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a b s t r a c t

Spermatogonial stem cells (SSCs) must balance self-renewal with production of transit-amplifying pro-
genitors that differentiate in response to retinoic acid (RA) before entering meiosis. This self-renewal vs.
differentiation spermatogonial fate decision is critical for maintaining tissue homeostasis, as imbalances
cause spermatogenesis defects that can lead to human testicular cancer or infertility. A great deal of
effort has been exerted to understand how the SSC population is maintained. In contrast, little is known
about the essential program of differentiation initiated by retinoic acid (RA) that precedes meiosis, and
the pathways and proteins involved are poorly defined. We recently reported a novel role for RA in
stimulating the PI3/AKT/mTOR kinase signaling pathway to activate translation of repressed mRNAs such
as Kit. Here, we examined the requirement for mTOR complex 1 (mTORC1) in mediating the RA signal to
direct spermatogonial differentiation in the neonatal testis. We found that in vivo inhibition of mTORC1
by rapamycin blocked spermatogonial differentiation, which led to an accumulation of undifferentiated
spermatogonia. In addition, rapamycin also blocked the RA-induced translational activation of mRNAs
encoding KIT, SOHLH1, and SOHLH2 without affecting expression of STRA8. These findings highlight dual
roles for RA in germ cell development – transcriptional activation of genes, and kinase signaling to sti-
mulate translation of repressed messages required for spermatogonial differentiation.

& 2015 Elsevier Inc. All rights reserved.
1. Introduction

Retinoic acid (RA) is required for inducing both spermatogonial
differentiation and subsequent entry into meiosis (Bowles et al.,
2006; Koubova et al., 2006). After birth in the mouse, subsets of
spermatogonia begin to differentiate in response to RA at �P3-4,
as indicated by their expression of STRA8 and KIT (Busada et al.,
2014; Niedenberger et al., 2015; Snyder et al., 2010; Zhou et al.,
2008). However, germ cells do not enter meiosis in response to RA
until �P10 (Hogarth and Griswold, 2013). This reveals that the
processes of differentiation and meiotic entry are temporally se-
parated by �7 days in the neonate (which lengthens to 8.6 days in
the adult). It has been proposed that the reduced time in the
neonate may be because some of the steps are skipped or because
cell proliferation is accelerated by the increased temperature at
which spermatogenesis proceeds in the neonate (37°C in neonates
at East Carolina University,
versus 33°C in adults) (Kluin et al., 1982). During this approxi-
mately week-long differentiation period, type A1 spermatogonia
successively become type A2, A3, A4, In, and B before entering
meiosis as preleptotene spermatocytes (de Rooij, 2001; de Rooij
and Griswold, 2000; Kluin et al., 1984). Spermatogonia apparently
cannot be induced to precociously enter meiosis in response to
exogenous RA (Busada et al., 2014; Niedenberger et al., 2015; Endo
et al., 2015), which implies that these sequential spermatogonial
divisions are required. However, little is known about the cellular
processes that must occur or the molecular pathways that regulate
them in differentiating spermatogonia prior to meiotic initiation. A
primary reason for this lack of knowledge is that there are few
changes in steady-state mRNA levels during differentiation (Chan
et al., 2014; Shima et al., 2004; Zhou et al., 2008). Without dra-
matic changes in the transcriptome, scientists have lacked iden-
tified targets (pathways, proteins) for focused studies.

A number of recent genome-wide studies have revealed that
the transcriptome imperfectly predicts the proteome (estimates
range from �40% to 80% agreement) (Li et al., 2014; Schwan-
hausser et al., 2011; Vogel and Marcotte, 2012), and there is likely
to be considerable variation in this level of disconnect in different
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cell types and under different conditions. Our previous studies
suggest that a majority of gene expression changes required for
spermatogonial differentiation occur at the posttranscriptional
level (Busada et al., 2015; Chappell et al., 2013). We previously
showed that RA treatment leads to increased phosphorylation of
the master regulatory kinase mammalian target of rapamycin
(mTOR) (Busada et al., 2015), indicating it is activated in differ-
entiating spermatogonia. This is accompanied by enhanced
translation of repressed Kit mRNAs through activation of the PI3K/
PDPK1 (also termed PDK1)/AKT signaling network (Busada et al.,
2015; Hermann et al., 2015). MTOR exists in functionally distinct
protein complexes (mTORC1 and mTORC2), which integrate nu-
merous cues to regulate, in broad terms, cellular growth and dif-
ferentiation (mTORC1) or the actin cytoskeleton and insulin sig-
naling (mTORC2) (reviewed by (Fingar and Blenis, 2004; Hay and
Sonenberg, 2004; Laplante and Sabatini, 2012; Li et al., 2014;
Wullschleger et al., 2006)). A primary role of mTORC1 is to reg-
ulate cap-dependent mRNA translation initiation, which is the rate
limiting and regulated step of eukaryotic protein synthesis.
MTORC1 performs this function in part by phosphorylating
downstream targets EIF4EBP1 and RPS6KB1/2 (also termed
p70S6K). Enhanced phosphorylation of EIF4EBP1 by activated
mTOR releases EIF4E to associate with the 5’-cap of mRNAs, thus
allowing recruitment of translationally controlled mRNAs to ri-
bosomes, particularly during germ cell differentiation in lower
organisms (Dinkova et al., 2005; Henderson et al., 2009; Kimble
and Crittenden, 2007; Mendez and Richter, 2001; Song et al.,
2010). Activated RPS6KB1/2 phosphorylates the 40S ribosomal
subunit RPS6, leading to activation of ribosomes and enhanced
mRNA translation. This activity is essential for the translational
control of the TOP mRNAs, which have 5′ oligopyrimidine tracts,
are activated by changes in cellular metabolism, and often encode
components of the translational machinery (Hamilton et al., 2006;
Meyuhas and Kahan, 2014).

