y(bn)z′(bn)

) − U (an)
(
z(an)y′(an) − y(an)z′(an)

)}
� lim

n→∞ U (bn)
(
z(bn)y′(bn) − y(bn)z′(bn)

) − lim
n→∞

U (an)
(
z(an)y′(an) − y(an)z′(an)

)
� 0. (2.41)

Thus, by (2.41) and (2.37) we conclude that

∫
I

d

dt

{
U (t)

(
z(t)y′(t) − y(t)z′(t)

)}
dt = 0. (2.42)

Using again (2.37), we deduce that the function U (t)(z(t)y′(t) − y(t)z′(t)) must be a constant, and by
(2.40), we find that necessarily,

U (t)
(
z(t)y′(t) − y(t)z′(t)

) ≡ 0, ∀t ∈ I. (2.43)

Since U (t) > 0 and y(t) > 0 for all t ∈ I we conclude:

d

dt

(
z(t)

y(t)

)
= 1

y2(t)

(
y(t)z′(t) − z(t)y′(t)

) ≡ 0 ∀t ∈ I,

and so, for a suitable constant C , z(t) ≡ C y(t) for all t ∈ I , as claimed. �
As an application of the above comparison principle, and to illustrate also the ideas of our unique-

ness result, we provide a crucial estimate that yields to an alternative proof of Lin’s uniqueness result,
as stated in Theorem 1.4. Radial solution of (1.20) corresponds (with the change of variable r = et ) to
solution of the problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−d2 v

dt2
(t) = G(t)exp

(
v(t)

)
for t ∈ R,

v ′(−∞) := lim
t→−∞ v ′(t) = 0,

dv
(+∞) := lim v ′(t) = −β,

(2.44)
dt t→+∞
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with G(t) = e2t K (et). We consider the following boundary value problem, related to the “linearization”
of (2.44):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−d2 w

dt2
(t) = (

G(t)exp
(

v(t)
))

w(t) for t ∈ R,

w ′(−∞) := lim
t→−∞ w ′(t) = 0,

dw

dt
(+∞) := lim

t→+∞ w ′(t) = 0.

(2.45)

By recalling (1.22) and (1.23) we give below an alternative proof of the crucial Lemma 3.3 in [18].
Such lemma was proved in [18] by means of an improved Alexandroff–Bol’s isoperimetric inequality,
valid for radial functions.

Proposition 2.2. Let G ∈ C2(R) be such that G(t) > 0 for every t ∈ R. Suppose that the function
F (t) := G ′(t)/G(t) is nondecreasing and satisfies F (−∞) := limt→−∞ F (t) = 2 and F (+∞) := limt→+∞ =
2(N + 1) for some N > 0. Let v be a solution to (2.44) and assume that (2.45) has a nontrivial solution w �= 0.
Then there exists t0 ∈ R such that w ′(t) �= 0 ∀t ∈ (−∞, t0), w ′(t0) = 0, and v ′(t0) < −4.

Proof. Let

Q (t) := G(t)exp
(

v(t)
)
> 0, ∀t ∈ R; (2.46)

so that Q (−∞) = Q (+∞) = 0 and (2.44) reads as follows:

⎧⎪⎪⎨
⎪⎪⎩

d2 v

dt2
(t) + Q (t) = 0 for t ∈ R,

v ′(−∞) = 0,

v ′(+∞) = −β.

(2.47)

Moreover, letting

Y (t) := w ′(t) ∀t ∈ R, (2.48)

from (2.45), we find:

d

dt

(
1

Q (t)

dY

dt
(t)

)
+ Y (t) = 0 for t ∈ R, Y (−∞) = 0, Y (+∞) = 0. (2.49)

Define

Z(t) := −4v ′(t) − (
v ′(t)

)2 = −v ′(t)
(

v ′(t) + 4
)
. (2.50)

By (2.47) we see that

dZ

dt
(t) := 2Q (t)

(
v ′(t) + 2

)
(2.51)

and consequently,

d

dt

(
1

Q (t)

dZ

dt
(t)

)
+ Z(t) = −2Q (t) − 4 · v ′(t) − (

v ′(t)
)2 := −D(t), (2.52)
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where

D(t) = 2G(t)exp
(

v(t)
) + 4 · v ′(t) + (

v ′(t)
)2 ∀t ∈ R and D(−∞) := lim

t→−∞ D(t) = 0.

