The Pseudo-Integral of a System of Differential Equations*

A. M. GAROFALO†

Republic Aviation Corporation, Farmingdale, New York
Submitted by R. F. Duffin

I. INTRODUCTION

First we shall briefly review what is meant by saying that a function is an integral for a system of differential equations. Next we shall introduce a generalization of this idea by modifying two conditions on the function to obtain what in this paper shall be called the pseudo-integral. Finally we shall apply this new concept to some problems in celestial mechanics to demonstrate its usefulness in obtaining information about the solution of a system of differential equations.

II. INTEGRAL

Let \(\Gamma \) be the system of differential equations

\[
\dot{x} = f(x, t)
\]

where \(x \) belongs to \(E^n \), an \(n \)-dimensional Euclidean space. \(t \) belongs to \(T \), a one-dimensional Euclidean space. \(f^i \) and \(\frac{\partial f^i}{\partial x^j} \) for \(i, j = 1, 2 ... n \) are continuous in a domain \(D' \) of \(E^n \times T \) containing the point \((\dot{x}, \dot{t}) \), and the dot represents a derivative with respect to \(t \).

From the Theory of Differential Equations there exists domains \(S \) in \(E^n \) and \(I \) in \(T \) containing \(\dot{x} \) and \(\dot{t} \) respectively, and a function \(x(w, t) \) defined in \(S \times I \) such that

(i) The set of points \(\{x(w, t), t\} \) for all \((w, t) \) in \(S \times I \) is a domain \(D \) contained in \(D' \).

(ii) \(x = x(w, t) \) is the unique solution to \(\Gamma \) in \(I \) for which \(w = x(w, \dot{t}) \).

*This work was sponsored by the United States Air Force under Contract No. AF 49(638)-814 monitored by the AF Office of Scientific Research.
† Formerly at Missile and Space Vehicle Department, General Electric Company, Philadelphia, Pennsylvania.
(iii) \(w = w(x, t) \) the inverse of \(x = x(w, t) \) is defined and continuous for all points of \(D \).

The function \(F = F(x, t) \) is called an integral of \(I \) if (i) \(F(x, t) \) has continuous first partial derivatives in \(D \), and (ii) \(F(x(w, t), t) = F(w, t) \) identically in \(S \times I \). Assuming (i), (ii) is equivalent to the following condition:

\[
\frac{dF}{dt} = \frac{\partial F}{\partial x^i}(x(w, t), t) f^i(x(w, t), t) + \frac{\partial F}{\partial t}(x(w, t), t) = 0
\]

identically in \(S \times I \) where \(\frac{\partial F}{\partial t} \) and \(\frac{dF}{dt} \) are the derivatives of \(F \) with respect to \(t \) keeping \(x \) and \(w \) fixed respectively.

Substituting \(w = w(x, t) \) into this expression we obtain

\[
\frac{\partial F}{\partial x^i}(x, t) f^i(x, t) + \frac{\partial F}{\partial t}(x, t) = 0
\]

identically in \(D \). Therefore, if is not necessary to know the general solution of \(I \) in order to determine whether a given function is an integral. This coupled with the fact that for the particular solution \(x = x(w_0, t) \), where \(w_0 \) belongs to \(S \),

\[
F(x, t) = F(w_0, t)
\]

makes this concept very useful.

III. THE PSEUDO-INTEGRAL

Let us consider the function \(F(x, w, t) \) such that (i) for any value of \(w \) in \(S \), \(\frac{\partial F}{\partial x^i} \) and \(\frac{\partial F}{\partial t} \) are continuous in \(D \) and (ii) \(F(x(u, t), u, t) = F(u, u, t) \) identically for all \(t \) in \(I \) and all \(u \) in \(U \), where \(U \) is the set of all \(w \) in \(S \) that satisfy the \(k \) (where \(k \) may be 0) equations of constraints:

\[
h_j(w) = 0 \quad \text{for} \quad j = 1, 2, \ldots, k.
\]

If \(k = 0 \) and \(F \) does not depend explicitly on \(w \) then \(F \) is a pseudo-integral if and only if it is an integral.