The mTOR complexes differ in their sensitivity to rapamycin, a
macrolide antifungal compound originally isolated from the soil
bacterium Streptomyces hygroscopicus that has an expanding
number of clinical uses. Rapamycin acutely inhibits mTORC1 ac-
tivity, but has also been shown to inhibit mTORC2 in some con-
texts following prolonged exposure (Laplante and Sabatini, 2012;
Brown et al., 1994; Sabatini et al., 1994). The effects of rapamycin
vary significantly depending on the cell type involved. Some cell
types appear to be quite rapamycin-insensitive, while others slow
or cease proliferating, fail to differentiate, and/or undergo apop-
tosis (Laplante and Sabatini, 2012; Li et al., 2014; Shimobayashi
and Hall, 2014). This has been suggested to be due in part to dif-
ferential effects on downstream substrates such as EIF4EBP1 and/
or RPS6KB1/2 (Choo et al., 2008). Rapamycin can be administered
in vivo, and actually extends the lifespan of lower organisms and
mice ((Harrison et al., 2009; Anisimov et al., 2011), reviewed in Li
et al., 2014). In addition, studies have suggested a link between
mTORC1 and spermatogonial cell fate regulation both in vitro and
in vivo (Busada et al., 2015; Chappell et al., 2013; Feng et al., 2000;
Hobbs et al., 2015; Hobbs et al., 2010; Kofman et al., 2013).

Studying the effects of mTORC1 inhibition by rapamycin has
direct relevance for human male reproductive health. Rapamycin
analogs (Sirolimus and Everolimus) are currently used to reduce
cellular proliferation as part of immunosuppressive and che-
motherapeutic regimens given to organ transplant, cardiology, and
cancer patients (Laplante and Sabatini, 2012; Li et al., 2014; Ash-
worth and Wu, 2014; de Pablo et al., 2013; Eyre et al., 2014;
Ganschow et al., 2014; Ng et al., 2014; Peddi et al., 2013). These
drugs can cause reversible human male infertility with unclear
etiology (Boobes et al., 2010; Framarino-dei-Malatesta et al., 2013;
Huyghe et al., 2007; Zaza et al., 2013; Zuber et al., 2008). Specifi-
cally, rapamycin analog treatments caused a block in
spermatogonial differentiation in a human patient (Deutsch et al.,
2007) as well as in a study using rats, although no detailed ana-
lyses were performed (Chen et al., 2013). Both treated humans and
rats exhibit reduced testosterone (T) levels due to inhibition of the
hypothalamic–pituitary–gonadal axis. However, this may not
cause a defect in spermatogonial differentiation, but rather in
progression through meiosis, at least in rodents (Walker, 2011).
Infertility is a significant quality of life concern for reproductive-
aged male organ transplant and cancer patients, and to-date no
comprehensive studies have explored the mechanism of action of
mTOR inhibition during spermatogenesis.

Here, we examine the effects of rapamycin-mediated mTORC1
inactivation on spermatogonial differentiation in vivo in the
mouse. Our results reveal that mTORC1 activation is dispensable
for the maintenance of undifferentiated spermatogonia, but that it
is required for spermatogonial proliferation and differentiation
prior to meiotic initiation. In addition, we find that rapamycin
inhibition of mTORC1 blocks the RA-induced translation of re-
pressed mRNAs encoding KIT, SOHLH1, and SOHLH2, which are
essential regulators of spermatogonial differentiation. However,
rapamycin treatment did not block the expression of STRA8, a
direct transcriptional target of RA. This reveals that spermatogonia
exhibit dual responses to RA in the form of transcriptional acti-
vation and kinase signaling-enhanced translation of repressed
mRNAs. In addition, these results provide critical insight into the
male infertility that can result as an adverse side effect of the
clinical use of rapamycin analogs.
2. Results

2.1. Rapamycin treatment reduces testicular size and arrests germ
cell development

Our previous study revealed that RA activated the PI3K/AKT
kinase signaling network in differentiating spermatogonia (Busada
et al., 2015). This also resulted in phosphorylation (implying acti-
vation) of mTOR, which acts in mTORC1 to direct cellular growth,
proliferation, and differentiation (reviewed in Laplante and Saba-
tini, 2012). Here, we addressed the requirement for mTORC1 in
spermatogonial differentiation in vivo by feeding vehicle alone or
rapamycin to neonatal mice once daily beginning at P1, which is
2–3 days prior to the onset of normal differentiation. Mice were
then euthanized at P4 and P8 (Fig. 1A), and testes were harvested
for various analyses. Although animals appeared healthy, there
was a significant decrease in body weight and testis size and
weight in response to rapamycin treatment at both P4 and at P8
(Fig. 1C and D). Testis weights were normalized to total body
weight and there were 26% and 31% decreases at P4 and P8, re-
spectively (Fig. 1E). Since reduced testis weight often results from
reduced cellularity, we examined Bouin's-fixed testis sections
stained with H&E from vehicle- and rapamycin-treated mice. Germ
cell types in the neonatal testis are readily distinguished based on
their characteristic size, location, and nuclear morphology (Kluin
et al., 1984; Drumond et al., 2011; Kluin and de Rooij, 1981). Ve-
hicle-treated control testes from P4 and P8 mice had the germ
cells at the expected stages of development (Fig. 1G and I) (de
Rooij, 2001; Drumond et al., 2011; de Rooij, 1998; De Rooij and Lok,
1987). At P8, there were abundant spermatogonia and pre-
leptotene spermatocytes and a small number of meiotic leptotene
spermatocytes. In contrast, rapamycin-treated P8 testes had sig-
nificantly reduced testis cord diameters (Fig. 1F) and many fewer
germ cells, with the most advanced stage resembling un-
differentiated spermatogonia (Fig. 1H and I).



