Restrictions on implicit filtering techniques for orthogonal projection methods

G. De Samblanx *, A. Bultheel
Department of Computer Science, Katholeike Universiteit Leuven, Celestijnenluan 200A. B-3001 Heverlee, Belgium

Received 24 April 1997: accepted 13 July 1998
Submitted by P. Van Dooren

Abstract

We consider the class of the Orthogonal Projection Methods (OPM) to solve iteratively large eigenvalue problems. An OPM is a method that projects a large eigenvalue problem on a smaller subspace. In this subspace, an approximation of the eigenvalue spectrum can be computed from a small eigenvalue problem using a direct method. Examples of OPMs are the Arnoldi and the Davidson method. We show how an OPM can be restarted - implicitly and explicitly. This restart can be used to remove a specific subset of vectors from the approximation subspace. This is called explicit filtering. An implicit restart can also be combined with an implicit filtering step, i.e. the application of a polynomial or rational function on the subspace, even if inaccurte arithmetic is assumed. However, the condition for the implicit application of a filter is that the rank of the residual matrix must be small. © 1999 Elsevier Science Inc. All rights reserved.

AMS classification: 65F15
Keywords: Davidson; Implicitly restarted Arnoldi: Standard eigenvalue problem; Shift-invert

1. Introduction

Consider the problem of finding a limited set of solutions to the eigenvalue problem

[^0]$$
A x=\lambda x, \quad A \in \mathbb{C}^{n \times n}
$$

If the dimension of this problem is very large or if A is sparse, then it cannot be tackled using a dense or direct method, such as the QR method, due to time and memory limitations. Therefore, a large family of iterative solvers has been derived that are able to find one or more specific eigenvalues of A, e.g. the rightmost eigenvalues. Most of these methods build iteratively a subspace basis V_{k} of dimension k on which the eigenvalue problem is projected. The eigenvalues are then approximated from this small projected problem, using a direct solver. We call these methods Orthogonal Projection Methods (OPM).

However, if the size of the subspace V_{k} becomes too large, then the eigenvalue solver slows down (or it can reach a memory limit). The method then has to be restarted. The restart can be worked out explicitly, deriving new starting conditions from the unsatisfying solution. It can also be done implicitly, by reducing the size k of the subspace basis to $k-p$ and thus removing a subset of the information in V_{k}. A well known example of an implicitly restarted eigenvalue solver is the Implicitiy Restarted Arnoldi method (IRA) of [1].

Generally, an implicit restart is cheaper and more stable than an explicit restart. It has the additional advantage that it often implements an implicit filter on the subspace basis. If an implicit filter is applied, then the new basis can be seen as a copy of the old basis, multiplied by a polynomial (or rational) function in A. Hence, by implementing implicitly a filter, a restart procedure implements a form of subspace iteration. Spence and Meerbergen [2] noticed that the implicit filter can be used in order to remove spurious eigenvalues from the projected problem.

The idea of implicitly filtering is based on the assumption that exact arithmetic is used. For example, if the Arnoldi method is used on a shifted an inverted matrix $(A-\sigma I)^{-1}$, then the accuracy of the implicit filter that is implemented by the implicitly restarted Arroldi algorithm depends on the accuracy of the solved systems with $A-\sigma I$. There are many methods, such as Davidson, Jacobi-Davidson or even the Rational Krylov Sequence method (RKS), that do not require the use of accurate system solutions. For these methods, a restarting procedure cannot implement in general an implicit filter.

It is the aim of this text to show how a general cigensalue solver can be filtered implicitly in combination with a restart. In taci, we explairi why it is hard to do so if the eigenvalue solver uses an inexact method to solve the linear systeres. involved. It is hard because it is expensive or even impossible in some cases.

The problem is that implicit filtering always comes with the significant cost of the curiputational work of one or more iteration steps, i.e. the lose of some computed basis vectors. If the purpose of the restart is to reduce the size of the approximating subspace basis V_{k}, then this cost is the key behind the reduction, and the loss of basis vectors is not considered disadvantageous. But if e.g. spurious eigenvalues must be filtered away, then the cost of more than one iteration step can not be considered as a 'fair deal'.

Let us give ar example. Each step of the Arnoldi method requires essentially a matrix vector multiplication (plus some overhead that we neglect here). Each of these steps adds a vector to the basis V_{k}. If we reduce the size of V_{k} with p, using the IRA algorithm, then we throw away the work of p iteration steps. The indirect cost of the restart is thus p matrix vector products. Suppose that the IRA algorithm reduces the subspace V_{k} to a subspace V_{k-p}^{+}of size $k-p$ such that it implements implicitly a polynomial filter $\phi_{p}(A)=\prod_{i=1}^{p}\left(A-\sigma_{i} I\right)$

$$
\mathscr{R}\left(V_{k-p}^{+}\right)=\mathscr{R}\left(\phi_{p}(A) V_{k-p}\right) .
$$

The zeros σ_{i} of ihe filter polynomial are provided by the user. They are chosen on the basis of on the knowledge ibat is present in the basis V_{k}. They allow us to filter out less relevant information and to keen the relevant subspace. Clearly, the p matrix vector products that are iost by removing p basis vectors are implicitly recovered by the filter polynomial (of degree p). Since the polynomial onnsists of p multiplications with A, we can say that as many matrix vector products are recovered as lost.