For convenience we shall call \(G(x, w, t) \) a normalized pseudo-integral if it is a pseudo-integral and if \(G(u, u, t) = 0 \) identically for all \(u \) in \(U \). Given a pseudo-integral \(F(x, w, t) \) we can obtain a normalized pseudo-integral \(G(x, w, t) \) by defining \(G \) as follows:

\[
G(x, w, t) = F(x, w, t) - F(w, w, t).
\]

Before we consider specific examples, let us indicate in general what our
procedure shall be. For the purpose of this discussion, we shall assume that for any \(w \) in \(S \) all functions of \(x, w, \) and \(t, \) including \(f(x, t), \) have sufficiently many derivatives with respect to \(x \) and \(t \) that are continuous in \(D. \) Given a function \(G(x, w, t) \) let us define \(G_0(x, w, t) = G(x, w, t) \) and

\[
G_l(x, w, t) = \frac{\partial G_{l-1}}{\partial x} f^l + \frac{\partial G_{l-1}}{\partial t}
\]

where \(l \) is any integer greater than 0. Thus

\[
G_l(x(w, t), w, t) = \frac{d^lG}{dt^l} (x(w, t), w, t)
\]

i.e. \(G_l \) is the \(l \)th derivative of \(G \) along the solution curves of \(\Gamma. \) \(G \) is a normalized pseudo-integral of \(\Gamma \) only if \(G_p(x(u, t), u, t) = 0 \) for all \(p \geq 0 \) and all \((u, t)\) in \(U \times I. \) One might expect that the infinite system of equations \(G_p(x, u, t) = 0 \) for all \(q \geq 0 \) would impose too many conditions on the variables \(x, u \) and \(t, \) i.e., would have no solution. However, if there is an integer \(s \) such that\(^1\)

\[
G_s(x, u, t) = \sum_{p=0}^{s-1} a_p(x, u, t) G_p(x, u, t)
\]

and a value of \((x, u, t)\) for which \(G_s(x, u, t) = 0 \) if \(p < s \); then for all \(q \) and the same \((x, u, t), G_p(x, u, t) = 0. \) If in addition \(G_p(u, u, t) = 0 \) identically for \(p < s \) and all \(u \) in \(U, G \) is a normalized pseudo-integral since it satisfies the ordinary linear differential equation

\[
\frac{d^sG}{dt^s} = \sum_{p=0}^{s-1} a_p(x(u, t), u, t) \frac{d^pG}{dt^p}
\]

containing the parameter \(u \) and subject to the initial conditions

\[
\frac{d^pG}{dt^p} (u, u, t) = 0 \quad \text{for} \quad p = 0, 1 \ldots s - 1.
\]

We see that if \(G(x, w, t) \) is a normalized pseudo-integral so is \(G_p(x, w, t) \) for any \(p \) and the same constraints. In general a set of functions \(\{G^a\} \) where \(a \) belongs to some set are called simultaneous pseudo-integrals if they are all pseudo-integrals for the same set of constraints. In practice the equations of constraints shall not usually be given a priori. Rather, if there exists a relationship of the form

\[
G_s(x, w, t) = \sum_{p=0}^{s-1} a_p(x, w, t) G_p(x, w, t)
\]

\(^1\) For example if \(G_{s-1} = H(G_0, G_1, \ldots, G_{s-2}), \) we may take

\[
a_p = \frac{\partial H}{\partial G_{p-1}} (G_0(x, u, t), G_1(x, u, t), \ldots, G_{s-2}(x, u, t))
\]

for \(1 \leq p \leq s - 1 \) and \(a_0 = 0.\)
then the equations of constraints can be taken to be $G_p(w, w, t) = 0$ for $p < s$, if these equations have a solution. Also in practice we may consider a function $G(x, w, a_1, a_2, \ldots a_m, t)$ where a_i for $i = 1, 2 \ldots m$ is a function of w to be so chosen that if possible G is a pseudo-integral. These ideas shall be made more concrete in the following examples.