Fig. 1. MTORC1 inhibition blocks spermatogonial differentiation. (A) Experimental design for treating mice with rapamycin in vivo. Mice were treated with vehicle or
rapamycin once daily starting at P1 and euthanized 24 h after last treatment at P4 or P8. (B) Representative images of testes from vehicle (left) and rapamycin (right) treated
mice euthanized at P4 (top) and P8 (bottom). (C–E) Mice treated with vehicle or rapamycin were euthanized at P4 or P8. Prior to euthanasia total body weights were
collected (C), following euthanasia total testis weights were collected (D). Testis weights were normalized to body weights and expressed as a ratio (E). (F) Quantitation of
testis cord diameter of mice treated with vehicle or rapamycin and euthanized at P4 or P8. (G–J) H&E staining of mice treated with vehicle (G and I) or rapamycin (H and J)
and euthanized at P4 (G and H) or P8 (I and J). Yellow arrows indicate spermatogonia, and green and orange lines encircle preleptotene and leptotene spermatocytes,
respectively (I). Scale bar¼40 μM. Asterisks indicate statistical significance with Po0.01.
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2.2. Rapamycin inhibits mTORC1 activity in spermatogonia

Before carefully examining the phenotype of rapamycin-treated
testes, we verified that rapamycin treatment inhibited mTORC1
activity as expected. We examined the phosphorylation of mTOR as
well as RPS6, which is an indirect target downstream of activated
mTORC1. There was a near-complete loss of p-mTOR and p-RPS6 in
response to rapamycin (Fig. 2A–D). We recently reported that RA
caused a dramatic nuclear-to-cytoplasmic relocalization of FOXO1
(Busada et al., 2015), which is indicative of AKT activation (Brunet
et al., 1999; Goertz et al., 2011). Since this signaling step is generally
upstream of mTOR phosphorylation, we hypothesized that rapa-
mycin inhibition would not alter FOXO1 localization. Indeed, there
was no appreciable difference in the ratios of cytoplasmic: nuclear
FOXO1 in vehicle- or rapamycin-treated germ cells (Fig. 2E and F).
Therefore, we conclude that rapamycin treatment inhibited
mTORC1 activation in spermatogonia without affecting upstream
activation of signaling components such as AKT, which implies that
mTORC2 signaling was not perturbed.

2.3. Undifferentiated spermatogonia accumulate in rapamycin-
treated testes

Rapamycin treatment from P1 to P4 and P1 to P8 resulted in an
apparent reduction in germ cells (Fig. 1H and J). We quantified this
in vehicle- and rapamycin-treated mice by immunostaining for
DDX4, a pan germ cell marker in the neonatal testis. There were
reduced numbers of DDX4þ germ cells at P4 (�1.6370.03-fold)
and P8 (�2.7470.04-fold) (Fig. 3A–D, M and N). The decreased
number of germ cells could result from a rapamycin-induced



Fig. 2. Treatment with rapamycin inhibits mTORC1 activity without affecting AKT. (A–F) Immunostaining of testis sections from mice treated with vehicle (A, C, and E) or
rapamycin (B, D, and F) and euthanized at P4. Sections were stained with anti-phosphorylated RPS6 (A and B), anti-phosphorylated EIF4EBP1 (C and D), or total FOXO1 (E and
F). F-actin was stained with phalloidin (red) to visualize testis cords. Scale bar¼50 μM.

J.T. Busada et al. / Developmental Biology 407 (2015) 90–102 93
increase in apoptosis, although we did not see evidence for this in
H&E-stained sections (Fig. 1G–J, data not shown). We nonetheless
assessed this possibility by immunostaining for cleaved PARP1, an
accepted marker for apoptotic cells. As expected, there was no
significant increase in cleaved-PARP1þ cells in rapamycin-treated
testes at P4 or P8 (P1-4 vehicle-treated¼0.1770.06 cleaved-
PARP1þ cells/testis cord, P1-4 rapamycin-treated¼0.1370.06
cleaved-PARP1þ cells/testis cord, Fig. 3E–H), indicating that
apoptosis was not responsible for the reduced germ cell numbers.
We next assessed whether there was a reduction in germ cell
proliferation in response to rapamycin. We first immunostained
using an antibody against MKI67, which marks actively pro-
liferating cells in all stages of the cell cycle except in G0 (Gerdes
et al., 1983; Lopez et al., 1991). There was no difference in MKI67
staining at P4 in response to rapamycin treatment. However, there
were significantly fewer MKI67þ/DDX4þ cells at P8 in rapamycin
treated testes. (�1.8570.37-fold, Fig. S1A–E). We next injected
vehicle- and rapamycin-treated mice with BrdU 10 h prior to eu-
thanasia on P4 and P8. There were E1.9-fold fewer BrdUþ germ
cells in response to rapamycin at P4 and P8 (Fig. 3I–L, O and P). We
also assessed effects of rapamycin on Sertoli cell numbers by im-
munostaining for the Sertoli cell marker GATA4, and found that