Onse could a'so apply the function $\phi_{p}(A)$ explicitly on the subspace basis, but this would cost $p(k-p)$ matrix vector products (plus the orthogonalisation of $\left.V_{k-p}^{+}\right)$. Therefore an explicit application of the filter is often ruled out as being too expensive.

For more general methods, the cost of an implicit product with a matrix polynomial (rational) function of degree p, comes with a cost of $l p$ basis vectors, with $l>1$, instad of the p basis vectors for IRA. These methods loose $l p$ vectors but only recover the woik of p iteration steps: so there is more lost than recovered.

We prove in this text that the factor l in the cost of one implicit filt ring step corresponds to the rank of the residual matrix. This matrix spans the subspace of the residuals of all approximate eigenvectors in the column range of V_{k}. For Arnoldis method and for the RKS sethod, this rank is one. For block variants of these methods, the rank equals the block size.

Ther pher consws of two parts. First, ve prove a simple recurrence reiation between the residual matrices of subequent steps of an eigenvalue solver. This recursion is used to define the concept of a wonk conservative eigenvalue soiver. That is a solver for which the rank of the residus: does not grow when the size of V_{k} grows. It can be shoyn that all methods inat use a spectral transformation (i.e. the solution of a linear system with a me trix $A-\sigma I$) within their iteration, are rank conservative, and vice versa.

Then it is shown how rank conservative solvers can be filtered implicitly. This implicit filtering comes with the removal of l basis vectors, where l is equal to the residual rank. An algorithm is described that does so, based on a shifted QR decomposition of the projection matrix. The analysis assumes exact
arithmetic, but generalisations to a floating point context with rounding errors are made at each step.

Plan of the paper: The paper is structured as follows. In Section 1, we recall some basic facts on projectors and on orthogonal projetion methods. Section 2 derives a recurrence relation for the residual matrix. The concept of rank conservative eigenvalue solvers is introduced. Section 3 is concerned with the restarting of the eigenvalue solver. We show how solvers can be filtered explicitly and implicitly. Some conclusions are presented in Section 4.

Notation: In this text, matrices are denoted by upper case characters, vectors by lower case characters and complex numbers by Greek characters. The Hermitian transpose of a matrix or vector is denoted by V^{*} or v^{*} and $\|\cdot\|$ denotes the 2 -norm. The identity matrix is denoted by I and the k th unit vector by e_{k}. The column range of a matrix V is denoted by $\mathscr{R}(V)$.

1.1. Preliminary definitions

The analysis of an orthogonal projection method makes use of projection marrices. Let us recall some facts about projection matrices that are employed in the foliowing sections. These properties are used to show that the difference between the solutions of an eigenvalue solver in exact arithmetic and the solutions in floating point arithmetic, are acceptably small.

Definition 1.1. Given a matrix $\mathscr{P} \in \mathbb{C}^{n \times n}$. \mathscr{P} is called a projection matrix if $\mathscr{O P}=\mathscr{P}$. If $\mathscr{P}^{P}=y^{*}$, then \mathscr{P} is called an orthogonal projection matrix. Otherwise, $\%$ is called an oblique projection matrix.

If we apply \mathscr{P} to the columns of a matrix $V_{h} \in \mathbb{C}^{n \times k}$, then $\mathscr{P} V_{k}$ is the projection of V_{k} on the column space of . For an orthogonal projection matrix, . $p i_{k}$ is orthogonal to $(I-\mathscr{P}) V_{k}$. An orthogonal projection matrix can, using its singular value decomposition, always be written as $\mathscr{P}=Q Q^{*}$, with $Q^{*} Q=I_{m}$. The orthogonal matrix Q then forms an orthogonal basis for the column space of 9 . Inversely, we will denote the dual projection matrices that are generated by a matrix W by

$$
P_{W} \equiv Q Q^{*}, \quad \mathscr{P} \perp \perp I-\mathscr{P}_{W}
$$

where $\mathscr{H}(Q)=\mathscr{K}(W)$ and $Q^{*} Q=I$.
The goal of an iterative eigenvalue solver is to produce an invariant subspace for a given matrix A. For the iterative eigenvalue solver to be competitive with the 'direct' eigenvalue solvers, such as the QR method, the dimension of this subspace must be much smaller than the dimension of the eigenproblem itself. In general, the algorithm generates an orthogonal matrix $V_{k}=\left[v_{1}, \ldots, v_{k}\right]$. The columns of this matrix span the subspace oni which A is then projected.

In general, the projection is described by a pair of $k \times k$ matrices (K_{k}, L_{k}) and a residual matrix F_{k}. It is summarised in an equation

$$
\begin{equation*}
A V_{k} L_{k}=V_{k} K_{k}+\left(\tau_{k} A-\sigma_{k} I\right) F_{k}, \quad \text { with } V_{k}^{*} F_{k}=0, \tag{1}
\end{equation*}
$$

where $\tau_{k}, \sigma_{k} \in \mathbb{C}$. This equation is called the projection squation. We assume that σ_{k} / τ_{k} is not an eigenvalue of A, so ($\left.\tau_{k} A-\sigma_{k} I\right)$ is non-singular. In practice, a projection equation will emerge in one of two special forms. The first one corresponds to Eq. (1) with $L_{k}=I, K_{k}=G_{k}, \tau_{k}=0$ and $\sigma_{k}=-1$, such that

$$
\begin{equation*}
A V_{k}=V_{k} G_{k}+F_{k} . \tag{2}
\end{equation*}
$$

The matrix $G_{k} \equiv V_{k}^{*} A V_{k}$ describes explicitly the projection of A on $\Omega\left(V_{k}\right)$. The eigenvalues of G_{k} are the Ritz values and they approximate eigenvalues of A.