IV. Examples

Let

$$\ddot{r}_i = -g(m + m_i) \frac{r_i}{|r_i|^3} - g \sum_{i=1}^{k} \frac{m_i}{|r_i|^3} \left(\frac{|r_i - r_i|}{|r_i|^3} + \frac{r_i}{|r_i|^3} \right)$$

where r_i is a vector in a plane with coordinates (x_i, y_i), and m, m_i, and g are greater than 0 for $i = 1, 2 \ldots k$. These are the equations of motion of $k + 1$ bodies in a coordinate system with origin on the body of mass m and axes parallel to an inertial system, under the assumptions that the bodies always lie in a plane and the only forces are the gravitational interaction between the bodies. r_i is the position vector of the body of mass m_i.

A. First Example

As our first example we shall consider the case $k = 1$. For this case the equations are

$$\ddot{r} = -g(m + m_1) \frac{r}{|r|^3}$$

where for convenience the subscript on r_1 has been dropped since $k = 1$.

Let

$$G = Ax + By + D \frac{r}{|r|^3} - D^2$$

Therefore,

$$\ddot{G} = A\ddot{x} + B\ddot{y} + D \frac{\dot{r} \cdot \ddot{r}}{|r|}$$

$$\ddot{G} = -\frac{g(m + m_1)}{|r|^3} \left[Ax + By + D \frac{r}{|r|^3} - \frac{D}{g(m + m_1)} (r^2 \dot{r}^2 - (r \cdot \dot{r})^2) \right]$$

$$\ddot{G} = -\frac{g(m + m_1)}{|r|^3} \left[G + \frac{D}{g(m + m_1)} (r \times \dot{r})^2 \right]$$

$$\ddot{G} = |r|^3 \left[\frac{d}{dt} \left(\frac{1}{|r|^3} \right) \right] \dot{G} - \frac{g(m + m_1)}{|r|^3} \dot{G}$$
Setting \(G = \dot{G} = \ddot{G} = 0 \) at \(t = \dot{t} \) we obtain
\[
D^2 = \frac{D}{g(m + m_1)} (\dot{r}_0 \times \ddot{r}_0)^2
\]
where we use \(r_0 \) and \(\dot{r}_0 \) with components \((x_0, y_0)\) and \((\dot{x}_0, \dot{y}_0)\) respectively instead of \(w \). Let us set \(D = [1/g(m + m_1)] (\dot{r}_0 \times \ddot{r}_0)^2 \) Since \(A^2 = g(m_1 + m) D \) where \(A \) is the determinant \[
\left| \begin{array}{cc} x_0 & y_0 \\ \dot{x}_0 & \dot{y}_0 \end{array} \right|, \ A, \ B, \text{ and } D \text{ can be be determined in terms of } r_0 \text{ and } \dot{r}_0 \text{ so that } G \text{ is a normalized pseudo-integral for all solutions to the two-body problem, i.e., all solutions lie on a straight line or on (the branch of) a conic section. This is of course a well known fact in celestial mechanics although } G \text{ is not an integral since } A, \ B, \text{ and } D \text{ depend on initial conditions.}
\]

It is interesting to note that if the most general Second order polynomial in \(x \) and \(y \) was chosen as a possible normalized pseudo-integral for this problem instead of the selection made above, the same results could have been obtained in a similar fashion.

\[\text{B. Second Example} \]

As our second example let us see if there is a solution to the planar three body problem such that the triangle formed by the bodies is always isosceles, but not necessarily congruent to its initial configuration, i.e., if \(G = r_1^2 - r_2^2 \) is a normalized pseudo-integral (in the coordinate system we are using the body of mass \(m \) is at the origin) for the equations
\[
\dot{r}_1 = -g(m + m_1) \frac{r_1}{|r_1|^3} - g m_2 \left[\frac{r_1 - r_2}{|r_1 - r_2|^3} + \frac{r_2}{|r_2|^3} \right] \\
\dot{r}_2 = -g(m + m_2) \frac{r_2}{|r_2|^3} - g m_1 \left[\frac{r_2 - r_1}{|r_2 - r_1|^3} + \frac{r_1}{|r_1|^3} \right]
\]

