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Abstract

We consider the class of the Orthogonal Projection Methods (OPM) to solve iter-
atively large cigenvalue problems. An OPM is a methed that projects a large eigenvalue
problem on a smaller subspace. In this subspace, an approximation of the cigenvalue
spectrum can be computed from a small eigenvalue problem using a direct method.
Examples of OPMs are the Arnoldi and the Davidson method. We show how an OPM
can be restarted — implicitly and explicitly. This restart can be used to remove a specific
subset of vectors from the approximation subspace. This is called explicit filtering. An
implicit restart can also be combined with an implicit filtering step, i.¢. the application of
a polynomial or rational function on the subspace, even if inaccurate arithmetic is as-
sumed. However, the condition for the implicit application of a filter is that the rank of
the residual matrix must be small. © 1999 Elsevier Science Inc. All rights reserved.
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1. introduction

Consider the problem of finding a limited set of solutions to the eigenvalue
problem
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Ax = }x, A€l

If the dimension of this problem is very large or if 4 is sparse, then it cannot be
tackled using a dense or direct method, such as the QR method, due to time
and memory limitations. Therefore, a large family of iterative solvers has been
derived that are able to find one or more specific eigenvalues of 4, e.g. the
rightmost eigenvalues. Most of these methods build iteratively a subspace basis
V; of dimension & on which the eigenvalue problem is projected. The eigen-
values are then approximated from this small projected problem, using a direct
solver. We call these methods Orthogonal Projection Methods (OPM).

However, if the size of the subspace ¥; becomes too large, then the eigen-
value solver slows down (or it can reach a memory limit). The method then has
to be restarted. The restart can be worked out explicitly, deriving new starting
conditions from the unsatisfying sulution. It can also be done implicitly, by
reducing the size & of the subspace basis to £ — p and thus removing a subset of
the information in ¥.. A well known example of an implicitly restarted ei-
genvalue solver is the Implicitiy Restarted Arnoldi method (IRA) of [1].

Generally, an implicit restart is cheaper and more stable than an explicit
restart. It has the additional advantage that it often implements an implicit
filter on the subspace basis. If an implicit filter is applied, then the new basis can
be se=n as a copy of the old basis, multiplied by a polynomial (or rationial) function
in A. Hence, by implementing implicitly a filter, a restart procedure implements a
form of subspuce iteration. Spence and Meerbezgen [2] noticed that the implicit filter
can be used in order to remove spurious eigenvalues from the projected problem.

The idea of implicitly filtering is based vn the assumption that exact arith-
metic is used. For example, if the Arnoldi method is used on a shifted an
inverted matrix (4 — 61)7', then the accuracy of the implicit filter that is im-
plemented by the implicitly restarted Arrioldi algorithm depends on the ac-
curacy of the solved systems with 4 — g/.. There are many methods, such as
Davidson, Jacobi-Davidson or even the Rational Krylov Sequence method
(RKS), that do not require the use of accurate system solutions. For these
methods, a restarting procedure cannot implement in general an implicit filter.

It is the aim of this text to show how a general eigenvolue solver can be
filtered implicitly in combination with a restart. In faci, we explain why it is hard
to do so if the eigenvalue solver uses an inexact method to solve the lincar systerez
involved. Tt is hard because it is expensive or even impossibl: in some cases.

The problem is that implicit filtering always comes with the significant cost
of the cuaaputational work of one or more iteration steps, i.e. the loss of some
computed basis vectors. If the purpose of the restart is to reduce the size of the
approximating subspace basis ¥, then this cost is the key behind the reduction,
and the loss of basis vectors is not considered disadvantageous. But if e.g.
spurious cigenvalues must be filtered away. then the cost of more than one
iteration step can not be considered as a “fair deal’.
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Let us give ar. example. Each step of the Arnoldi method requires essentially
a matrix vecior multiplication (plus some overhead that we neglect here). Each
of these steps adds a vector to the basis V. If we reduce the size of ¥; with p,
using the IRA algorithm, then we throw away the work of p iteration steps.
The indirect cost of the restart is thus p matrix vector products. Suppose that
the IRA algoritlim reduces the subspace J; 10 a subspace ¥;", of size k — p such
that it implements implicitly a polyromial filter ¢,(4) = [17.,(4 - o:/)

49( Ky) = #(@A)iy)-

The zeros o; of the filter polynomial are provided by the user. They are chosen
on the basis of on the knowledge ihat is present in the basis #;. They allow us to
filter out less relevant information and tc keep the relevant subspace. Clearly,
the p matrix vector products that are iost by removing p basis vectors are
implicitly recovered by the filter polynomial {of degree p). Since the polynomial
vonsists of p multiplications with 4, we can say that as many matrix vector
products are recovered as lost.

One could a'so apply the function ¢,(4) explicitly on the subspace basis, but
this would cost p(k — p) matrix vector products (plus the orthogonalisation of
Vit ,). Therefore an explicit application of the filter is often ruled out as being
too expensive.

For more general methods, the cost of an implicit product with a matrix
polynomial (rational) function of degree p, comes with a cost of {p basis vec-
tors, with / > 1, inswead of the p basis vectors for IRA. These methods loose Ip
vectors but only recover the woi'k of p iteration steps: so there is more lost than
recovered.

We prove in this text thay the factor / in the cost of one implicit filt-ring step
corresponds to the rank of the residual matrix. This matrix spans the subspace
of the residuals of all approximate sigenvectors in the column range of ¥;. For
Arnoldi's method and for the RKS ::sethod, this rank is one. For block vari-
ants of these methods, the rank equais “he block size.

The paper condine of two parts., Figst, 2 prove a simple recurrence teiaiion
between the residual matrices of subrequent steps of an eigenvaiue solver. This
recursion is used to define the concept of a runk conservative eigenvalue solver.
That is a solver for which the rank of the residu:! does not grow when the size
of ¥; grows. It can be shown that all methods tnat use a spectral transfor-
mation (i.e. the solution of a linear system with « mwtrix 4 — of) within their

Jteration, are rank conservative, and vice versa.

Then it is shown how rank conservative solvers can be filtered implicitly.
This implicit filtering comes with the removal of / basis vectors, where / is equal
to the residual rank. An algorithm is described that does so, based on a shifted
QR decomposition of the projection matrix. The analysis assumes exact
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arithmetic, but generalisations to a floating point context with rounding errors
are made at each step.