For some methods, the projection equation is written by use of a pair of matrices ($K_{k}, I_{,}$), a shift $\sigma_{k} \in \mathbb{C}$ and normalising $\tau_{k}=1$ in the following form

$$
\begin{equation*}
A V_{k} L_{k}=V_{k} K_{k}+\left(A-\sigma_{k} I\right) F_{k} . \tag{3}
\end{equation*}
$$

This notation useful for methods where the shit σ_{k} is difierent for different k, e.g. for the RKS algorithm. Eq. (3) can be rewritten in the form of Eq. (2), but for a matrix $\left(A-\sigma_{k} I\right)^{-1}$:

$$
\begin{equation*}
\left(A-\sigma_{k} I\right)^{-1} V_{k}=V_{k} L_{k}\left(K_{k}-\sigma_{k} L_{k}\right)^{-1}+F_{k}\left(K_{k}-\sigma_{k} L_{k}\right)^{-1} . \tag{4}
\end{equation*}
$$

One can prove that ($K_{k}-\sigma_{k} L_{k}$) is non-singular unless V_{k} contains an exact eigenvalue of A or unless L_{k} is singular.

The Ritz values of $\left(A-\sigma_{k} I\right)^{-1}$ are then given by the eigenvalues of the small generalised eigenvalue problem ($L_{k}, K_{k}-\sigma_{k} L_{k}$). These values are the Harmonic Ritz values of A [3]. In this text, we will derive most of the properties on the residual matrix assuming that Eq. (2) holds and then generalise them to Eq. (3).

The framework in which we will view the iterative eigenvalue solvers in this text is the framework of the orthogonal projection methods. Algorithm 1.1 defines a tempiate that covers the projection methods that generate the relation (1). Notice that the most important and distinctive step, the computation of w_{k}, is not specified by this template. Therefore, we underline that this template lies far from an algorithm in pseudo code that would be ready-to-implement. It only shows which entries must be computed to find a solution and at what stage of the algorithm they can be computed. For many methods, these matrices come for 'free' and they must not be computed explicitly.

Algorithm 1.1. Orthogonal Projection Method (template)

1. Given $A, V_{1}=\left[v_{1}\right],\left\|v_{1}\right\|=1$
2. For $k=1,2,3, \ldots$
2.1. Compute $G_{k}=V_{k}^{*} A V_{k}$ or compute L_{k} and K_{k}.
2.2. Compute F_{k} (if needed).
2.3. Compute $\left(\theta_{k}, z_{k}\right)$ from

$$
\begin{aligned}
& G_{k} z_{k}=\theta_{k} z_{k} \text { or } \\
& L_{k} z_{k}=\theta_{k}\left(K_{k}-\sigma_{k} L_{k}\right) z_{k} .
\end{aligned}
$$

2.4. Set $y_{k} \leftarrow V_{k} z_{k}$.
2.5. If convergence then exit.
2.6. Compute w_{k}.
2.7. Set $v_{k+1} \leftarrow \mathscr{P}_{i_{k}}^{\frac{1}{2}} w_{k} /\left\|\mathscr{P} \frac{1}{i_{k}} w_{k}\right\|$.
2.8. Set $V_{k+1}-\left[V_{k}, v_{k+1}\right]$.

Since the orthogonality of V_{k} is used implicitly, we must take care that this property is always true - to working precision. Therefore, reorthogonalisation must be considered [4].

The residual of an arbitrary unit vector and the residial of an orthogonal matrix is defined as follows.

Definition 1.2. Given a matrix $A \in \mathbb{C}^{n \times n}$ and a vector $u \in \mathbb{C}^{n}$ with $\|u\|=1$. The residual $r(A, u)$ of u is given by $r(A, u) \equiv A u-\left(u^{*} A u\right) u=$ ip $_{u}^{\perp} A u$. If $V \in \mathbb{C}^{n \times k}$ is orthogonal, then $R(A, V) \equiv \mathscr{P}_{V}^{\frac{1}{1}} A V$.

We can write for Eq. (2) that $R\left(A, V_{k}\right)=\mathscr{Y P}_{V_{k}}^{\perp} A V_{k}=A V_{k}-V_{k} V_{k}^{*} A V_{k}=A V_{k}$ $-V_{k} G_{k}=F_{k}$. For Eq. (3) however, we apply $\mathscr{P} \frac{1}{v /}$ and see that $R\left(A, V_{k}\right)$ $=\mathscr{P} \mathcal{P}_{k}^{1} A V_{k}=\mathscr{P} p_{v_{k}}^{1}\left(A-\sigma_{k} I\right) F_{k} L_{k}^{-1}$. In the sequel, we shall use \tilde{F}_{k} to denote $R\left(A, V_{k}\right)$ in general. Thus in case of Eq. (2), $\tilde{F}_{k}=F_{k}$, while in case of Eq. (3), \tilde{F}_{k} and F_{k} are related by

$$
\bar{F}_{k}=\mathscr{P}_{V_{k}}^{1}\left(A-\sigma_{k} I\right) F_{k} L_{k}^{-1} .
$$

By using Eq. (4), we could obtain an explicit expression for F_{k}, namely

$$
F_{k}=R\left(\left(A-\sigma_{k} I\right)^{-1}, V_{k}^{\prime}\right)\left(K_{k}-\sigma_{k} L_{k}\right),
$$

which is less attractive to deal with than $R\left(A, V_{k}\right)$. If $y=V_{k} z$ is a Ritz vector in V_{k}, then it is easy to see that $r(A, y)=\tilde{F}_{k} z$.