Fig. 3. MTORC1 is required for postnatal expansion of the germ cell population. (A–L) Immunostaining of testis sections frommice treated with vehicle (A, C, E, G, I, and K) or
rapamycin (B, D, F, H, J, and L) and euthanized at P4 (A, B, E, F, I, and J) or P8 (C, D, G, H, K, and L). Sections were stained with anti-DDX4 (A–D), anti-cleaved PARP1 (E–H), or
double labeled with anti-BrdU (green, I–L) and anti-DDX4 (red, I–L). F-actin was stained with phalloidin (red, A–D or blue, E–H). Quantitation of the number of DDX4þ (M
and N) or the number of BrdUþ/DDX4þ (O and P) cells from testes treated starting at P1 with vehicle or rapamycin and then euthanized at P4 (M and O) or at P8 (N and P).
Asterisks indicate statistical significance with Pr0.01. Scale bar¼50 μM.
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there was no appreciable change at P4 (P1-4 vehicle¼18.370.6
GATA4þ cells/testis cord, P1-4 rap-treated¼19.6773.3 GATA4þ
cells/testis cord) or P8 (P1-8 vehicle¼18.874.0 GATA4þ cells/
testis cord, P1-8 rap-treated¼17.1715.5 GATA4þ cells/testis cord,
Fig. S2). Therefore, we conclude that rapamycin inhibited germ cell
proliferation without increasing apoptosis or changing Sertoli cell
numbers.
We next tested whether mTORC1 inhibition by rapamycin
prevented the normal differentiation of spermatogonia. Based on
the apparent accumulation of undifferentiated spermatogonia at
P4 and P8 in response to rapamycin (Fig. 1G–J), it appeared that
spermatogonial differentiation was blocked by rapamycin treat-
ment. We assessed whether spermatogonia upregulated markers
of differentiation (KIT, SOHLH1, and SOHLH2) in the absence of



Fig. 4. MTOR activation is required for induction of SOHLH1, SOHLH2, and KIT protein. Immunostaining of mice treated with vehicle (A, C, and E) or rapamycin (B, D, and F)
and euthanized at P4. Sections were stained with anti-SOHLH1 (A and B), anti-SOHLH2 (C and D), or anti-KIT (E and F). Phalloidin (red) was added to visualize testis cords.
Scale bar¼50 μM.
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mTORC1 function. Each marker was readily detectable in sper-
matogonia in vehicle-treated testes at P4 (Fig. 4A, C, and E). In
contrast, KIT, SOHLH1, and SOHLH2 were barely detectable in a
few spermatogonia in rapamycin-treated testes (Fig. 4B, D, and F).
The absence of differentiation markers suggests that the germ cells
remained in an undifferentiated state in the absence of mTORC1
activity. We tested this by immunostaining for GFRA1, an estab-
lished marker of undifferentiated spermatogonia, which together
with RET forms the receptor for GDNF (Kubota et al., 2004; Meng
et al., 2000). We found that at P8 66% of DDX4þ spermatogonia
were GFRA1þ in response to rapamycin, which represented a 5.1-
fold increase over vehicle-treated controls (Fig. 5A–C). We further
explored this using a recently created transgenic mouse line, in
which the spermatogonial stem cell (SSC) population is marked by
the expression of eGFP under the control of the Id4 promoter
(Chan et al., 2014). Recent work has demonstrated that SSC activity
resides within the Id4-GFPþ cell population (Chan et al., 2014). To
test if treatment with rapamycin affects formation or size of the
SSC population, we treated Id4-GFP pups with vehicle or rapa-
mycin from P1 through P7 and euthanized them on P8. The results
demonstrated that 19% of the total germ cell population was GFP-
bright in both the vehicle- and rapamycin-treated testes (Fig. 5D–



Fig. 5. Inhibiting mTORC1 activation increases the number of undifferentiated spermatogonia. (A, B, D, and E) Immunostaining was performed on testis sections from mice
treated with vehicle (A and D) or rapamycin (B and E) and euthanized at P8. (A–C) Testis sections from CD-1 mice were stained with anti-GFRA1 (green, A and B) and F-actin
was stained with phalloidin (blue) to visualize testis cords. The number of GFRA1þ germ cells in vehicle- and rapamycin-treated testes were quantitated and reported as a
fold change (C). (D–F) Transgenic Id4-GFP mice were treated with vehicle or rapamycin, and immunostaining was performed on testes. Green represents GFP epifluoresence,
and sections were labeled with anti-DDX4 (red). White arrows indicate GFP bright spermatogonia (D and E). The number of GFP bright cells were quantitated and re-
presented as a percentage of the DDX4þ cells (C). Scale bar¼40 μM. Asterisks indicate statistical significance with Po0.01.
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F), indicating that the size of the SSC pool was not affected by
mTORC1 inhibition.

2.4. Rapamycin blocks RA-enhanced translation of repressed mRNAs

Finally, we investigated how KIT, SOHLH1, and SOHLH2 protein
levels were dramatically reduced following inhibition of mTORC1.
We previously found that mRNAs for Kit, Sohlh1, and Sohlh2 be-
came associated with heavy polysomes at P4 (Chappell et al.,
2013), which coincided with the appearance of detectable protein.
In a separate study, we reported that RA activated translation of
repressed Kit mRNAs during differentiation by inducing heavy
polysome occupancy without a dramatic increase in their abun-
dance (Busada et al., 2015). We therefore examined whether
Sohlh1 and Sohlh2 mRNAs were regulated similarly in response to
RA. In response to RA, both SOHLH1 and SOHLH2 protein levels
increased dramatically (Fig. 6A–D), and as previously shown, RA
treatment also induced Kit translation (Fig. S3 A and B, (Busada
et al., 2014, 2015)). This increase in protein was not accompanied
by an increase in steady-state mRNA levels (Fig. 6E and F). We then
performed polysome gradient analysis to test whether RA induced
Sohlh1 and Sohlh2 mRNA heavy polysome occupancy for efficient
translation, as we recently showed for Kit (Busada et al., 2015).
Polysome gradients allow for the fractionation of mRNAs based on
their association with ribonucleoprotein particles (RNPs), ribo-
some subunits, and light and heavy polysomes. The identification
of specific mRNAs within sedimenting fractions reflects their
translational efficiency, with those in heavy polysomes being most
efficiently translated (reviewed in (Masek et al., 2011)). We pooled
heavy polysome fractions in testes from vehicle- and RA-treated
mice and discovered that Sohlh1, Sohlh2, and Kit mRNAs became
enriched in heavy polysomes in response to RA (Fig. 6E and F and
Fig. S3C). We conclude that, like Kit, Sohlh1 and Sohlh2 mRNAs are
not efficiently translated in undifferentiated spermatogonia, and
become activated at the level of translation in response to RA.