Plan of the paper: The paper is structured as follows. In Section 1, we recall
some basic facts on projectors and on orthogonal projection methods. Sec-
tion 2 derives a recurrence relation for the residual matrix. The concept of rank
conservative eigenvalue solvers is introduced. Section 3 is concerned with the
restarting of the eigenvalue solver. We show how solvers can be filtered ex-
plicitly and implicitly. Some conclusions are presented in Section 4.

Notation: In this text, matrices are denoted by upper case characters, vectors
by lower case characters and complex numbers by Greek characters. The
Hermitian transpose of a matrix or vector is denoted by ¥* or ¢* and || - ||
denotes the 2-norm. The identity matrix is denoted by / and the kth unit vector
by e;. The column range of a matrix V' is denoted by #(V).

L 1. Prelininary definitions

The analysis of an orthogonal projection method makes use of projection
marrices. Let us recall some facts about projection matrices that are employed
in the foliowing sections. These properties are used to show that the difference
between the solutions of an eigenvalue solver in exact arithmetic and the so-
lutions in flcating point arithmetic, are acceptably small.

Definition 1.1. Given a matrix 2 € C"*". 2 is called a projection matrix if
PP =P If #=2", then # is called an orthogonal projection matrix.
Otherwise, .7 is called an oblique projection matrix.

If we apply # to the columns of a matrix ¥ € C"*, then #¥ is the pro-
jection of ¥ on the column space of 2. For an orthogonal projection matrix,
#¥; is orthogonal to (7 — 2)¥,. An orthogonal projection matrix can, using its
singular value decomposition, always be written as # = QQ", with 0*'Q = [,
The orthogonal matrix Q then forms an orthogonal basis for the column space
of 2. Inversely, we will denote the dual projection matrices that are generated
by a matrix W by

.fw = QQ-, .f,l, =[- 3”"',

where #(Q) = #(W)and Q'Q=1.

The goal of an iterative eigenvalue solver is to produce an invariant sub-
space for a given matrix 4. For the iterative eigenvalue solver to be competitive
with the ‘direct’ eigenvalue solvers, such as the QR method, the dimension of
this subspace must be miuch smaller than the dimension of the eigenproblem
itself. In general, the algorithm generates an orthogonal matrix
Vi = {v1,.... ). The columns of this matrix span the subspace o: which 4 is
then projected.
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In general, the projection is described by a pair of k x & matrices (Kj, L;) and
a residual matrix F. It is summarised in an equation

AV Ly = VK, + (‘tkA —a )R, with V;F;; =0, (l)

where 1, o; € C. This equation is called the projection ¢quation. We assume
that % /7, is not an eigenvalue of 4, so (144 — aJ) is non-singular. In practice,
a projection equation will emerge in one of two special forms. The first one
corresponds to Eq. (1) with L, = I, K, = G;, 7, = 0 and o; = —1, such that

AV, = VG + Fi. @)

The matrix Gy = V;"AV; describes explicitly the projection of 4 on #(V;). The
eigenvalues of G; are the Ritz values and they approximate eigenvalues of 4.

For some methods, the projection equatior: is written by use of a pair of
matrices (K, ), a shift g, € C and normalising 7, = 1 in the following form

AWVL, = ViK; + (A — o D)F,. 3)

This notation useful for methods where the shi't o, is different for different £,
e.g. for the RKS algorithm. Eq. (3) can be rewritten in the form of Eq. (2), but
for a matrix (4 — aJ)™":

(A - o)™ W = WLi(Ki ~ aili) ™" + R(Ke — anli) ™" @

One can prove that (K, — o:L;) is non-singular unless ¥; contains an exact
eigenvalue of 4 or unless L; is singular.

The Ritz values of (4 — 6,J) " are then given by the eigenvalues of the small
generalised eigenvalue problem (L, K; — 6:L;). These values are the Harmonic
Ritz values of 4 [3]. In this text, we will derive most of the properties on the
residual matrix assuming that Eq. (2) holds and then generalise them to
Eq. (3).

The framework in which we will view the iterative eigenvalue solvers in this
text is the framework of the orthogonal projection methods. Algorithm 1.1 de-
fines a tempiate that covers the.projection methods that generate the relation
(1). Notice that the most important and distinctive step, the computation of w,
is not specified by this template. Therefore, we underline that this template lies
far from an algorithm in pseudo code that would be ready-to-implement. It
only shows which entries must be computed to find a solution and at what
stage of the algorithm they can be computed. For many methods, these ma-
trices come for ‘free’ and they must not be computed explicitly.

Algorithm 1.1, Orthogonal Projection Method (template)
1. Given 4, v =[oy], ]l =1
2. Fork=123,...
2.1. Compute Gy = V;'AVi or compute Li and Kz.
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2.2. Compute F; (if needed).
2.3. Compute (0;,2;) from
Gz = Oz or
Lizi = 0u(Ky - oply)zk.
24. Set y «— Vizi.
2.5. If convergence then exit.
2.6. Compute wy.
2.7. Set vgyy — :?,iw&/n.?f}wkﬁ.
28. Set ¥y {V/;,D/“.;}.

Since the orthogonality of ¥, is used implicitly, we must take care that this
property is always true — to working precision. Therefore, reorthogonalisation
must be considered [4].

The residual of an arbitrary unit vector and the residial of an orthogonal
matrix is defined as follows.

Definition 1.2. Given a matrix 4 € €"" and a vector u € C" with {ju|| = 1. The
residual (4, #) of u is given by r(A.u) = Au ~ (u*Auu = PLAu If V € CF is
orthogonal, then R(4, V) = #LAV.

We can write for Eq. (2) that R(4,%,) = .%“AVk AV — WV AV, = AV,
~VGy = F.. For Eq.(3) however. we apply ?* and see that R(4,V)
-JLAP; :#’ (A — 6 )RL;. In the sequel, we shail use F; to denote : R(4, V)
in general Thus in case of Eq. (2), £ = F;, while in case of Eq. (3), #; and F;
are related by

=25 (4~ o )RL;.
By using Eq. (4), we could obtain an explicit expression for F;, namely
=R((4 - o), Vi) (Ki — aiLs),

which is less attractive to deal with than R(4, ¥;). If y = ¥,z is a Ritz vector in
Vi, then it is easy to see that r(4,y) = Fz.