There are different possibilities to check the convergence at step 2.5., depending on the individual method. Most commonly, some measure for the residual norm $\left\|r\left(A, y_{k}\right)\right\|=\left\|A y_{k}-0 y_{k}\right\|$ is used, e.g. $\left|e_{k}^{*} z_{k}\right|\left\|\cdot P_{\mathcal{P}_{k}^{\prime}}^{\frac{1}{k}} w_{k}\right\| /\left\|w_{k}\right\|$.

Example 1.1. Many well known iterative methods for solving eigenvalue problems can be fitted into this scheme.

- Arnoldi's method [5]: If we choose $w_{k}=A v_{k}$, then we get Arnoldi's method. The matrix G_{k} is upper Hessenberg and its k th column g_{k} contains the orthogonalisation coefficients of the k th iteration step: $w_{k}=V_{k+1} g_{k}$. Moreover, $F_{k}=\left[\begin{array}{lll}0 & \cdots & f_{k}\end{array}\right]$, with $f_{k}=\left\|f_{k}\right\| v_{k+1}$. The next vector in the Arnoldi itctation is equal to the residual of Eq. (2) - which is called the Arnoldi
equation. If A is symmetric, then G_{k} is a tridiagonal matrix and the method is the symmetric Lanczos procedure [6].
- RKS [7-9]: If we choose $w_{k}=\left(A-\sigma_{k} I\right)^{-1} V_{k} t_{k}$, with $t_{k} \in \mathbb{C}^{k}$ some continuation vector, we get the (RKS) sequence method. RKS corresponds to an OPM that builds Eq. (3), where L_{k} contains the orthogonalisation coefficients and $K_{k}=L_{k} \operatorname{diag}\left(\sigma_{i}\right)+T_{k}$ is an upper Hessenberg matrix. T_{k} is the upper triangular matrix that collects the continuation vectors. As for the Arnoldi algorithm, F_{k} only contains one non-zero column. For RKS, the subdiagonal elements of L_{k} will always be non-zero - unless the method bas converged to some solution.
- Davidsun [10,11]: If we choose $w_{k}=\left(A-\sigma_{k} I\right)^{-1}\left(A-\theta_{k} I\right) y_{k}=\left(A-\sigma_{k} I\right)^{-1} r$ (A, y_{k}), then Algorithm 1.1 corresponds to Davidsons method. The Davidson method is well suited for use with an inexact linear system solver. If the system $\left(A-\sigma_{k} I\right) w_{k}=r\left(A, y_{k}\right)$ is solved exactly, then this method corresponds to an extended RKS method and $\operatorname{rank}\left(F_{k}\right)=1$. If the linear system is solved inexactly, e.g. with an iterative method, then $\operatorname{rank}\left(F_{k}\right)>1$.
- Jacobi-Dovidson [12]: If w_{k} is computed as $\mathscr{P}_{k_{k}}^{\frac{1}{2}}\left(A-0_{k} I\right) \mathscr{P}_{y_{2}}^{\frac{1}{2}} w_{k}=-\left(A-0_{k} I\right)$ $\times y_{k}$, by use of an iterative system solver, then the OPM is the Jacobi-Davidson algorithm. This method is a.o. an extention of the Davidson method. A short comparison between both methods can be found in [12,13]. Notice that for both Davidson variants, G_{k} is no longer an upper Hessenberg matrix. As for Davidson's method, it holds that if the system is solved in exactly , then $\operatorname{rank}\left(F_{k}\right)>1$.

We define the (numerical) rank of a matrix as follows.

Definition 1.3. Given a matrix $F \in \mathbb{C}^{n \times n}$, with singular values $\sigma_{1}, \sigma_{2}, \ldots$ then define the rank of F and its numerical ϵ-rank as

$$
\begin{equation*}
\operatorname{rank}(F)=\#\left\{\sigma_{i} \mid \sigma_{i} \neq 0\right\} \text { and } \operatorname{rank}(F, \varepsilon)=\#\left\{\sigma_{i} \mid \sigma_{i}>\varepsilon\right\} \tag{5}
\end{equation*}
$$

In order to understand the correspondence of an OPM to its numerical implementation, we show how a projection matrix acts on the (numerical) rank of a matrix and on its singular values.

Lemma 1.1. Given a matrix $F \in \mathbb{C}^{n \times k}$ of rank k, an orthogonal projection matrix \mathscr{P} and a vector $f \in \mathbb{C}^{n}$. Let $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{k}$ be the singular values of F.