We next examined whether rapamycin treatment would inhibit
this RA-induced translational activation. We utilized P4 rapamy-
cin-treated testis, as they contained more similar numbers of germ
cells to vehicle-treated controls than at P8 (Fig. 3A–D). In response
to rapamycin, there was a small but statistically significant de-
crease in steady-state mRNA levels for Sohlh1, Sohlh2, and Kit
(Fig. 7A), which corresponded closely with the decrease in the
germ cell population at P4 (Fig. 3A and B). We found that rapa-
mycin treatment caused a significant decrease in polysome occu-
pancy for each of these mRNAs in comparison with vehicle-treated
controls (Fig. 6A).

Lastly, because rapamycin treatment could affect other cells in
the testis and reduce endogenous RA levels, we tested whether
exogenous RA could induce STRA8 a known transcriptional target
required for meiotic initiation (Busada et al., 2014; Zhou et al.,
2008; Anderson et al., 2008; Griswold et al., 2012; Mark et al.,
2008), in testes of rapamycin-treated mice. We assessed this using
testes from mice euthanized at P4 following treatment with ve-
hicle or rapamycin from P1-4 and injected with RA at P3 (Fig. 7B).



Fig. 6. RA induces expression of SOHLH1 and SOHLH2 protein. (A–D) Immunostaining of testis sections from mice treated at P1 with vehicle (A and C) or RA (B and D) and
euthanized 24 h later (at P2). Sections were stained with anti-SOHLH1 (A and B) or anti-SOHLH2 (C and D), and F-actin was stained with phalloidin (red) to visualize testis
cords. QRT-PCR was performed on RNA isolated from whole testis lysate of mice treated with vehicle or RA, and total Sohlh1 and Sohlh2 mRNA levels were measured (left
side, E and F). Messenger RNAs were separated by ribosome occupancy, fractions containing heavy polysomes were pooled, and qRT-PCR was performed to quantify
polysome-associated Sohlh1 and Sohlh2 (right side, E and F). Scale bar¼30 μM. Asterisks indicate statistical significance with Po0.01.
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We found that RA induced STRA8 and KIT in vehicle-treated con-
trol testes, as expected (Fig. 7C). In rapamycin-treated testes, KIT
was not induced, as shown above (Fig. 4F and Fig. 7D). However,
STRA8 was induced in response to RA. As expected, exogenous RA
treatment induced Stra8 mRNA in rapamycin-treated testes (Fig.
S3D). This indicates that RA activates expression of STRA8 and KIT
in spermatogonia through distinct mechanisms (mTORC1-in-
dependent for STRA8, mTORC1-dependent for KIT). Taken to-
gether, results from the current study indicate that mTORC1 acti-
vation is a critical step downstream of RA in the translational ac-
tivation of essential regulators of spermatogonial differentiation
such as KIT, SOHLH1, and SOHLH2.
3. Discussion

3.1. Summary

Here, we show that inhibition of mTORC1 activity in the testis
by rapamycin has profound effects on spermatogonial develop-
ment. Rapamycin inhibited spermatogonial proliferation and dif-
ferentiation, which reduced the germ cell population overall, but
increased the percentage of undifferentiated spermatogonia
(GFRA1þ) and did not affect the SSC pool (Id4-GFP bright cells). At
the molecular level, we found that rapamycin changed the sper-
matogonial response to RA. While Stra8 mRNA and protein were
still induced in rapamycin-treated testes in response to RA, the
enhanced translation of Sohlh1, Sohlh2, and Kit mRNAs was
blocked. This supports the concept that RA exerts dual roles in the
activation of transcription and translation in spermatogonia, and
that blocking mTORC1 activation can functionally decouple these
actions. Altogether, our results reveal an essential role for mTORC1
activation in RA induced enhanced translation of genes required
for spermatogonia proliferation and differentiation, and provide
insight into the male infertility phenotype observed following
administration of rapamycin to both rodents and humans.

3.2. The diverse effects of rapamycin in various cell types

Rapamycin has wide-ranging cell- and tissue-specific effects. In
animal models, rapamycin can exert a variety of positive con-
sequences including lifespan extension, reduction of cancer pro-
gression, improved organ transplant retention, neuroprotection
from damage caused by diseases such as Alzheimer's, Hunting-
ton's, and Parkinson's, and suppression of high fat diet-induced
obesity (reviewed in Li et al., 2014). These diverse outcomes
highlight the observations from many laboratories that the mole-
cular signaling through mTORC1 varies in a cell-dependent con-
text. In particular, mTORC1 inhibition can alternatively lead to
reduced proliferation, increased apoptosis, and blocked cellular
differentiation (reviewed in Laplante and Sabatini, 2012). In this
study, treatment with rapamycin prior to the onset of differ-
entiation (at P3-4) did not result in germ cell loss by apoptosis, but
rather a near-complete inhibition of differentiation such that no
cells were seen preparing to enter meiosis as preleptotene sper-
matocytes at P8. Our results also indicate that Sertoli cell numbers
were unaffected by the treatment, and there were no significant
changes in their position or appearance. The prolonged exposure
to rapamycin can also inhibit the function of mTORC2, although
this varies widely with cell type (Sarbassov et al., 2006). This is not
likely occurring in this study; since activated mTORC2 phosphor-
ylates and activates AKT (Hay, 2011), we would expect that its
inhibition would lead to an increase in cytoplasmic FOXO1, which
we did not observe.