There are different possibilities to check the convergence at step 2.5., de-
pending on the individual method. Most commonly, some measure for the
residual norm ||r(4, 3 )|l = ll4% — Onl| is used, e.g. le;zel[l25 well/iwill.

Example 1.1. Many well known iterative methods for solving eigenvalue

problems can be fitted into this scheme.

e Arnoldi’s method [5): If we choose wy, = Av, then we get Arnoldi’s method.
The matrix G, is upper Hessenberg and its kth column g; contains the
orthogonalisation coefficients of the kth iteration step: wy = V. 1. More-
over, Fi = [0 --- 0 fi], with fi = [|fil{vs+1. The next vector in the Arnoldi it-
eqation is equal to the residual of Eq. (2) — which is called the Arnoldi
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equation. If 4 is symmetric, then G; is a tridiagonal matrix and the method is
the symmetric Lanczos procedure [6].

o RKS[7-9]: 1f we choose w; = (4 — o)™ Yty with £ € C* some continuation
vector, we get the (RKS) sequence method. RKS corresponds to an OPM
that builds Eq. (3), where L; contains the orthogonalisation coefficients
and K = L; diag(s;) + T; is an upper Hessenberg matrix. 7, is the upper tri-
angular matrix that collects the continuation vectors. As for the Arnoldi al-
gorithm, F; only contains one non-zero column. For RKS, the subdiagonal
elements of L; will always be non-zero — unless the method has converged to
some solution.

o Davidson [10,11}: If we choose w; = (A -- 6,0) (A4 - Oy = (A — D) 'r
(4,3x%), then Algorithm 1.1 corresponds to Davidsons method. The Davidson
method is well suited for use with an inexact linear system solver. If the sys-
tem (4 — oxl)wy = r(4. ) is solved exactly, then this method corresponds to
an cxtended RKS method and rank(F;) = 1. If the linear system is solved in-
exactly, e.g. with an iterative method, then rank(F,) > 1.

o Jacobi-Devidson [12}: I w; is computed as 27, (4 - 0;1);7; wi = —(4 — Od)
X 3, by use of an iterative system solver, then the OPM is the Jacobi-Da-
vidson algorithm. This method is a.0. an extention of the Davidson method.
A short comparison between both methods cau be found in [12,13]. Notice
that for both Davidson variants, G; is no longer an upper Hessenberg ma-
trix. As for Davidson’s method, it holds that if the system is solved in exact-
ly, then rank(F;) > 1.

We define the (numerical) rank of a matrix as follows.

Definition 1.3. Given a matrix F € C™*", with singular values 6y, 03,... then
define the rank of F and its numerical ¢-rank as

rank(F) = #{s, | 6; # 0} and rank(F,&) = #{0; | 5; > ¢}. {5)

In order to understand the correspondence of an OPM to its numerical
implementation, we show how a projection matrix acts on the (numerical) rank
of a matrix and on its singular values.

Lemma 1.1. Given a matrix F € C"¥ of rank k, an orthogonal projection matrix

P and a vector f € C". Let 6y 2 62 = -+ 2 oy be the singular values of F.

LIf o\26,2- 20, are the singular values of PF, then
61<6y, 63K 0...., 7, <00

2. Given a vector v=Ft+e for some t€ Ck, with ||t =1 and Pv=0. If
o, < |lell, then 6, | < |lell. Moreover, rank(#F, jle||) < p.
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3. If o] 2 --- 2o}, denvie the singular values of {F. f. then
a" < /
kel X m I] Ff H
o] <ko; + |2 £,
" 2 2
o/ <\t IS i= 1k,
where h € C* is defined by PLf = f — Fhand = 1 + ||h.

Proof. For this proof, we use the fact that the singular values of a & x n matrix
F are

= max min ﬂ ” min  max M
Xei, xeX  |lx “ T XAy xeX Il

where .#; is the set of subspaces of dimensicn i [14,15]. Therefore,

o) = maxu and 6; = mm ""&“!

fil

‘We also rely on the fact that

< =
max mip(} <max min () = max, min(}< max min(}).

i.e. the maximum over a ‘smaller’ set .2, is larger than the maximum over the
original set .
1. The first property is very well known:
| #Fx £}
I “ < MaxXyer, My S
flxt fi=ll

2. For the p — 1-th singular value, it holds that

1 .
0; = MaXyer, Millcy ——r— = 0;.

@, =  min { max || W"‘il}

et €5pe2 | XEX fxi =1

< min { max {25}, umu}

K&ty pey L veX{ehiicl=1

<,min { max 125, lel} < mingo,. el
Xedi pa L zeX

3.8ay f=Fh+gandlet y=[x 2], where x € C*. We normalise ||yl = i,

thus |«° = | — x":. There exists a yp = [x} 4], such that x, + %k = 0.Without

foss of generality, we may assume that the x are real and positive. Hence,

=1 ~-xpx< 1 and
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Ghy=_min |Fe+fal = min |F(t o)+ 223
< min {20 2211 i I = a0l + 212411 | < 2 2271
X2

For the other singular values, we can write
" . .
o] = max min ||Fx !
! X;r, «u-e:.k!. x"r +4f '}

< max min||F(x + 22)}f + || 2: ]
XX

< max { min {m;!jfﬁ/'!{.xgéﬁiw Ix + 1h]}+xﬂ.4’;'“.f§§}}

< max { i {sol 1. min T3 cp 2}

<o+ ||25f-

Finally,
LY/ gt Sl

g < mmmdx}{Ft}' +allfil < mm md'(

l! q

< maxe; -2 1l £l

Ifx=0, then this value is equal to ||, f lI: if =1, then it :a o;. The extremum
inside the interval [0.1} is found at #* = {|f]} /(0'- +If1I'). The value of the

maximum is then /67 + ||| F. O

Note that the conclusions of this lemma only hold for orthogonal projection
matrices. When oblique projectors 4%, are used, it is possible that
#ebef 1| > lIf]l. In practice, this will be merely an exception, bu: it keeps us
from drawing broad conclusions about the generalised eigenvalue problem,
because the generalised eigenvalue problem makes use of oblique projector
matrices. The standard eigenvalue probiem only needs orthogonal projactors.
Consider some extremai cases of Lemma 1.1(3):

1. If f € #(F ) then ||-#5f] = 0 and the matrix [F, f] will have a new singular
value that is equal to zero. If |#;f]| = ¢ is small, then the new singular val-
ue will be at most equal to ¢. The other singular values will zrow iw propor-
tion to J|f}.