(2.53)

Moreover, by straightforward calculations we find:

dD

dt
(t) = 2G(t)exp

(
v(t)

)( 1

G(t)

dG

dt
(t) − 2

)
= 2G(t)exp

(
v(t)

)(
F (t) − 2

)
� (�=)0 ∀t ∈ R,

(2.54)

since by assumption, G > 0 and F (t) := G ′(t)/G(t) � (�=)2. Recalling that D(−∞) = 0, we find:
D(t) � (�=)0 ∀t ∈ R, and from of (2.52), we conclude:

d

dt

(
1

Q (t)

dZ

dt
(t)

)
+ Z(t) � (�=)0 ∀t ∈ R. (2.55)

Next let X(t) := Q (t), ∀t ∈ R. We calculate:

d

dt

(
1

Q (t)

dX

dt
(t)

)
+ X(t)

= d

dt

(
1

G(t)exp(v(t))

(
G(t)exp

(
v(t)

) · dv

dt
(t) + dG

dt
(t) · exp

(
v(t)

)))
− d2 v

dt
(t)

= d

dt

(
1

G(t)

dG

dt
(t)

)
= F ′(t) � 0 ∀t ∈ R. (2.56)

Notice that F ′ cannot be identically zero, since, by assumption, the image of F must cover the interval
(2,2(N + 1)). Furthermore, X(t) > 0 for every t ∈ R and X(−∞) = X(+∞) = 0. So, we can apply
Proposition 2.1, first with I = R, y(t) = X(t) and z(t) = ±Y (t) to conclude that ∃t0 ∈ R: w ′(t) =
Y (t) �= 0, ∀t ∈ (−∞, t0) and w ′(t0) = Y (t0) = 0. At this point, we apply again Proposition 2.1, now
with I = (−∞, t0), y(t) = |Y (t)| and z(t) = Z(t) = −v ′(4 + v ′), and arrive at the desired conclusion
by observing that v ′ is negative and decreasing. �
3. The proofs

We shall focus first with the case

a >
1

N + 1
, N > −1 (3.1)

and by recalling (2.29) and (2.30), we denote by uα = uα(|x|) the unique radial solution satisfying:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�u = eau + |x|2N eu in R
2,

u(0) = max
R2

(u) = α,

1

2π

∫
R2

(
eau + |x|2N eu)

dx = β(α),

(3.2)

see [23]. Our first task will be to determine the limit values of β(α) as α → ±∞.
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First of all recall that, when (3.1) holds, then

β(α) ∈ (
max

{
4/a,4(N + 1) − 4/a

}
,4(N + 1)

)
, ∀α ∈ R (3.3)

(see Corollary 2.3).

Proposition 3.1. Assume (3.1), and let β(α) be defined in (3.2). We have:

lim
α→−∞β(α) = 4(N + 1), lim

α→+∞β(α) = max
{

4/a,4(N + 1) − 4/a
}
. (3.4)

Proof. We shall show that (3.4) holds along any sequence αn → ±∞. To this purpose, set un = uαn

and βn = β(αn).

Claim 1.

If αn → −∞ then βn → 4(N + 1). (3.5)

To establish the claim, let

τn = e− αn
2(N+1) → +∞ and vn(x) = un(τnx) − αn. (3.6)

Then vn defines a blow-down of un and satisfies:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�vn = e(a−1/(N+1))αn eavn + |x|2N evn in R
2,

vn(0) = max
R2

(vn) = 0,

1

2π

∫
R2

{
e(a−1/(N+1))αn eavn + |x|2N evn

}
dx = βn.