1. If $\sigma_{1}^{\prime} \geqslant \sigma_{2}^{\prime} \geqslant \cdots \geqslant \sigma_{k}^{\prime}$ are the singular values of $\mathcal{P} F$, then $\sigma_{1}^{\prime} \leqslant \sigma_{1}, \sigma_{2}^{\prime} \leqslant \sigma_{2}, \ldots, \sigma_{k}^{\prime} \leqslant \sigma_{k}$.
2. Given a vector $v=F t+e$ for some $t \in \mathbb{C}^{k}$, with $\|t\|=1$ and $v=0$. If $\sigma_{p}<\|e\|$, then $\sigma_{p-1}^{\prime}<\|e\|$. Moreorer, $\operatorname{rank}(\mathcal{P} F,\|e\|) \leqslant p$.
3. If $\sigma_{1}^{\prime \prime} \geqslant \cdots \geqslant \sigma_{k+1}^{\prime \prime}$ denoie the singular values of $[F, f]$, then

$$
\begin{aligned}
& \sigma_{k, 1}^{\prime \prime} \leqslant \frac{1}{\sqrt{1+h^{*} h}}\left\|\mathcal{P}_{F}^{1} f\right\| \\
& \sigma_{i}^{\prime \prime} \leqslant \kappa \sigma_{i}+\left\|भ_{F}^{\prime} f\right\| \\
& \sigma_{i}^{\prime \prime} \leqslant \sqrt{\sigma_{i}^{2}+\|f\|^{2}}, i=1, \ldots k
\end{aligned}
$$

where $h \in \mathbb{C}^{k}$ is defined $b y: \mathscr{P}_{F}^{\perp} f=f-F h$ and $\kappa=1+\|h\|$.
Proof. For this proof, we use the fact that the singular values of a $k \times n$ matrix F are

$$
\sigma_{i}=\max _{X \in Y_{i}} \min _{x \in X} \frac{\|F x\|}{\|x\|}=\min _{x \in r_{k-+} ;:} \max _{x \in X} \frac{\|F x\|}{\|x\|}
$$

where x_{i} is the set of subspaces of dimension $i[14,15]$. Therefore,

$$
\sigma_{1}=\max _{x} \frac{\|F x\|}{\|x\|} \text { and } \sigma_{k}=\min _{x} \frac{\|F x\|}{\|x\|}
$$

We also rely on the fact that

$$
\max _{X \in Y_{1}} \min _{x \in X}\{\cdot\} \leqslant \max _{X \in F_{1}} \min _{x \in X \in x \neq 1}\{\cdot\}=\max _{x \in F_{1}, x \in X} \min _{x \in X}\{\cdot\} \leqslant \max _{X \in X_{1},} \min _{x \in X}\{\cdot\},
$$

i.e. the maximum over a 'smaller' set x_{i-1} is larger than the maximum over the original set x_{i}.

1. The first property is very well known:

$$
\sigma_{i}^{\prime}=\max _{x \in x_{i}} \min _{x \in x} \frac{\|P F x\|}{\|x\|} \leqslant \max _{x \in x} \min _{x \in x} \frac{\|F x\|}{\|x\|}=\sigma_{i} .
$$

2. For the $p-1$-th singular value, it holds that

$$
\begin{aligned}
& \sigma_{p-1}^{\prime}=\min _{X \in Y_{k-r^{\prime}:}}\left\{\max _{x \in X,\|x\|=1}\|\cdot P F x\|\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \min _{x \in \tilde{P}_{k-p+1}}\left\{\max _{\in \in X:\|x\|=1}\|P P F x\|,\|e\|\right\} \leqslant \min \left\{\sigma_{p},\|e\|\right\} \text {. }
\end{aligned}
$$

3. Say $f=F h+g$ and let $y=\left[x^{*} \alpha^{*}\right]^{*}$, where $x \in \mathbb{C}^{k}$. We normalise $\|y\|=\mathbf{i}$, thus $|x|^{2}=1-x^{*} \because$. There exists a $y_{0}=\left[x_{0}^{*} \alpha_{0}^{*}\right]^{*}$, such that $x_{0}+\alpha_{0} h=0$. Without loss of generality, we may assume that the α are real and positive. Hence, $x_{0}^{2}=1-x_{0}^{*} x_{0} \leqslant 1$ and .

$$
\begin{aligned}
\sigma_{k+1}^{\prime \prime} & =\min _{x \cdot x+x^{2}=1}\|F x+f x\|=\min _{x \cdot x+x^{2}=1}\left\|F(x+\alpha h)+x_{F} \cdot P_{F}^{i} f\right\| \\
& \leqslant \min \left\{x_{0}\left\|\mathscr{P}_{F}^{\frac{1}{2}} f\right\| \cdot \min _{x \rightarrow x h \neq 0}\|F(x+\alpha h)\|+\alpha\left\|\mathscr{P}_{F}^{\dot{L}} f\right\|\right\} \leqslant \alpha_{0}\left\|\not P_{F}^{i} f\right\|,
\end{aligned}
$$

For the other singular values, we can write

$$
\begin{aligned}
& \sigma_{i}^{\prime \prime}=\max _{X \in x_{t}} \min _{x \in X . x}\|F x+x f\| \\
& \leqslant \max \min _{x . x}\|F(x+z h)\|+x\left\|\cdot \frac{1}{F} f\right\| \\
& \leqslant \max \left\{\min \left\{x_{0}\left\|\cdot P_{F}^{L} f\right\|, \min _{x \in X \backslash\{h\}} \frac{\|F(x+x h)\|}{\|x+x h\|}\|x+x h\|+x\left\|\cdot P_{F}^{\perp} f\right\|\right\}\right\} \\
& \leqslant \max \left\{\min \left\{x_{0}\left\|\cdot P_{F}^{\prime} f\right\| \cdot \min _{x \in x_{i}(h)} \frac{\|F(x+x h)\|}{\|x+x h\|} k+\left\|\cdot P_{F}^{1} f\right\|\right\}\right\} \\
& \leqslant \sigma_{i} k+\left\|\cdot भ_{F}^{2} f\right\| .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\sigma_{i}^{\prime \prime} & \leqslant \min _{x} \max _{x \cdot z}\|F x\|+x\|f\| \leqslant \min _{X} \max _{x} \frac{\|F x\|}{\|x\|} \sqrt{1-x^{2}}+x\|f\| \\
& \leqslant \max _{x} \sigma_{i} \sqrt{1-x^{2}}+x\|f\| .
\end{aligned}
$$