2, If f L #(F) then h = 0. We then expect a new singuiar value that is equal to
lif]l- The other singular values do not change. If ||4]| is small, then the new
singular value will be approximately equal to [|#; 1l = [|f]|. The other sin-
gular values will not change much.

3. If £ L #(F). but ||f]| is small, then the singular values will not grow much
either. The new singular value will be approximately equal to ||f1].
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2. Monitoring the residual matrix

We prove in this section a recurrence relation between the residaal matrices
of different steps of the eigenvalue solver. This relation is then used to show
which orthogenal projection methods are rank conservative and thus may be
considered for implicit filtering.

2.1. A recursion ¢ the residual matrix

The subspace #; depends directly on the computation of the vectors
Wieeons wi-;. As for the Arnoldi algorithm, these computations can often be
written as a recurrence relation. The sarne can be done for the residual matrix.

Lemma 2.1. Let Vs = (Vi tyat] and V7 (Vi1 =1, then
R(A Vo) = 25 [RAV) Fd.te)]. (6)

Proof. The proof is quite trivial. Since R(4.Vin) = ?,k AV
=[5 AV 25, Avey) and since 2}, | = P 2 =P, P, we have

o kel iy

R(A.Viwr) = {f,ﬁ R4V Phr(d.n. l)]
=25 (RA.V) r(d.oe))

From this lemma, we can immediately derive a recurrence relation for the
residual matrices.

Theorem 2.2. If Fi = R(4, ¥;) is the matrix of residuals in Algorithm 1.1, then it
satisfies the recursion

oo =25 R r(A-vkg»;)]- ™

Recall that in the case of Eq. (2), F, = F, i=k.k+ 1. If F; emerges in Eq. (3),
then Eq. (1) says that

-?;L;M(A = Gl)Fp = ,/).!1; ,[F‘} r(A,l’k;.;)]an-

Proof. The recurrence (7) is given in the prevxous lerama. The relatw'x for 1
folloas from combining the relation FLi=.» v L{d —6D)F, i =k, k+ 1 with
Eq.(7;. O

The interpretation of Theorem 2.2 reveals information about the possible
convergence properties of the algorithm. Indeed, by (7) the new residual matrix
consists of the old residual orthogonalised to v,y and of the residual of the new
vector orthogonalised to V. If the residual norm ||F;|] or || £ ]| is small, then the
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method convergss. In order to get a small residual norm [|F |}, one should try to
satisfy as mwuch as possible these conditions: #(F) C #(¥.y) and
r(4,ve.1) € #(Vi.;). The first condition is optimally fulfilled by the Arnoldi
method, the second by a Davidson type approach.

Concerning the rank of the residual matrix, we first observe that in case
Eq. (2) F = F = R(4.%). 50 rank(F;) = rmk({-:) In case Eq. (3) however, it
may happen that rank(F;) > rank(F%), because £ = P4 - a‘l)FkI.k‘ (and
rank(F) = rank((4 — a:J)F.L;')). The strict mequahty will only hold in _very
specific situations. However, generically we also have rank(F) = rank(F;) in
case of Eq. {3} and thus for the general case Eq. (1). We will assume further in
this paper that rank(#;) = rank(£;) holds for the general case.

2.2. Rank conservaiive eigensolvers

If algorithms have the property that the rank of their residual matrix does
not grow, i.e. rank(F;) 2 rank(F;.,), then they are called rank conservative. If
the numerical rank is constant for the method, then they are called s-rank
conservative. However, due to iounding errors. the numerical rank of the re-
sidual can increase slightly, even for a theoretically e-rank conservative
method.

Definition 2.1. if for an OPM, based on Algorithm 1.1, it holds generically (i.e.
for almost any matrix A) that rank(Fi.1) < rank(F;). £ = 1, then the method is
called rank-conservative.

If rank(F;.;.&) < rank(F..¢). with & = O(z), then the method is cailed &-
rank conservative.

From Theorem 2.2, we derive a condition that a rank conservative sciver
must fulfill.

Lemma 2.3. Let F. = R(A, V,). In exact arithmetic, it holds that rank(Fi.y)
< rank(F) iff

r{d,vp1) € REYU RV or vy € #F).
where Fy = R(A, V;). Numerically. we can say that if

tg fi‘ f‘

beor

r(A.. )l <eor [ 2ina <e
then there exists a & = O(g) such that rank(F.,.&') < rank(£. ).

Proof. Since Theorem 2.2 shows that Fi = [rn ‘F; Pir(4, 1)), we have
rank(F}+|)<rank(F})1ff,, (A tre1) € #(Fi)onfrank( #: F) = rank() —1.

The first condition is true iff r(d,1..1) € #(F) U #( KM) the second one
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holds iff 14, € #(F). Using Lemma 1.1, we can prme the second part. Say
@ = 62 > ... are the singular values of i and ¢} > 6% > --- are the singular
values of [F} /’, r{d. v}, Combining the first condition with Lemma .1,
gives

<25 Airdon il <
andifo; <cfori=1..... k. then
o, < Ko, + [t/‘“ Pl k4 De=

Thus, rank(F;.,.&) < r‘mk([ﬂ P e i)l :)<1.mk(f2 ¢). The proof is
completed by noticing that if r4.; = Fh + s with |Juf| = 1 and Whil=0 (1),
then Lemma 1.1 can be applied: if we set o = hlle, then
rank(#; F.¢) <rank(Fe)— 1. O

Lemma 2.3 divides the set of rank conservative solvers into two different
types. First. there is the Arnoldi type algorithin for which r;.; € #(£). This
condition ..orrnponds to setting wy = 4 %1, for some vector # € C*.

The second type is an RKS or Davidson type algorithm. These methods
compute 1y such that #{d.v;. ) € 24U A(V) = ﬁ(h)u 2(1). In order
to compute vy, (even implicitly) from r(4. vy ). these methods will need to
solve a linear system. Both methods are rank conservative, as we show in the
toilowing theorem.