As in [7], we use well-known Harnack-type inequalities, (e.g. see [20, Corollary 5.2.9]) together with
elliptic estimates and a diagonalization process, in order to find a function V such that (along a
subsequence):

vn → V in C2,γ
loc

(
R

2)
and V satisfies:

⎧⎪⎨
⎪⎩

−�V = |x|2N eV in R
2,

V (0) = max
R2

(V ) = 0,

∫
R2

|x|2N eV dx < +∞. (3.7)

As already mentioned, solutions of (3.7) satisfy:
∫

R2 |x|2N exp(V )dx = 8π(N + 1) (cf. [19]). Conse-
quently, by Fatou’s Lemma and (3.3) we find:

4(N + 1) � lim
n→+∞

βn � lim
n→+∞βn � 4(N + 1)

and Claim 1 follows.
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Claim 2.

If αn → +∞ then βn → max
{

4/a,4(N + 1) − 4/a
}
. (3.8)

To establish Claim 2 we use a blow-up argument and let

σn = exp(−aαn/2) → 0 as n → +∞ and wn(x) = un(σnx) − αn.

Then wn satisfies: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�wn = eawn + e−((N+1)a−1)αn |x|2N ewn in R
2,

wn(0) = max
R2

(wn) = 0,

1

2π

∫
R2

{
eawn + e−((N+1)a−1)αn |x|2N ewn

}
dx = βn.

As above, we see that (along a subsequence),

wn → W in C2,γ
loc

(
R

2)
with W satisfying:

⎧⎪⎨
⎪⎩

−�W = eaW in R
2,

W (0) = max
R2

{W } = 0,

∫
R2

eaW dx < +∞.

In particular,
∫

R2 exp(aW ) = 8π/a (cf. [14,15]). By the uniform convergence of wn → W on compact
set, we obtain that:

for every ε > 0, there exist Rε � 1 and nε ∈ N:∫
{y∈R2: |y|�Rε}

{
eawn(y) + e−((N+1)a−1)αn · |y|2N ewn(y)

}
dy � 8π

a
− ε, ∀n � nε.

Equivalently, ∫
{x∈R2: |x|�σn Rε}

{
eaun(x) + |x|2N eun(x)}dx � 8π

a
− ε, ∀n � nε.

Argue by contradiction and, in account of (3.3), assume that (along a subsequence):

βn → β̄ > max
{

4/a,4(N + 1) − 4/a
}
. (3.9)

Observe that

sup
{x∈R2: |x|�σn Rε}

{
un(x) + 2

a
ln

(|x|)} � sup
{y∈R2: |y|�Rε}

{
wn(y) + 2

a
ln

(|y|)} � 2

a
ln(Rε)

and therefore,
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∫
{x∈R2: |x|�σn Rε}

|x|2N eun dx � R2/a
ε

∫
{x∈R2: |x|�σn Rε}

|x|2N−2/a dx

= πa

((N + 1)a − 1)
R2(N+1)

ε σ
2
a ((N+1)a−1)

n .

Thus, ∫
{x∈R2: |x|�σn Rε}

eaun dx � 8π

a
− ε − πa

((N + 1)a − 1)
R2(N+1)

ε σ
2
a ((N+1)a−1)

n .

By recalling (2.7), we obtain:

0 �
∫

{x∈R2: |x|�σn Rε}
eaun dx �

∫
R2

eaun dx − 8π

a
+ ε + πa

((N + 1)a − 1)
R2(N+1)

ε σ
2
a ((N+1)a−1)

n

= π

2
aβn · 4(N + 1) − βn

a(N + 1) − 1
− 8π

a
+ ε + πa

((N + 1)a − 1)
R2(N+1)

ε σ
2
a ((N+1)a−1)

n .

Hence, by passing to the limit first, as n → +∞, and then as ε → 0, we arrive at the desired contra-
diction as follows:

0 � π

2
aβ̄ · 4(N + 1) − β̄

a(N + 1) − 1
− 8π

a
= − πa

2(a(N + 1) − 1)

(
β̄ − 4

a

)(
β̄ −

(
4(N + 1) − 4

a

))
< 0.

Thus also Claim 2 is established. Since both Claim 1 and Claim 2 hold along any sequence, we con-
clude (3.4). �
Proof of Theorem 1.1 and Corollary 1.1. When a > 1/(N + 1), then the statement of Theorem 1.1 and
Corollary 1.1 readily follows by the continuity of β(α), Proposition 3.1 and Corollary 2.3.