Fig. 7. RA signaling through mTORC1 is required for induction of KIT but not STRA8. (A) Message levels for Sohlh1, Sohlh2, and Kit were measured by qRT-PCR using whole
testis RNA of mice treated with vehicle or rapamycin and then euthanized at P4. Sohlh1, Sohlh2, and Kit mRNAs associated with polysomes were pooled, isolated, and
quantitated by qRT-PCR. (B) Mice were treated daily starting at P1 with vehicle or rapamycin. At P3, mice were given a single exogenous injection of RA and euthanized 24 h
later at P4. (C and D) Immunostaining of testis sections of mice treated with vehicle (C) or rapamycin (D) and RA and then euthanized at P4. Sections were labeled with KIT
(green) and STRA8 (red), F-actin was stained with phalloidin to visualize testis cords (in blue). Scale bar¼40 μM. Asterisks indicate statistical significance with Po0.01.
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3.3. The role of RA in mTORC1 activation and enhanced translation
in vivo

During differentiation, spermatogonia respond to RA by pro-
liferating and undergoing largely unknown cellular changes that
precede meiosis. A primary reason for this lack of knowledge
about spermatogonial differentiation is that there are very few
changes in steady-state mRNA levels between undifferentiated
and differentiating spermatogonia (Chan et al., 2014; Shima et al.,
2004; Zhou et al., 2008). Without dramatic changes in the tran-
scriptome, scientists have lacked targets (pathways, proteins) for
focused studies. The classic mechanism by which RA controls gene
expression is through modulating transcription of RA-responsive
genes such as Stra8 and Rec8, which are required for entry into and
progression through meiosis (Anderson et al., 2008; Mark et al.,
2008; Koubova et al., 2014; Xu et al., 2005). Here and in a previous
report (Busada et al., 2015), we identify a novel mechanism by
which RA signals through the PI3K/AKT/mTOR signaling pathway
to initiate the efficient translation of mRNAs required for sper-
matogonia differentiation. This reveals that RA can regulate gene
expression by multiple mechanisms. In addition to Kit, we report
here that the mRNAs for Sohlh1 and Sohlh2, which also encode
essential determinants of spermatogonial differentiation, are sti-
mulated by RA to become recruited into polysomes, resulting in a
dramatic increase in protein levels without significant increases in
steady-state mRNA abundance. This discrepancy between abun-
dant mRNA and undetectable or barely detectable protein was
previously alluded to in studies from the Rajkovic laboratory (D.
Ballow et al., 2006; D.J. Ballow et al., 2006). Additional evidence for
the transcription of these genes in undifferentiated spermatogonia
comes from whole tubule explant cultures, in which GDNF in-
creased mRNA levels for both Kit and Sohlh1, but did not induce
protein expression (Grasso et al., 2012). Therefore, it is possible
that a subset of genes is transcribed in undifferentiated sperma-
togonia, and that these mRNAs are poorly translated until RA ac-
tivates the PI3K/AKT/mTOR kinase-signaling pathway to direct
their mobilization into heavy polysomes for efficient translation.
Our data supports a model whereby mTORC1 activation by RA
leads to the translational activation of specific mRNAs required for
spermatogonial differentiation (Fig. 8). There is precedent for a
similar posttranscriptional regulation downstream of RA in local
translation at neuronal dendritic and axonal termini. In that
paradigm, RA binds RARA to activate the PI3K/AKT signaling
pathway and stimulate translation of repressed mRNAs including
Gria1/Glur1 (Aoto et al., 2008; Chen and Napoli, 2008; Chen et al.,
2008; Maghsoodi et al., 2008; Masia et al., 2007). Furthermore, a
study found using the F9 cell line that RARG associated with the
p-85 regulatory subunit of PI3K, and that PI3K–AKT activation by
RA was required for F9 cell differentiation (Masia et al., 2007;
Lopez-Carballo et al., 2002).

It is clear that certain mRNAs are exceedingly sensitive to
translational suppression by rapamycin (Thoreen et al., 2012).
These disproportionately affected mRNAs may have a stronger
reliance on cap-dependent translation. Previous studies have
shown that mTORC1-sensitive mRNAs generally contain complex
5′ UTRs that are positively regulated by phosphorylation of EI-
F4EBP1 (Hay and Sonenberg, 2004) or are members of the class of
5′ TOP mRNAs which contain a 5′ terminal oligopyrimidine tract
(Meyuhas, 2000). It is clear that Kit, Sohlh1, and Sohlh2 mRNAs
appear to be sensitive to translational repression during



Fig. 8. RA signaling through PI3K/AKT/mTOR is required for spermatogonia differentiation. Specific mRNAs are inefficiently translated (repressed) in undifferentiated germ
cells. RA signaling through a kinase (non-genomic) signaling pathway activates the PI3K/AKT/mTORC1 signaling network to induce efficient translation of genes (e.g. Kit,
Sohlh1, and Sohlh2) that are required for differentiation. Rapamycin inhibition of mTORC1 prevents RA induced efficient translation, and blocks spermatogonia
differentiation.
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spermatogenesis in vivo. This effect is mimicked by mTORC1 in-
hibition. Future studies will be aimed at identifying features
within the UTRs that regulate translational repression and acti-
vation during spermatogenesis.