Lemma 2.4. Let by.y = Fipy + Abige be an arbitrary vector in #(¥) U A4V,
Given some 3. B € C. then at step k of an orthogonal projection method, the
vector wy satisfies
(‘IAA e /fkl)"‘,; = f)‘- o1 (8)
iff rank(F; ) < rank(F;).
Say that % =1 and that the vector u'. is approximated hy vy such that

s,L ,~h4 P - (4 /f,J)n,, ;! 0 uml scl = R(4. ). Then |2, /’,‘ Sl
umk(F} &), with & = O(&). Ilcnrc the

mcll:ml is & -ranl\ conserratire.

Proof. Since 1. = ?’,‘u‘/“ ﬂ’,guﬁ we can write that wy = gry .y + W,
(n # 0). If we plug this in Eq. (8). then we obtain
Vi + Advigs = (ot ~ B ey + Vily)
= mfdvy. — ey + wAd Vg - BV
Since r{d. ;) = dvgy — ;e with 7 =) vy, this becomes

unE(do i) = B+ Bohi) + AVilgy — why) — Svg g
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with & = (%7 +/5A);] If % # 0, then this means that r{4.0,.4) € £ (Vi)
U A(AV) = AV ) U A(R(A.17))) so that m(d. 1y .y) € #(V.) U A(F). Using
Lemma 2.3, thrs is equivatlent to saying rank(F; . ) < rank(£).

If % = 0, then

Sty = Rdpe + Bl + Abig.
Applying .2, gives
frgy = .2 AV = Fge.
By Lemma 2.3 this implies again that the rank does not increase.

Let us now prove the second part. Using #{d.ep ) = At — e
= {d — B0y + (B = )i we can derive

M. t1) = 1<w — Bl = (4 = B k) + (= ey
= -(h(p; — By Al — ) = s (B - e
and hence
"”l;z,."("‘""‘") RO E R A—(R(I BXgs — ) — 2, 50
= :7(3(44 =Y = P2 (Ao ol
= ;;l’—{ 12, 2; sii<e
reminding that [5] = |2}, w|l. Using Lemma 2.3, this proves the theorem. O

Basically, Lemma 2.4 says that in exact arithmetic there are enly three rank
conservative eigenvalue solvers: Arnoldi. RKS and a Davidson algorithm that
used an direct linear system solver. Inversely, any cigenvalue solver that has a
residual of rank 1 can be interpreted as a generalisation of an Arnoldi or an
RKS process.

Example Z.i. We illustrate the difference between rank-conservative cigenvulue
solvers and #-rank-conservative solvers with a small example of the RKS
method.

We constructed a 100 x 100 bidiagonal matrix A. setting (4),; = —~i and
(4),;., = 1. We compute the rightmost eigenvalue 2 = —1 using Algorithm 1.1.
The starting vector is ¢; = [0.1. 0.1.....0.1]" and ., is computed from
wy —— (4 — gl )i, where g = 1 and g, = ;. for i > 1. The approximation &, is
computed as the rightmost cigenvalue of G;. The lincar systems are solved with
Gaussian elimination. It is well known that the systems will only be solved wiih
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a (relative) error proportional to the coudition rnumber of the matrix. i.e. rel-
ative to |4 — i Jiiii{4 — #,))""i. The error will be large when the method
converges. This effect is il'nstrated in Table 1. The able shows for iteration
step 4-8 the error on the eigenvalue, the residual norm and the absolute error
on the solved system. It also displays the three largest singular values of ;. In
theory. this RKS method is rank conservative. In this exwinple, the second
singular value of the residual can not be neglected at the point of convergence,
in this case the sixth step. '

The second part of the table shows what happens when we fix the shift
i = Os fork s = 3. The quadratic convergence is lost. but the convergence rate is
very high. The secb:;d singular value of F; remains of order le—-12. If we set e.g.
£ == le--11. then the &-rank of ¥ is one.

3. Restarting and filtering

In practice. we cannot assume that Algorithm 1.1 will converge in a pre-
dictable amount of steps. Furthermore, if several eigenvalues must be found,
then the number of iteration steps that the algorithm needs in order to find
them all, v 1 likely exceed an acceptable amounti. A restarting procedure for
relation (1} must be considered. A different reason for restarting the Arnoldi
relation (for the generalised eigenvalue problem) was formulated in {2} if the
problem has 2n infinite eigenvalue. then spurious approximations of this infi-
nite cigenvalue can pop up and bring about wrong results. The filiering
property of the Implicitly restarted Arnoldi {2] algorithm can be used to filter
away these spurious eigenvalues. In [16], it is shown how the restarting of the
Arnoldi equation can be generalised to the RKS equation. A different re-
starting procedure, based on the Schur decomposition of G; for the Jacobi-

Table 1

Using RKS with shift 4, ~ &, gives quadratic convergence, but a residual with farge rank. The
second part shows RKS with & fixed shift (m = 05 for & > 5). The convergence is stower but the
residuai rank remains one

k 10, ~ 4 fiAw ~ vl i - s ywyg ~ ) @ oy ar

4 3.8e-1 7.Te-1 {.5e~16 2741 5.5¢-14 1.0e-14
) 1.2e-3 7.5e-2 59e~14 26e+l 8.3e-14 1.4e~14
[ 2.3e-7 tie-5 3e-11 25erl 30e-12 Lle-14
7 22e-18 2213 223 2.5¢+1 1.8¢-9 9.4e-13
8 1.2e~16 Loe-14 3.0e-2 3.Sekl T.le-2 5.2e-10
6 23+ 1.0e-5 4.3e-15 25e+] 30e-12  1L0e-14
7 9de-12 1.2e-9 1.3e~i5 2.5e+1 5.60-12  5.7e-14

B 2le-15 Lie-13 4.6e-13 2.5e+1 80e~12  1le~13




G. De Samblanx, A. Bultheel | Linear Algebra and its spplications 286 (1999} 45-68 59

Davidson algorithm is proposed in [17]. [n this section. we will consider these
two related procedures for an arbitrary OPM.
When we use the word restarting, we mean the reduction of Eq. (1) to an
equation
AV Ly = VK + T, — 6 OF,. {9)
with ¥/, F2, € C"*7 and K. L, € C*""47 If these are matrices that
could have been generated by the same OPM, using a new starting vector 17,
ihen we call this operation an impl.:it restart. Otherwise, the equation is re-
started explicitly. Often, an implicitly restart procedure can be seen as a fil-
tering procedure. After the filtering, the new basis J{7, contains a filtered
version of the old basis ¥;_.