When 0 < a < 1/(N + 1), then we use the duality properties (2.16)–(2.19), and apply the result
already established to â = 1/a > 1/(N̂ + 1) and β̂ = aβ/(N + 1), to deduce the desired statement
for β . �

Next we turn to analyze the uniqueness issue. The goal is to show that under the given assump-
tions, the function β(α) is strictly monotone decreasing. To this purpose, we need to locate the
possible zeros of β ′ .

By recalling (2.31), (2.32) and (2.33), we see that, if there exists ᾱ ∈ R: β ′(ᾱ) = 0, then w̄ =
∂vα
∂α |α=ᾱ will be a bounded solution of the linearized equation (2.32) with v = vᾱ . As a consequence,

Y (t) = w̄ ′(t) will define a nontrivial solution for the problem:⎧⎪⎨
⎪⎩

d

dt

(
1

Q (t)
Y ′(t)

)
+ Y (t) = 0 for t ∈ R,

Y (−∞) := lim
t→−∞ Y (t) = 0, Y (+∞) := lim

t→+∞ Y (t) = 0,
(3.10)

with

Q (t) = a exp
(
2t + av(t)

) + exp
(
2(N + 1)t + v(t)

)
, (3.11)

and v = vᾱ .
To show that this is impossible we start by showing the following:
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Proposition 3.2. Let v be a solution of (2.13) with a > 1/(N + 1), N > −1, and Y = Y (t) �= 0 satisfy (3.10),
with Q = Q (t) defined in (3.11). Then Y (t) cannot change sign in R.

Proof. We introduce the following notations:

A(t) := exp
(
2t + av(t)

)
and B(t) := exp

(
2(N + 1)t + v(t)

)
(3.12)

and consider the functions:

R(t) := −v ′(t)
(

4

a
+ v ′(t)

)
− 2(1 − a)A(t)

a
, (3.13)

Z(t) := −(
β + v ′(t)

)(
4(N + 1) + v ′(t) − β

) + 2(1 − a)B(t)

a
. (3.14)

Then, we can express (2.26) and (2.27) in terms of the functions R = R(t) and Z = Z(t) as follows:

∀s ∈ Λ(v) = {
s ∈ R: 2/a <

∣∣v ′(s)
∣∣ = −v ′(s) < 2(N + 1)

}
, there holds:

−R(s) + 2A(s) + 2

a

(2 + avt(s))

(2(N + 1) + vt(s))
B(s) � 0,

−Z(s) + 2
(2(N + 1) + vt(s))

(2 + avt(s))
A(s) + 2

a
B(s) � 0.

From the above inequality we deduce that:

∀s ∈ Λ(v) ⇒ −R(s)
(
2(N + 1) + vt(s)

) + Z(s)
(
2 + avt(s)

)
� 0 (3.15)

which imply in particular that R and Z cannot be simultaneously negative at a point s ∈ Λ(v).
Moreover, concerning R(t) and Z(t) we observe that, by straightforward calculation, the following

holds. Firstly,

dR

dt
(t) = 2Q (t)

(
v ′(t) + 2

a

)
, R(−∞) = lim

t→−∞ R(t) = 0,

R(+∞) = lim
t→+∞ R(t) = −β

(
β − 4

a

)
< 0 (3.16)

and

d

dt

(
1

Q (t)
R ′(t)

)
+ R(t) = −

(
2

a
A(t) + 2B(t) + v ′(t)

(
v ′(t) + 4

a

))
:= −Ψ (t).

Since Ψ (−∞) = limt→−∞ Ψ (t) = 0 and Ψ ′(t) = 4((N + 1) − 1/a)B(t) > 0, then Ψ (t) > 0 ∀t ∈ R and
consequently:

d

dt

(
1

Q (t)
R ′(t)

)
+ R(t) < 0, ∀t ∈ R. (3.17)

Furthermore, from (3.16), we check that R(t) changes sign exactly once, and more precisely, there
exists s0 ∈ R such that:

s0 > t− = t−(v): v ′(t−) = −2
and R(t) < 0 ⇔ t > s0. (3.18)
a
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Furthermore,

dZ

dt
(t) = 2

a
Q (t)

(
v ′(t) + 2(N + 1)

)
, Z(−∞) = −β

(
4(N + 1) − β

)
< 0, Z(+∞) = 0

(3.19)

and

d

dt

(
1

Q (t)
Z ′(t)

)
+ Z(t) = −

(
2

a
A(t) + 2B(t) + (

β + v ′(t)
)(

v ′(t) + 4(N + 1) − β
)) := −Φ(t).