If $x=0$, then this value is equal to $\|f\|$: if $y=1$, then it is σ_{i}. The extremum inside the interval $[0.1]$ is found at $\alpha^{2}=\|f\|^{2} /\left(\sigma_{1}^{2}+\|f\|^{2}\right)$. The value of the maximum is then $\sqrt{\sigma_{i}^{2}+\|f\|^{2}}$.

Note that the conclusions of this lemma only hold for orthogonal projection matrices. When oblique projectors ${ }^{3} \mathrm{obq}$ are used, it is possible that $\left\|\mathscr{F}_{\text {obq }} f\right\| \gg\|f\|$. In practice, this will be merely an exception, but it keeps us from drawing broad conclusions about the generalised eigenvalue problem, because the generalised eigenvalue problem makes use of oblique projector matrices. The standard eigenvalue probiem only needs orthogonal projectors. Consider some extremai cases of Lemma 1.1(3):

1. If $f \in \mathscr{R}(F)$ then $\left\|\mathscr{P}_{F}^{\frac{1}{F}} f\right\|=0$ and the matrix $[F, f]$ will have a new singular value that is equal to zero. If $\left\|: P_{F}^{\frac{1}{f}} f\right\|=\varepsilon$ is small. then the new singular value will be at most equal to ε. The other singular values will grow wo proportion to $\|f\|$.
2. If $f \perp(F)$ then $h=0$. We then expect a new singular value that is equal to $\|f\|$. The other singular values do not change. If $\|h\|$ is small, then the new singular value will be approximately equal to $\left\|\cdot \mathcal{P}_{F}^{\frac{1}{f}} f\right\| \simeq\|f\|$. The other singular values will not change much.
3. If $f \perp \mathscr{K}(F)$, but $\|f\|$ is small, then the singular values will not grow much either. The new singular value will be approximately equal to $\|f\|$.

2. Monitoring the residual matrix

We prove in this section a recurrence relation between the residual matrices of different steps of the eigenvalue solver. This relation is tien used to show which orthogonal projection methods are rank conservative and thus may be considered for implicit filtering.

2.2. A recursion o: the residual matrix

The subspace V_{k} depends directly on the computation of the vectors $w_{1} \ldots \ldots w_{k-1}$. As for the Arnoldi algorithm, these computations can often be written as a recurrence relation. The sarne can be done for the residual matrix.

Lemma 2.1. Let $V_{k+1}=\left[V_{k} v_{k+1}\right]$ and $V_{k+1}^{*} V_{k+1}=I$, then

$$
\begin{equation*}
R\left(A \cdot V_{k-1}\right)=\mathcal{P}_{i_{k-1}}^{1}\left[R\left(A . V_{k}\right) \quad r\left(A, v_{k-1}\right)\right] . \tag{6}
\end{equation*}
$$

Proof. The proof is quite trivial. Since $R\left(A, V_{k+1}\right)=\not \mathcal{D}_{V_{k+1}}^{\perp} A V_{k+1}$

$$
\begin{aligned}
& R\left(A, V_{k+1}\right)=\left[\begin{array}{ll}
\mathscr{P}_{t_{k}-1}^{1} R\left(A, V_{k}\right) & \mathscr{P}_{P_{k}}^{1} r\left(A, v_{k-1}\right)
\end{array}\right] \\
&=\mathcal{P}_{\dot{t}_{k-1}}^{1}\left[\left(A, V_{k}\right)\right. \\
&\left.r\left(A, v_{k+1}\right)\right] .
\end{aligned}
$$

From this lemma, we can immediately derive a recurrence relation for the residual matrices.

Theorem 2.2. If $\bar{F}_{k}=R\left(A, V_{k}\right)$ is the matrix of reviduals in Algorithm 1.1, then it satisfies the recursion

$$
\tilde{F}_{k+1}=. p_{k_{k-1}}^{1}\left[\begin{array}{ll}
\tilde{F}_{k} & r\left(A \cdot c_{k+1}\right) \tag{7}
\end{array}\right] .
$$

Recall that in the case of Eq. (2), $\dot{F}_{i}=F_{i}, i=k, k+1$. If F_{k} emerges in Eq. (3), then Eq. (7) says that

$$
P_{i_{k-1}}^{1}\left(A-\sigma_{k+1} I\right) F_{k+1}=p_{i_{k+1}}^{\perp}\left[\begin{array}{ll}
\tilde{F}_{k} & \left.r\left(A, v_{k+1}\right)\right] L_{k+1} .
\end{array}\right.
$$

Proof. The recurrence (7) is given in the previous lemma. The relation for F_{k} follows from combining the relation $\hat{F}_{i} L_{i}=\frac{1}{i_{i}}\left(4-\sigma_{i} I\right) F_{i}, i=k, k+1$ with Eq. (7).