ATE,) = Abp AV,

where ¢,(4) is a polynomizl or a rational filter function that depends on the
restart algorithm.

3.1. Reducing the projection equation

Consider the reduction of Eq. (1) to an Eq. (9) of lower dimension. It is
clear that a transformation of J; into ¥, must be orthogonal. i.e. there exists
an orthogonal matrix O such that §;”, = V0. A corresponding transformation
will then be applied on G;. The following lemma shows this for the general
case.

Lemma 3.1. Given a set of mutrices V. Ki. Ly and FL that fuljil
AViLy = ViKy + (tud — 6 d)Fi. Say rank(F) =1 and Fp=gr’, g€ cre,
ra CLIF1Q q) is a unitary matrix, with Q € TV aad g € TP, and if
Z € TP is q jull rank matrix such that

(a) ¢'KZ=0 or q'K,=ger. ggeCT',
b)gLZ=0 or ¢lLi=gr get"

then with V’ = KO K, = OKZ L, =007 ad F,=FRZ+w'Z, Jfor
some w € €1 we get

,W,Lk = KK, eep ™ ~(ud ~- o d)F,.

Moreover, rank(F” ) < 1.

Preof. Since Q0" + qq" = I, multiplication of AVl = ViKi + (tad — ol }Fi
with Z gives
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AVOQ LiZ + AViyq' L Z
QO LZ+dhay Lz WUD K Z + Vigy Ky Z +(Tid — 6,0) FZ .
Bitig, e . N revnser’ \,7
Wl 7 arZ

Thus, £ = FZ +wr'Z = (g + wprZ and thus rank(F, )<l O
I3 A p

If we reduce the size of the subspace F; by the rank of the residual. i.e. / = p,
then the distinction between {a) and (b) in Lemma 3.1 may become obsolete.
Indeed. if Z € €% ', then the null space of Z has dimension /. which is equal
to rank(r). So there will afways exist a Z such that #Z = 0. In that case,
supposing that 'R, = gg»” and ¢'L; = g» implies that there exists a Z such
that ¢'KiZ = 0 = ¢ L Z. Netice also that if’ w # 0. then the property that
¥i L £ is notinherited aviomatically by 1,7, and F° .

The two ways to vestart an OPM are clear from the proof of Lemma 3.1,
The first solution is constructed such that the additional residual term
(AVag Ly — Fgqg KOZ s equal to zero. The second solution makes this re-
sidual of the saume form as the original residual. Both solutions result in a new
residual 77, that has the same rank as the residual before the restart.

From a different point of view. there are also two different possibilities for
reducing the size of the projection equation. Reducing the size of the subspace
¥}, means the removal of a subset of its vectors. YWe call this filtering of the
subspace. These vectors can be selected in an explicit war. e.g. as the Ritz
vectors that approsimaie “uninteresting” cigenvectors. The filtering can also be
worked out in an implicit manner.

B

3.2. Reduction with Schur vectors

in the explicit approach. we cun make use of the generalised Schur de-
composition of the matrices A, and L;. This corresponds to the restarting
approach in [17]. This decoraposition computes a set of orthogonal matrices
0.7 ¢ such that QK Z = Ty and Q' L7 = T,. with upper triangular
matrices Tx. T, € ©4% I we multiply the projection equation on the right by
Z. then

AKQO L2 = OO K Z + (ud - aiEZ.
AGOT, = LOTx 4+ (ud — o )R Z,

if FiZ = 0, then this would be o partial Schur decomposition of 4. We set
10 = F and denote by 177, the sume matrix, but restricted to its first & — p
columns. Because of the upper triangular form of 7 and 7. the relation can be
reduced 10 Eq. (9) by simply deleting the last p columns. If Q can be computed
efficiently such that the wanted information is collected in the first & - p col-
umns of }; . then the restart may be expected to give good results. We expect
also that rank(/%) = rank(J7 ).
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The matrices involved in this restarting procedure can also be found without
using a Schur decomposition. This is shown in the following lemma. that says
how a set of Ritz values can be removed explicitly from the agproximation.
Therefore, we call these explicit filtering procedures. in contrast with the im-
plicit filtering in the next seetion.

Lemma 2.2, Gircn mmfmm Vi Ki. Ly Fy as in Lemma 3.1 with Vi F; = 0. Let
(Droys = Vilgzy). i= 1., £ be the (Harmonic) Ritz pairs of the pmhlcm. ie.
Kizi = Oilyz;. Define the matrices Q and Z € C° “F 7 such that Q is orthogonal
etird

ML) = Az lm,) and QY = AT

Then 1, = BO. K} » = QRKZ L, = (7 1.7 and F; |, = FZ define u projec-
tion cquation that g nerates Ill(' \u'm‘ { Hmnwm:) I?H- pairs, except for
(“,g 1:-!-_‘& o ;) ..... (”&.};),

Proof. We only have to prove that if ¢"Q = 0. then ¢ K2 = 0 = ¢" [ Z, so we
can apply Lemma 3.1, Since there exist a non-singular matrix P for which
OP = LiZ. ¢’ 1,Z must be zero. Also. forall i <k —p. ¢ Kz, = g Liz = 0,
which prmcs ¢ KiZ = 0. Since 737 = FZ. it lollows direetly from £'F; =0
that (1} )R, = Qi RZ=0. T

This lemma illustrates the difference between implicitly woatarted Arnoldi U]
and implicitly resiarted RKS [16]. For Arnoldi. i =7 and thus onc may
choose = Z. whercas for RKS, 7, # /.

3.3, Implicit filteving

IRA gives us another way to look at a restarting algorithm. Given a shift g,
a step of IRA combines the basis vectors 1] of a Krylov subspace .# (4. 1)) to
a new orthogonal basis for . (4. (4 ~ g/)r;). Thus, it computes the results
¥y Gioy of an Arnoldi iteration with a new starting vector ¢] = A - nf)e;.
The vector that is removed from the subspace ¥ is not selected explicitly. but it
is an implicit result of the cheice of y. One can prove that if the shift is chosen
equal to a Ritz value g = 0. then the corresponding Ritz vector is removed
from V. so implicitly Lemma 3.2 is executed.