In deriving a differential equation for \(G \) we may make use of relationships such as
\[
\frac{1}{|r_2|} = \frac{1}{|r_1|} + \frac{G}{|r_1| |r_2| (|r_1| + |r_2|)}
\]
However, our work will be simplified if we make use of the fact that \(G \) is a normalized pseudo-integral for the given system of equations only if \(G \) is a normalized pseudo-integral for the following system:
\[
\dot{r}_1 = -g(m + m_1) \frac{r_1}{|r_2|^3} - g m_2 \left[\frac{r_1 - r_2}{|r_1 - r_2|^3} + \frac{r_2}{|r_2|^3} \right] \\
\dot{r}_2 = -g(m + m_2) \frac{r_2}{|r_2|^3} - g m_1 \left[\frac{r_2 - r_1}{|r_2 - r_1|^3} + \frac{r_1}{|r_1|^3} \right]
\]
where $|r_1|$ has been replaced by $|r_2|$

$$G = r_1^2 - r_2^2$$

$$G = 2r_1 \cdot \dot{r}_1 - 2r_2 \cdot \dot{r}_2$$

$$\ddot{G} = 2r_1^2 - 2r_2^2 - 2g \left[\frac{m + m_1}{|r_2|^3} + \frac{m_2}{|r_1 - r_2|^3} \right] G$$

$$- 2g(m_1 - m_2) \left[\frac{1}{|r_2|^3} - \frac{1}{|r_1 - r_2|^3} \right] (r_2^2 - r_1 \cdot \dot{r}_2)$$

$$G = -2gG \frac{d}{dt} \left[\frac{m + m_1}{|r_2|^3} + \frac{m_2}{|r_1 - r_2|^3} \right] - 4g \left[\frac{m + m_1}{|r_2|^3} + \frac{m_2}{|r_1 - r_2|^3} \right] G$$

$$- 2g(m_1 - m_2) \left\{ 2r_2 \cdot \dot{r}_2 \left(\frac{1}{|r_2|^3} - \frac{1}{|r_1 - r_2|^3} \right) + \frac{d}{dt} \left[\left(\frac{1}{|r_2|^3} - \frac{1}{|r_1 - r_2|^3} \right) (r_2^2 - r_1 \cdot \dot{r}_2) \right] \right\}$$

$$- 4g(m_2 r_2 \cdot \dot{r}_1 - m_1 m_2) \left(\frac{1}{|r_2|^3} - \frac{1}{|r_1 - r_2|^3} \right)$$

Let $H = r_2 \cdot \dot{r}_1 - r_2 \cdot r_1$ and $K = (r_1 - r_2)^2 - r_2^2$. If either $H = 0$ were an integral, and $m_1 = m_2$ or $K = 0$ were an integral the differential equation for G would reduce to

$$\ddot{G} = -2gG \frac{d}{dt} \left[\frac{m + m_1}{|r_2|^3} + \frac{m_2}{|r_1 - r_2|^3} \right] - 4g \left[\frac{m + m_1}{|r_2|^3} + \frac{m_2}{|r_1 - r_2|^3} \right] G$$

This suggests that we should (a) set $m_1 = m_2$ and see if the constraints can be chosen so that G and H are simultaneous normalized pseudo-integrals, or (b) see if the constraints can be chosen so that G and K are simultaneous normalized pseudo-integrals.