Since Φ(+∞) = limt→+∞ Φ(t) = 0 and Φ ′(t) = −4((N + 1) − 1/a)A(t) < 0 we find that Φ(t) > 0
∀t ∈ R, and consequently:

d

dt

(
1

Q (t)
Z ′(t)

)
+ Z(t) < 0, ∀t ∈ R. (3.20)

Moreover, from (3.19), we see that

Z(t) > 0 ∀t > t+ = t+(v): v ′(t+) = −2(N + 1). (3.21)

Those information about R(t) and Z(t), allow us to show that Y (t) cannot change sign in R. Indeed,
if by contradiction we assume that there exist values t1 � t2 such that∣∣Y (t)

∣∣ > 0, ∀t ∈ (−∞, t1) ∪ (t2,+∞), and Y (t1) = Y (t2) = 0

then we can apply Proposition 2.1 in the interval I1 = (−∞, t1) with y(t) = |Y (t)| and z(t) = R(t) to
obtain s1 ∈ I1: R(s1) < 0. Thus from (3.18) we deduce:

t− < s1 < t1 and R(s) < 0, ∀s � s1. (3.22)

On the other hand, if we apply Proposition 2.1 in the interval I2 = (t2,+∞) with y(t) = |Y (t)| and
z(t) = Z(t), we find s2 ∈ I2: Z(s2) < 0. By (3.21) and (3.22) we have that t− < s1 < t1 � t2 < s2 < t+
and R(s2) < 0, Z(s2) < 0. In other words s2 ∈ (t−, t+) ≡ Λ(v) and both R and Z assume negative
values at s2, in contradiction with (3.15). So Y (t) cannot change sign, as claimed. �
Proposition 3.3. Let N � 0, a > 1/(N + 1) and v = v(t) be a solution of (2.13) such that

2N + (a − 1)β � 0. (3.23)

Then problem (3.10) with Q in (3.11) admits only the trivial solution Y (t) ≡ 0.

Proof. Let

τ = a(4(N + 1) − β)

4((N + 1)a − 1)
∈ (0,1),

and define:

X(t) = τ R(t) + (1 − τ )Z(t) + aβ(β − 4/a)(4(N + 1) − β)

4((N + 1)a − 1)
. (3.24)

In view of (3.16) and (3.19), we easily check that
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dX

dt
(t) = 2

a
Q (t)

(
τ
(
2 + av ′(t)

) + (1 − τ )
(
2(N + 1) + v ′(t)

))
,

X(−∞) = lim
t→−∞ X(t) = 0, X(+∞) = lim

t→+∞ X(t) = 0.

So X(t) admits exactly one critical point, say t0, is increasing in (−∞, t0) and decreasing in (t0,+∞).
In particular, X(t) > 0, ∀t ∈ R. Furthermore,

d

dt

(
1

Q (t)
X ′(t)

)
+ X(t) = −

(
2

a
A(t) + 2B(t) + v ′(t)

(
β + v ′(t)

)) := −Λ(t).

We check that assumption (3.23) implies that Λ(t) < 0, ∀t ∈ R. Indeed by straightforward calculations,
we find:

dΛ

dt
(t) = (

4(N + 1) − β
)

B(t) −
(

β − 4

a

)
A(t), Λ(−∞) = 0 = Λ(+∞).

So, if t̄ is a critical point of Λ then it satisfies:

(
4(N + 1) − β

)
B(t̄) =

(
β − 4

a

)
A(t̄) := c̄ > 0;

and

d2Λ

dt2
(t) = (

4(N + 1) − β
)

B(t)
(
2(N + 1) + v ′(t)

) −
(

β − 4

a

)
A(t)

(
2 + av ′(t)

)
= c̄

(
2N + (a − 1)

∣∣v ′(t)
∣∣).