The interpretation of Theorem 2.2 reveals information about the possible convergence properties of the algorithm. Indeed. by (7) the new residual matrix consists of the old residual orthogonalised to v_{k+1} and of the residual of the new vector orthogonalised to V_{k}. If the residual norm $\left\|F_{k}\right\|$ or $\left\|\tilde{F}_{k}\right\|$ is small, then the
method converges. In order to get a small residual norm $\left\|F_{\mathrm{h}}\right\|$, one should try to satisfy as nuch as possible these conditions: $\mathscr{M}\left(F_{k}\right) \subset \mathscr{H}\left(V_{k+1}\right)$ and $r\left(A, v_{k+1}\right) \in \mathscr{H}\left(V_{k+1}\right)$. The first condition is optimally fulfilled by the Arnoldi method, the second by a Davidson type approach.

Concerning the rank of the residual matrix, we first observe that in case Eq. (2) $F_{k}=\tilde{F}_{i}=R\left(A, V_{k}\right)$, so $\operatorname{rank}\left(F_{k}\right)=\operatorname{rank}\left(\tilde{F}_{k}\right)$. In case Eq. (3) however, it may happen that $\operatorname{rank}\left(F_{k}\right) \geqslant \operatorname{rank}\left(\tilde{F}_{k}\right)$, because $\tilde{F}_{k}=\mathscr{P} \dot{1}_{k}^{1}\left(A-\sigma_{k} I\right) F_{k} L_{k}^{-1}$ (and $\left.\operatorname{rank}\left(F_{k}\right)=\operatorname{rank}\left(\left(A-\sigma_{k} I\right) F_{k} L_{k}^{-1}\right)\right)$. The strict inequality will only hold in very specific situations. However, generically we aiso have $\operatorname{rank}\left(F_{k}\right)=\operatorname{rank}\left(\dot{F}_{k}\right)$ in case of Eq. (3) and thus for the general case Eq. (1). We will assume further in this paper that $\operatorname{rank}\left(F_{k}\right)=\operatorname{rank}\left(\tilde{F}_{k}\right)$ holds for the general case.

2.2. Rank conservative eigensolvers

If algorithms have the property that the rank of their residual matrix does not grow, i.e. $\operatorname{rank}\left(F_{k}\right) \geqslant \operatorname{rank}\left(F_{k+p}\right)$, then they are called rank consercatice. If the numerical rank is constant for the method, then they are called s-rank conservative. However, due to iounding crrors, the numerical rank of the residual can increase slightly, even for a theoretically ε-rank conservative method.

Definition 2.1. If for an OPM, based on Algorithm 1.1, it holds generically (i.e. for almost any matrix A) that $\operatorname{rank}\left(F_{k+1}\right) \leqslant \operatorname{rank}\left(F_{k}\right), k \geqslant 1$, then the method is called rank-conservative.

If $\operatorname{rank}\left(F_{k+1}, \varepsilon\right) \leqslant \operatorname{rank}\left(F_{k}, \varepsilon^{\prime}\right)$, with $\varepsilon^{\prime}=\mathrm{O}(r)$, then the method is called $\varepsilon-$ rank conservative.

From Theorem 2.2, we derive a condition that a rank conservative selver must fulfill.

Lemma 2.3. Let $\tilde{F}_{k}=R\left(A, V_{k}\right)$. In exact arithmetic, it holds that rank $\left(\tilde{F}_{k+1}\right)$ $\leqslant \operatorname{rank}\left(\tilde{F}_{k}\right)$ iff

$$
r\left(A, v_{k+1}\right) \in \mathscr{A}\left(\check{F}_{k}\right) \cup \mathscr{A}\left(V_{k+1}\right) \text { or } \quad v_{k+1} \in \mathscr{A}\left(\check{F}_{k}\right) .
$$

where $\tilde{F}_{k}=R\left(A, b_{k}\right)$. Numerically, we can sal that if

$$
\left\|P_{\vec{R}}^{\perp} P_{V_{k+1}}^{\frac{1}{c}} r\left(A, v_{k+1}\right)\right\|<\varepsilon \text { or }\left\|\mathcal{P}_{R_{k}}^{1} v_{k+1}\right\|<\varepsilon .
$$

then there exists $a \varepsilon^{\prime}=\mathbf{O}(\varepsilon)$ such that $\operatorname{rank}\left(\tilde{F}_{k+1}, \varepsilon^{\prime}\right)<\operatorname{rank}\left(\tilde{F}_{k}, \varepsilon\right)$.
Proof. Since Theorem 2.2 shows that $\dot{F}_{k+1}=\left[\mathcal{P}_{r_{k}, 1}^{1} \tilde{F}_{k} \quad \mathcal{P}_{\dot{L}_{i}}^{1} r\left(A, v_{k+1}\right)\right]$, we have $\operatorname{rank}\left(\tilde{F}_{k+1}\right) \leqslant \operatorname{rank}\left(\tilde{F}_{k}\right) \operatorname{if} \mathcal{P}_{\nu_{k}}^{\frac{1}{2}} r\left(A_{i}, c_{k+1}\right) \in \mathscr{A}\left(\tilde{F}_{k}\right) \operatorname{orifrank}\left(\mathcal{P}_{r_{k-1}}^{+} \tilde{F}_{k}\right)=\operatorname{rank}\left(\tilde{F}_{k}\right)-1$. The first condition is true iff $r\left(A, t_{i+1}\right) \in \mathscr{H}\left(\tilde{F}_{k}\right) \cup \mathscr{H}\left(V_{k+1}\right)$, the second one
holds iff $t_{k+1} \in \mathscr{A}\left(\bar{F}_{h}\right)$. Usitg Lemma 1.1, we can prove the second part. Say $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots$ are the singular values of \tilde{F}_{k} and $\sigma_{1}^{\prime} \geqslant \sigma_{2}^{\prime} \geqslant \cdots$ are the singular values of $\left[\tilde{F}_{k}, \mathscr{P}_{k}, r\left(A, x_{k+1}\right)\right]$. Combining the first condition with Lemma 1.1, gives