Let us recall briefly the mechanism behind IRA. Suppose that we ran the
Arneldi algorithm to obtain 417 = },G; + £, with G; upper Hessenberg and
Fi = fie; the rank one residual. Given a shift g we compute the QR decom-
position QR = G, — ul. with Q unitary Hessenberg and R upper triangular.
Hence, we can write
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R

0

Deleting the last column of both sides of this equation makes F; vanish, so
(A4 — pl)Vioy = QR

If we define ¥, = 1;0,. then this means that V", = (4 — p/)Vi_R;" and thus
A = A4 ~ )iy (16)

supposing that R, has full rani. (one can see that this is true if p is no eigenvalue
of A). Eq. (10) proves the impiicit filtering property of the IRA algorithm, since
V", equals the old subspace ¥ filtered with a polynomial of degree 1 in 4.
The zero of the polynomial is pr. Repeating the restarting algorithm builds a
polynomial of higher degree.

On the other hand. if we multiply the equation from the right by Q. then we

get

(A4 = Y Or = KOROy + FQ1.
AV =B R »lO + uOh) + (qarie; + fie})Oy = V2, G + FL,.

(d = pu)Vi = V(G — ) + F = QR + Fi = Vi[O qﬂ{

r + fiel
€.
" Jk€y

The matrix @ fulfils the conditions of Lemma 3.1. It is easy to see that
G;, = 0;Gi0, is upper Hessenberg and

F,=0 -0, = rak(f )<L

Lemma 2.4 showed that we cannot filter the subspace using a restarting
procedure that decrements the size of the subspace ¥,y by one if the rank of
the residual is larger than one. However, we can implicitly apply a filter, but
then we will need to delete more than one vector.

Proposition 3.3. 4 restarting algorithm that reduces the size of the subspace Vi
with ane, can only be a polynomial (or rational) filter of degree one, if the rank of
the residual matrix equals one.

Proof. Due to the correspondence with an Arnoldi or RKS process (Lemma
2.4), a relation with rank{F;) = | can be filtered while restarting. This is shown
in {16.1]. Inversely, for a rational filter, given a full rank matrix P € C*** (set
£ =[P 0]"), given any vector ., € C**! and a pair 2, B C. If 1.t spans a
filtered version of ¥;, then

V) = haQ= (24 - 1) (4 - gy P

AV (20 + P) = Ve (0 — pP).
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and
AVt [2Q + Pt} = G [(BO — puPY Y\ AVeati)]
+ {0-' - ‘:LHA”;T + “kf.)}
Thus. rank(F) = rank(#}; Ar;..) = L. Setting 2 = 0 and f§ = L. gives the re-
sult for 4 polynomial filter. O

The oliowing theorem shows how in general an eigenvalue solver can be
restarted in combination with an implicit siltering step.

Theorem 3.4, Given Vi. Ki. Ly and Fy that fulfil the projection Eq. (1). Suppose
that Fy = [0 F;,] F, € T"7 and rank(F;) = pmul suppose that 2. € C are given
such that /2 is not an cigenrale of A and firy # o2 If V) R = 0 then with the
OR factorisation 2K, — il =[Oy @2IR and Z = (ki - o4ly) "' Q1. we define
L,\._,, = Qi LZ K} L EOKZ and l/k~P = V.. The relation

,2‘ pL,; » = i‘;::p":&"‘wp -+ (‘L'A-A -_ 641)1;; »

is a restarted projection cquation. so o;., =0y and 1o, = 1. Morcover,
(KR F,=0and

.ﬁ(:;f_p) = .w((r‘.A —o ) (k- /;1;;;_,,}.
Proof. It can easily be derived that by shifting the projection equation,

(1.'1‘.4 - Ugl)”E(ZKk - I;LA\ = (S(A - /{I)IVZ{T&KQ - ﬂ'&Lz~)
- (Bt ~ 2o Y (rd — 6 D)F;.

If we apply Lemma 3.1 on this equation, then r is defined by
F=F0L}=Fr. On the one hand. Oi(xK; — fli) = [0 O:]R
= R{0 1,] = Rr*. where R is the p x p lower triangular submatrix of R. On the
other hand, Qz(!’gKk (’Fng)Z Q (I&Ii‘ - F&Lg)(l’ng - 5/‘L1\) Q; == S0
Lemma 3.1 may be applied. Hence,

(wd — o)V, (2K = BL; ) = (2d —~ IV (K,
~ ({(Bre + 26)F, + (1A — el )RQR0 1|2

p Ol )

and shifting back the new pro je&.uon equation proves the first result. We find
that £, = RZ + {fr + 20¢)” Yed = 6 ) Q:R(0 1,]Z. So if ¥ F; =0, then
(K., EL, =0 because 0j@: = 0. O
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This theorem can also be applied in the special case where L = [, 7, = O and
a, = —1 and this gives:

Theorem 3.5 Giren V. Gy F. such that AV, = V.G, + F,. Suppose that
Fi = [0 E,].F, € C"" and rank(F) = p. If. given the parameters 2. € C such
that B/ % is no cigenvalue of A, the matrix Oy contains the first k columns of the
OR decmnpo.s‘i'timz of Gy — fil =0 Os]R, then Gy p =GO and
[ A8 p = 120y define a restarted relation

AV, =V, G, ,+F

ot

with rank{F," 1') < p. Morcover, if V) F = 0, then

hep

(V. VF,=0and .w(;;: ,,) = A((2d - fD)¥i_,).

Proof. This theorem is a special case of Theorem 3.4 with L; = 1. G, = K;.
o =—~1and iy = 0.
Notice that with

3G, - i = [0y 0| B

* TRV 0 R

we derive that 2G; |, = Q((2G, — Bl + BNQy = (R RO+ p1. O

The implicit restart cannot be repeated immediately. because the first £ — 2p
columns of ', are not equal to zero. However. the restart can be repeated on
the rotated system

AV ,G=¥ GGG G +F,G

"
or
AV GGL ,6) =V, GGK, G+ (A -6 G

gy . »

with G'G = I = GG" and £, ,G = [0 -+ 0 %]. Notice that G can be computed
from Z or Q) (G must be constructed such that the p x (k — p) lower left part of
ZG or QG is zero).