Clearly (3.23) implies that d2Λ

dt2 (t̄) > 0. Indeed, this is obviously the case when a � 1 (the condition
a > 1/(N +1) rules out the possibility that simultaneously: a = 1 and N = 0). When 1/(N +1) < a < 1
then 2N + (a − 1)|v ′(t)| > 2N + (a − 1)β � 0.

Consequently, Λ can only admit a unique strict minimum and so Λ(t) < 0, ∀t ∈ R. In other words,
under the given assumption:

⎧⎨
⎩

d

dt

(
1

Q (t)
X ′(t)

)
+ X(t) > 0,

X(t) > 0, X(−∞) = 0 = X(+∞).

Thus, by virtue of Propositions 2.1 and 3.2, we conclude that problem (3.10) with Q (t) in (3.11) can
only admit the trivial solution Y (t) ≡ 0. �
Remark 3.1. We observe that if β satisfies (1.18), then (3.23) always holds when N > 0 and a � N+2

2(N+1)

or N = 0 and a > 1.

Proof of Theorems 1.2 and 1.3. Under the assumptions (i) of Theorem 1.2, we see by Remark 3.1,
that (3.23) holds. So, by recalling (2.32)–(2.36), we must have that necessarily β ′(α) �= 0 ∀t ∈ R, with
β(α) the (smooth) function defined in (3.2). Therefore, by virtue of Proposition 3.1, it follows that
β ′ < 0 and the function β(α) is strictly monotone decreasing in R. The desired conclusion in part (i)
of Theorem 1.2 then follows by the uniqueness of (3.2), and the fact that the range of the function
β(α) covers exactly once the range of β in (1.18).

In the exact same way, uniqueness follows when N = 0 and a > 1 (see Remark 3.1).
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Concerning part (ii) of Theorem 1.2, we see that the given assumptions on a imply that β0 := 2N
1−a

satisfies (1.18) and (3.23). In view of Proposition 3.3 this implies that the equation β(α) = β0 admits
a unique solution α0 ∈ R, and β(α) is strictly decreasing in the interval (α0,+∞). Then, as above, we
can assure the uniqueness of the radial solution of (2.2), for every β � β0 satisfying (1.18).

At this point, we can use the duality properties (2.17), (2.18) and (2.19) in order to establish part (i)
and part (ii) with 0 < a < 1, of Theorem 1.3. �

It is a challenging open problem to see whether the uniqueness of radial solutions remains valid
without the restriction β � 2N

1−a .

On the other hand, the value of β = 2N
1−a assumes a special role in the solvability of (2.13). This fact

emerged already in [8] (see Theorem 1.3). Indeed, in the following section we show that problem (2.2)
with β = 2N

1−a admits a one-parameter family of non-radial solutions bifurcating from the (unique)
radial one.

Proof of Theorem 1.4, i.e. Theorem 1.5 of [18]. In the radial setting, problem (1.20), (1.22) and (1.23),
reduces to problem (2.44) with G(t) = e2t K (et) satisfying the assumption of Proposition 2.2. Actually
Proposition 2.2 provides the crucial information, as it corresponds to Lemma 3.3 of [18]. At this point,
one arrives at the desired conclusion by following the arguments of [18]. �
4. Non-radial solutions

We are going to identify suitable pairs: (a, N) ∈ (0,1) × (1,+∞) such that problem (1.15) admits
non-radial solutions satisfying (1.16) with β = 2N

1−a .
To this purpose, let 0 < a < 1, and for every β0 ∈ I(a) := (max {4,4(1 − a)/a},4/a) denote by u0 =

u0(r) the unique radial solution for the problem:

⎧⎪⎨
⎪⎩

−�v = exp(av) + exp(v) in R
2,

1

2π

∫
R2

(
eav + ev)

dx = β0, (4.1)

see Theorems 1.2 and 1.3.
We use complex notation, and for x = (x1, x2) ∈ R

2 we set z = x1 + ix2 and u0 = u0(|z|).
Any other solution u of (4.1) must satisfy: u(z) = u0(|z + ξ |) with ξ ∈ C. For any m ∈ N, we

consider:

U (z) = u0
(∣∣zm+1 + ξ

∣∣), ξ ∈ C; (4.2)

then for ξ �= 0, U is not radially symmetric about any point and it satisfies:

⎧⎪⎪⎨
⎪⎪⎩

−�U = (m + 1)2|z|2m(
eaU + eU )

,

1

2π

∫
R2

(m + 1)2|z|2m(
eaU + eU ) = (m + 1)β0.