Germ cells are exposed to high levels of RA within discrete
segments of the seminiferous cords (in the neonate and juvenile)
and tubules (in the adult). In the adult, RA levels are highest along
the seminiferous tubules at stages VII–VIII of the epithelial cycle
(Hogarth et al., 2015). This provides an explanation for how RA can
regulate three distinct events simultaneously in different cell
types, as they all occur at these stages: differentiation of types Apr

and Aal into A1 spermatogonia, meiotic initiation of preleptotene
spermatocytes, and spermiation of condensed spermatids. Indeed,
RA has been shown to be required for each of these processes
(reviewed in de Rooij, 2001; Griswold et al., 2012; Bowles and
Koopman, 2007; O’Donnell et al., 2011).

One interesting point to consider is that, although RA is re-
quired for the initiation of spermatogonial differentiation (to A1

spermatogonia), the subsequent divisions (A2, A3, A4, In, B) occur
in levels of low or absent RA (Hogarth et al., 2015). It is possible,
then, that an important role of RA in spermatogonia is to stimulate
the translation of mRNAs encoding KIT, which binds KITL to signal
through the same PI3K/AKT/mTOR signaling pathway in sperma-
togonia in culture (Feng et al., 2000; Kissel et al., 2000). By doing
so, RA may signal through PI3K/AKT initially, and then the newly
synthesized KIT receptor will bind KITL and maintain mTORC1
activation during these later differentiation stages when levels of
RA are low or absent. This scenario would explain how the mRNAs
for Kit, Sohlh1, and Sohlh2 would remain efficiently translated
despite low levels of RA.

3.4. MTORC1 activity in germ cells

Previous studies have suggested a role for mTORC1 in sper-
matogonial fate determination. In the first study, rapamycin
blocked proliferation (incorporation of BrdU) in cultured sperma-
togonia and prevented KITL-induced phosphorylation of RPS6KB1,
suggesting that PI3K/AKT signaling was required in vivo (Feng
et al., 2000). In the second study using spermatogonia isolated
from juvenile mice, it was concluded that ZBTB16/PLZF repressed
mTORC1 activity by maintaining modestly higher steady-state
mRNA levels (�3-fold) of an indirect negative regulator, REDD1
(Hobbs et al., 2010). However, it was recently reported that REDD1
KO mice are viable and fertile, with no apparent defects in sper-
matogenesis (Notini et al., 2012). In addition, proliferating/differ-
entiating mTORC1-active neonatal spermatogonia contain abun-
dant ZBTB16 (Niedenberger et al., 2015), suggesting this model
does not fully explain mTORC1 regulation in differentiating sper-
matogonia in vivo. In a third study, rapamycin was administered to
adult testis tubules maintained in hanging drop cultures for 24 h
(Sahin et al., 2014). As expected, this reduced levels of p-mTOR,
p-RPS6KB1, and p-EIF4EBP1 in spermatogonia and preleptotene
spermatocytes. In addition, steady-state levels of PCNA and STRA8
were reduced, although these were assessed by western blot
analysis of whole tubule lysates (Sahin et al., 2014). Since STRA8
levels are highest in preleptotene spermatocytes within stage VIII
tubules (Zhou et al., 2008; Endo et al., 2015; Hogarth et al., 2015),
it is unclear whether the reduction in STRA8 protein levels fol-
lowing short-term rapamycin treatment was from impaired ex-
pression in spermatogonia (implying impaired differentiation) or
in preleptotene spermatocytes. In a fourth study, Hobbs and col-
leagues generated germ cell KO mice for Tsc2, which encodes an
indirect repressor of mTORC1 activation. Therefore, Tsc2 KO germ
cells would be predicted to have elevated mTORC1 activity. When
Tsc2 was deleted beginning in fetal prospermatogonia (by Ddx4-
Cre), there were fewer undifferentiated spermatogonia
(ZBTB16þ), and an increased number of atrophic tubules in the
adult. However, this incomplete effect suggests that loss of TSC2
either did not increase mTORC1 activation in all undifferentiated
spermatogonia, or that a subset of spermatogonia differ in their
response to mTORC1 activation. Here, we did not see a change in
the Id4-GFPþ SSC-containing population in response to rapamycin
treatment, which indicates that mTORC1 activity is low or not
required in SSCs. Hobbs et al. found that Tsc2 deletion in differ-
entiating spermatogonia (using Stra8-Cre deletion), resulted in no
discernable phenotype, presumably because mTORC1 was already
activated in these differentiating cells. Taken together, those re-
sults complement our findings here that mTORC1 is suppressed in
undifferentiated spermatogonia, and that its activation is neces-
sary for differentiation.

In summary, this study provides the first examination of the
requirement for mTORC1 activation in spermatogonial



Table 2
Antibodies.

Protein Vendor (Catalog number) Dilution

DDX4 Abcam (ab13480) 1:250
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differentiation in vivo. Our results indicate that inhibition of
mTORC1 blocked the RA-induced translational activation of re-
pressed mRNAs, repressed spermatogonial differentiation, and
resulted in an accumulation of undifferentiated progenitor
spermatogonia.
DDX4 R&D Systems (AF2030) 1:800
RET Cell Signaling Technology (#3223) 1:200
STRA8 Abcam (ab49602) 1:3000
KIT Santa Cruz Biotechnology (sc-1494) 1:1000
KIT Cell Signaling Technology (3074) 1:1000
SOHLH1 Alexsandar Rajkovic (Pangas et al., 2006) 1:200
SOHLH2 Alexsandar Rajkovic (Ballow et al., 2006) 1:200
c-PARP1 Cell Signaling Technology (#9544) 1:100
p-RPS6 Cell Signaling Technology (#5364) 1:800
p-MTOR Cell Signaling Technology (#2880) 1:100
GFRA1 R&D Systems (AF560) 1:800
GATA4 Santa Cruz Biotechnology (sc-1237) 1:100
4. Materials and methods