The results for the inexact filtering procedure are summarised in the Algo-

rithms 3.1 and 3.2. We do not need to know the matrix 7, to compute the
restarted equation.
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Alogrithm 3.1, Inexact polvnomial
tiltering

In: Vo Fo=[0...0.F) with ¥V, =0,
and Gy, 2. e C

Out: G, . V. sm h that %’(l‘ ,,)
-»’(m~/;1 i)

. et (G, Gy} = 2Gy — Bl

. Compute Q. Ry from (';‘,..«,, =R,
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Alogrithm 3.2, Inexuct rational filtering

I Vo F = 1[0...0.F)] with VF, = 0.
and K - k. L;. x/is(,

Our: K, ,,.L& -~ ‘ p such that h’( T !,)
=204 -l (2 ~—ffl)h.,,

. Set |Gy, G} = 2K - BLs
Compule O Ry from G 14_,, = OiR,

. Set Ry — Q"G,,

. Compute G from Oy

. et " P h(),('

6. Set G;_ p ‘G {R|R~g0)(¥ +L1

Set Z (k' - 0% L‘)
C nmpme G from Z
Set V', — BOWG
Set K., — G"O1K:ZG
7. 8et L, - G Q| LZG

W P ) 19 e
ps}h-t‘—wu-—

Example 3.1. We iilustrate the use of an implicit filter for a s-rank conservative
solver with an example. The example involves a generalised eigenvalue problem
with a singular B. We bring this problem back to a standard cigenvalue
problem by studying the eigenvalucs of (4 — ¢B)” !B, which has the same
eigenvectors as the original problem. The matrices come from the simulation of
flow of a viscous fluid with free surface on a tilted planc. using a finite element
approach. The size of the eigenvalue problem .ix = /By is # = 536 and the
rightmost cigenvalue is computed. The rightmost eigenvalue is equal to
/= —9.4883.

Since the matrix B is singular, the cigenvalue problem has an infinite ei-
genvalue. Approximations of the infinite eigenvalue will occur in the solution
as large, finite eigenvalues. If such a spurious cigenvalue becomes the rightmost
one, it will mislead the algorithm and the exact solution will not be found.
Therefore. we will filter them out with the inexact filtering procedure of Al-
gorithm 3.1,

We iterated the OPM algorithm A = 10 times with a starting vector
vy =1 1'/vn and wy = (4 — 6B)" Bu. with a shift ¢ = —1. Seiting the
matrices K, = (}; Bl:) “land L = (K d 13) "', we computed the approximate
eigenvalues as lhe eigenvalues of the small system

Ltz= 0K
We do not know the matrices G or /4 in the relation
(4 - aB)'BY; = VG, + F.

but we can compute the residual from 44;L; = BVK, + F,. which corresponds
10

(4 — 6B) ' BY, = KLi(Ki — oply)™" + (A — aB) ' B(Ki — auli) ™
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Setting Gy = Ly(Ki — ouly)™" and using F(K: — o:L,)~", will give the input
matrices for Algorithm 3.1.

The linear system was solved using GMRES to a tolerance of 10 x i07¢, for
the first eight steps and to a tolerance of 10 x 10~° for the last two steps (since
inexact iterative methods converge asymptotically well, it is better to use a
higher tolerance at the end of the process [18]). The results are shown in Ta-
ble 2.

Implicitly restarting the relation seems not to conflict with the convergence.
i.c. it does not reduce the residual norm. Only when the parameter p - the
assumed rank of G; — is taken too large, some convergence is lost. The quality
of the implicit filter grows with p, because the neglected part of the residual
then becomes smaller. Since there are no eigenvalues with a positive real part,
Ritz values with a positive real part can be considered as spurious eigeavalues.
With p > 2, all spurious eigenvalues with a positive real part are filtered away.
The filter is then applied with very good accuracy. But if we set p = 3, then
some convergence is lost (lr(4, )|l = 1 x 107%). Comparing the third row to
the second column, one can see that the accuracy of the filter is proportional to
Gpiy-

4. Conclusion

We showed in this text that an implicit filtering procedure can only be ap-
plied on rank conservative methods or methods that have numerically a low
residual rank. The larger the rank of the residual matrix is, the more inaccurate
the implicit filtering will be or the more basis vectors must be sacrificed. We

Table 2 .

Application of ihe implicit restarting algorithm on an inexact OPM. The first column shows the
residual norm of the Ritz-vector, the number of eigenvalues with a positive real part, the error on
the implicit filter (Wi_, = (4 — 6B) ' B¥. ) and the largest singular values of Fi(K: ~ oL,)™". The
following columns show the same quantities after a restart with an assumed residual rank of
p=12.3

k=10 p=1 p=2 p=3
llr4. Lix 107 LI x 1077 59 % 10" 1.0x 10~
# positive I 1 ¢ 0
114'{;. Wepll 59x 1077 19x 107 34x10®
ay 1L1x10? S.1x 10! 6.7x 107 8.7x 10
a 6.3x 1077 35x 10 20x 107 26x 107
03 3ix10™ 6.7x 107" 25x 107 5.6 x 10°%

o 50x 10" 2.1 x 10" 2.1 x 1077 23 x 10"
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showed that the set of rank conservative eigenvalue solvers is restricted to those
methods that use an Arnoldi type of scheme (with matrix-vector products) or
that perform Rational Krylov like computations (solving a linear system with
the matrix 4 accurately). Other methods and inexact variants of rank conser-
vative methods cannot be filtered implicitly in combination with an implicit
restart. -

Alternatively, unwanted Ritz or Schur vectors can also be filtered away
explicitly by using a Schur decomposition of the projection of 4 on the column
range of ¥;. The disadvantage of this explicit approach is that one raust identify
the unwanted vectors and that only Ritz vectors or harmonic Ritz vectors may
be removed. Using an implicitly filtering function, one can also remove those
vectors that correspond to spurious eigenvalues, even if thes¢ are not Ritz
vectors. So the message is relatively pessimistic: true implicit filtering can only
be applied in a very limited set of cases. If a better filter must be applied. then
the cost - in terms of ‘lost” subspace vectors - will be larger.
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