In turn, if we let

v(z) = U

(
z

|z|2
)

+ (m + 1)β0 ln

(
1

|z|
)
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then v can be extended smoothly at the origin, to satisfy:⎧⎪⎪⎨
⎪⎪⎩

−�v = (m + 1)2(|z|a(m+1)β0−2(m+2)eav + |z|(m+1)β0−2(m+2)ev)
,

1

2π
(m + 1)2

∫
R2

(|z|a(m+1)β0−2(m+2)eav + |z|(m+1)β0−2(m+2)ev) = (m + 1)β0.

For the particular choice of β0 = 2(m+2)
(m+1)a we obtain a (non-radial) solution for the problem:

⎧⎪⎪⎨
⎪⎪⎩

−�v = (m + 1)2(eav + |z|2N ev)
,

1

2π
(m + 1)2

∫
R2

(
eav + |z|2N ev) = 2N

1 − a
(4.3)

with

N = N(m,a) = (m + 2)(1 − a)

a
. (4.4)

Hence, for all possible choices of:

0 < a < 1 and m ∈ N:
2(m + 2)

(m + 1)a
∈ I(a) (4.5)

we obtain a 1-parameter family of non-radial solution of (4.3), with N > 0 given in (4.4). Notice
also that in this situation, the linearized problem around the unique radial solution (corresponding
to the choice ξ = 0 in (4.2)), admits a nontrivial kernel of bounded θ -depending functions given by:
u′

0(r) cos (θ) and u′
0(r) sin (θ).

Concerning the validity of (4.5), we see that it holds if

a = 1/2 and ∀m ∈ N, so that N = m + 2 ∈ N ∩ [3,+∞), (4.6)

0 < a < 1/2 and 1 � m <
2a

1 − 2a
, (4.7)

1/2 < a < 1 and 1 � m <
2(1 − a)

2a − 1
; (4.8)

and the conditions (4.7) and (4.8) are related via the transformation: a → (1 − a).
From a direct inspection of (4.7) and (4.8) we derive that: for 1/4 < a �= 1/2 < 3/4, there exists

ma ∈ N: ma = m1−a , ma → +∞ as a → 1/2, and (4.5) holds for every m ∈ {1, . . . ,ma}.
Consequently, for a = 1/2, problem (4.3) exhibits a symmetry breaking phenomenon for every

N ∈ N, N � 3; quite similar to what occurs for problem (1.10) when N ∈ N, see [19].
While for 1/4 < a �= 1/2 < 3/4, such a brake of symmetry can occur only for finite values of N

which are given by (4.4), with m = 1, . . . ,ma . Notice in particular that such “admissible” N ’s, are
always larger than 1, and can be made as close to 1 as wanted by letting a → 3/4.

This leads us to formulate the following conjecture:

if 0 < N � 1 or N > 0 and a � 1,

then every solution of problem (1.15) is radially symmetric about the origin. (4.9)

A positive answer to (4.9), would imply in particular that, for N > 0 and a � 1, the solvability of
problem (1.15)–(1.16) is fully described by Theorems 1.2 and 1.3.
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To support the above conjecture, let us consider the case a = 1 = N , given by the problem⎧⎪⎪⎨
⎪⎪⎩

−�v = (
1 + |z|2)ev in R

2,

1

2π

∫
R2

(
1 + |z|2)ev = β, (4.10)

with β ∈ (4,8). By direct calculations one can check that the function: u∗(x) = u∗(|x|) = ln(12/

(1 + |x|2)3) defines the unique radial solution of problem (4.10) with β = 6. A recent result of Ghous-
soub and Lin in [17], shows that indeed u∗ is the unique solution for (4.10), when β = 6. While in
[6] it is shown that there exists β0 ∈ (4,8) such that, for any β ∈ (β0,8) problem (4.10) admits only
radially symmetric solutions.
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