4.1. Animal treatments and tissue collection

All animal procedures were performed in accordance with the
National Research Council Guide for the Care and Use of Labora-
tory Animals and approved by the Animal Care and Use Committee
of East Carolina University (AUPs #A178a and #A193). Analyses
were done using CD-1 mice (Charles River Laboratories) or Id4-GFP
mice, which are on a C57Bl/6 background (Chan et al., 2014). Ra-
pamycin was dissolved in DMSO and then diluted to a final con-
centration of 5 μg/μl in a solution of 5% polyethylene glycol 400
(Sigma-Aldrich) and 5% polysorbate 80 (Sigma-Aldrich). Rapamy-
cin was fed daily using a 24-gauge feeding needle, in two regi-
mens: (1) from P1-P3 and then euthanized at P4 or (2) from P1-P7
and then euthanized at P8. Using dosages similar to a previous
study (Puighermanal et al., 2009), we fed CD-1 mice rapamycin at
20 μg/g body weight, and Id4-GFP mice received 10 μg/g. The
administration of exogenous RA was done as previously described
(Busada et al., 2014). Briefly, neonatal mice received one sub-
cutaneous injection of 100 μg all-trans RA (#R2625, Sigma-Al-
drich) dissolved in 10 μl dimethyl sulfoxide (DMSO) or DMSO
alone at P3, and were euthanized by decapitation 24 h later.

4.2. Polysome gradient analysis

Polysome gradients were performed as previously described
(Chappell et al., 2013). Briefly, total testis lysates from at least 22
P4 vehicle- or rapamycin-treated mice were loaded onto 15–45%
linear sucrose gradient in polysome lysis buffer (100 mM KCl,
5 mM MgCl2, 10 mM HEPES pH 7.4, 0.5% NP-40, and 100 μg/ml
cycloheximide). Gradients were fractionated, and 14 successive
fractions were collected. RNA was isolated using TRIzol reagent
based on manufacturer’s protocol from pooled heavy polysome
fractions (9–14).

4.3. Quantitative RT-PCR

Quantitative RT-PCR (qRT-PCR) was performed in triplicate on
total RNA isolated from pooled polysomal fractions and on RNA
isolated from whole testis lysates from at least 3 different mice as
before (Busada et al., 2015; Chappell et al., 2013). Briefly, genera-
tion of cDNA and amplification were performed in the same re-
action tube using One-Step SYBR green and iScript polymerase
(Bio-Rad) in an Applied Biosystems ViiA 7 Real-Time PCR System
(Life Technologies). Primers were designed to span introns for Kit,
Sohlh1, Sohlh2, Stra8, and B2m (Table 1). QRT-PCR was performed
to measure the abundance of specific mRNAs within whole testis
total RNA. Fold changes were calculated using the delta-delta Ct
Table 1
Primer sequences.

Gene Upstream primer (5′–3′) Downstream primer (5′–3′)

Kit CATGGCGTTCCTCGCCT GCCCGAAATCGCAAATCTTT
Sohlh1 GGGCCAATGAGGATTACAGA AAGTTTGCAGCAGCCACAG
Sohlh2 TCTCAGCCACATCACAGAGG GGGGACGCGAGTCTTATACA
Stra8 TCACAGCCTCAAAGTGGCAGG GCAACAGAGTGGAGGAGGAGT
B2m CCGTGATCTTTCTGGTGCTT CGTAGCAGTTCAGTATGTTCG
(ddCt) method using the reference gene B2m. Polysome occupancy
of specific mRNAs was determined using qRT-PCR to amplify RNA
isolated from pooled polysomal fractions. Relative mRNA levels
were assessed using the dCt method from the lowest Ct in the
group, and reported as a fold change.
4.4. Indirect Immunofluorescence (IIF)

IIF was performed as previously reported. Briefly, testes from at
least 3 different mice were fixed in 4% PFA at 4°C. Testes were
embedded in O.C.T., frozen, and cut into 5 μm sections. Sections
were incubated with primary antibodies (see Table 2) for 1 h at
room temperature. Following stringency washes, sections were
incubated with either Alexa Fluor anti-goat or anti-rabbit sec-
ondary antibody (1:2000, Invitrogen) and phalloidin-635 or -594
(1:1000, Invitrogen). Coverslips were mounted with Vectastain
containing DAPI (Vector Laboratories). Images were captured using
a Fluoview FV1000 confocal laser-scanning microscope (Olympus
America).
4.5. Cell quantitation

Immunostaining was performed on 5 mm frozen testis sections.
Quantitation was carried out as previously described (Nie-
denberger et al., 2015), and immunostaining was performed for
DDX4 to mark all prospermatogonia and spermatogonia in the
neonatal testis. Germ cells within 21–30 testis cords were counted
from 3 different animals. Cells were identified as positive for a
marker if selected by the threshold tool in Image J (U.S. National
Institutes of Health) using the default algorithm. Intensity
thresholds were as follows: DDX4¼100–255, KIT¼40–255,
SOHLH1¼90–255, SOHLH2¼90–255. Testis sections from Id4-Gfp
mice were immunostained with anti-DDX4 antibodies. Photo-
micrographs were captured with an Axio Observer A1 microscope
(Carl Zeiss Microscopy, LLC) equipped with an XL16C digital
camera and Exponent version 1.3 software (Dage-MTI). Bright Id4-
GFPþ cells were selected by Image J software with intensity
thresholds set at 0–60. At least 400 DDX4þ cells were selected
from 4 testis sections, and the number of GFP-bright cells re-
corded. Testes were analyzed from at least 3 mice.
4.6. Statistics

Statistical analyses of the qRT-PCR results and cell counts were
performed using Student's t-test, and the level of significance was
set at pr0.01.
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