Case (a). For this case

$$\ddot{G} = -2gG \frac{d}{dt} \left[\frac{m + m_2}{|r_2|^3} + \frac{m_2}{|r_1 - r_2|^3} \right]$$

$$- 4g \left[\frac{m + m_2}{|r_2|^3} + \frac{m_2}{|r_1 - r_2|^3} \right] \dot{G} - 4g m_2 H \left(\frac{1}{|r_2|^3} - \frac{1}{|r_1 - r_2|^3} \right)$$

$$H = g m_2 G \left(\frac{1}{|r_2|^3} - \frac{1}{|r_1 - r_2|^3} \right)$$
Thus H and G will be simultaneous normalized pseudo integral if at $t = \hat{t}$ (and consequently see above, for all t in a domain)

$$H = G = \dot{\dot{G}} = 0$$

that is, at $t = \hat{t}$,

$$r_0^2 = r_1^2$$
$$r_2^2 = r_1^2$$
$$r_2 \cdot \dot{r}_2 = r_1 \cdot \dot{r}_1$$
$$r_2 \cdot \ddot{r}_1 = r_1 \cdot \ddot{r}_2$$

If we let (ρ_0, θ_0) and (ρ_1, α_1) be the polar coordinates of r_1 and \dot{r}_1 at $t = \hat{t}$ and make use of trigonometric identities for

$$\cos (\theta_2 - \alpha_2) = \cos [(\theta_2 - \alpha_2) + (\alpha_2 - \alpha_1)]$$
and

$$\cos (\theta_1 - \alpha_2) = \cos [(\theta_1 - \alpha_1) - (\alpha_2 - \alpha_1)]$$

these constraints are equivalent to (we assume p_1 and p_2 are not 0 since this is a singularity of the system of differential equations)

(i) $p_2 = p_1$
(ii) $v_2 = v_1$
(iii) $v_1 = 0$ or $\alpha_2 - \alpha_1 = n\pi$ and $\theta_2 - \alpha_2 = +(\theta_1 - \alpha_1) + 2l\pi$ or $\theta_2 - \alpha_2 = -(\theta_1 - \alpha_1) + 2l\pi$ where n and l are integers.

Case (b). If we replace both $|r_1 - r_2|$ and $|r_1|$ by $|r_2|$ in the differential equations of motion these equations become

$$\dot{r}_1 = Lr_1$$
$$\dot{r}_2 = Lr_2$$

where $L = -g[(m + m_1 + m_2)/|r_2|^3]$. As above if G and K are simultaneous normalized pseudo-integrals for this system they are also simultaneous normalized pseudo-integrals for the original system. It readily follows that

$$G = r_1^2 - r_2^2$$
$$K = (r_1 - r_2)^2 + r_2^2 = r_1^2 - 2r_1 \cdot r_2$$
$$\dot{G} = 2r_1 \cdot \dot{r}_1 - 2r_2 \cdot \dot{r}_2$$
$$\dot{K} = 2r_1 \cdot \dot{r}_1 - 2r_2 \cdot \dot{r}_2 - 2r_1 \cdot \ddot{r}_2$$
$$\ddot{G} = 2\dot{r}_1^2 - 2\dot{r}_2^2 + 2LG$$
$$\ddot{K} = 2\dot{r}_1^2 - 4\dot{r}_1 \cdot \dot{r}_2 + 2LK$$
$$\dddot{G} = 4L\dot{G} + 2LG$$
$$\dddot{K} = 4L\dot{K} + 2LK$$
Thus G and K are simultaneous normalized pseudo-integrals if at $t = \hat{t}$

\[
\begin{align*}
\dot{r}_2^0 &= r_1^0 \\
\dot{r}_2^0 &= r_1^0 \\
r_2 \cdot \dot{r}_2 &= r_1 \cdot \dot{r}_1 \\
r_1 \cdot r_2 &= \frac{1}{2} r_1^2 \\
r_1 \cdot \dot{r}_1 &= \frac{1}{2} r_1^2 \\
r_1 \cdot \dot{r}_1 &= r_1 \cdot r_2 + r_1 \cdot \dot{r}_2
\end{align*}
\]

Using the same notation as for case (a) we find that these conditions are equivalent to (again p_1 and p_2 are not 0)

(i) $p_2 = p_1$

(ii) $v_2 = v_1$

(iii) $\theta_2 - \theta_1 = \pm \pi/3 + 2l\pi$

(iv) $v_1 = 0$ or $\theta_2 - \alpha_2 = \theta_1 - \alpha_1 + 2n\pi$, where n and l are integers.

References