$$
\sigma_{k-1}^{\prime} \leqslant \| \cdot P_{i_{k}} \cdot P_{i_{i}} r\left(A, v_{k}, \dot{i}<\theta\right.
$$

and if $\sigma_{i}<\varepsilon$ for $i=1 \ldots \ldots k$, then

$$
\sigma_{1} \leqslant \kappa \sigma_{i}+\left\|\cdot \mathscr{P}_{H_{k}} \cdot \mathcal{P}_{I_{k}} r\left(A, c_{k}, 1\right)\right\| \leqslant(\kappa+1) a=\varepsilon^{\prime} .
$$

 completed by noticing that if $r_{k, 1}=F_{k} h+m$, with $\|u\|=1$ and $\|h\|=O$ (1), then Lemma 1.1 can be applied: if we set $a^{\prime}=\|h\| ;$, then $\operatorname{rank}\left(\cdot \mathscr{P}_{\tilde{H}_{-i}}^{\prime} \dot{F}_{k}, a^{\prime}\right) \leqslant \operatorname{rank}\left(\tilde{F}_{k}, g\right)-1$.

Lemma 2.3 divides the set of rank conservative solvers into two different types. First. there is the Arnoldi type algorithm for which $r_{h, 1} \in \mathscr{R}\left(\vec{F}_{h}\right)$. This condition correxponds to setting $w_{k}=A V_{k} t_{k}$, for some vector $t_{k} \in \mathbb{C}^{k}$.

The second type is an RKS or Davidson type algorithm. These methods comnute $r_{k, 1}$ such that $r\left(A, r_{k, 1}\right) \in \mathscr{A}\left(A V_{k}\right) \cup \mathscr{A}\left(V_{k}\right)=\mathscr{A}\left(\tilde{F}_{k}\right) \cup \mathscr{A}\left(V_{k}\right)$. In order to compute $r_{k, 1}$ (even implicitly) from $r\left(A, r_{k-1}\right)$. these methods will need to solve a linear system. Both methods are rank conservative, as we show in the foilowing theorem.

Lemma 2.4. Let $b_{k: 1}=V_{k} p_{k}+A V_{k} y_{k}$ be an arbitrary rector in $\mathscr{A}\left(V_{k}\right) \cup \mathscr{n}\left(A V_{k}\right)$. Giten some \boldsymbol{x}_{k}. $\beta_{k} \in \mathbb{C}$. then at step k of an orthogoital projertion murthod, the rector w_{k} sutisfies

$$
\begin{equation*}
\left(x_{k} A-\beta_{k} I\right) w_{k}=b_{k-1} \tag{8}
\end{equation*}
$$

iff $\operatorname{rank}\left(\check{F}_{h, 1}\right) \leqslant \operatorname{rank}\left(\dot{F}_{h}\right)$.
Say that $x_{h}=1$ and that the rector w_{k} is approximated by \mathfrak{w}_{k} such that $s_{k, 1}=h_{k, 1}-\left(A-B_{k} I\right) \dot{w}_{k} \neq 0$ and set $\dot{F}_{k}=R\left(A, V_{k}\right)$. Then $\left\|\cdot \mathcal{P}_{i}, p_{i, 1}, s_{k}\right\|$ $\leqslant s\left\|\cdot \mathscr{P}_{1}^{\prime} w_{k}^{\prime}\right\|$, implies that $\operatorname{rank}\left(\tilde{F}_{h, 1}, \varepsilon^{\prime}\right) \leqslant \operatorname{rank}\left(\tilde{F}_{h}, \varepsilon\right)$, with $\varepsilon^{\prime}=\mathbf{O}(a)$. Hence, the method is e'-rank consercatite.

Proof. Since $v_{k+1}=. P_{i} w_{k} /\left\|\cdot p_{i} w_{k}\right\|$. we can write that $w_{k}=\eta r_{k+1}+V_{k} h_{k}$, $(n \neq 0)$. If we plug this in Eq. (8). then we obtain

$$
\begin{aligned}
V_{h i_{k}}+A V_{k \cdot j n} & =\left(x_{k} A-B_{k} A\right)\left(\eta r_{k \cdot 1}+V_{k} h_{k}\right) \\
& =x_{k} \eta A r_{k-1}-\eta B_{k} c_{k \cdot 1}+x_{k} A V_{k} h_{k}-B_{k} V_{k} h_{k} .
\end{aligned}
$$

Since $r\left(A, r_{h, 1}\right)=A r_{k, 1}-; r_{k, 1}$ with $;=r_{k, 1} A r_{k, 1}$, this becomes

$$
x_{k} \mu_{I}\left(A \cdot c_{k, 1}\right)=V_{k}\left(p_{k}+\beta_{k} h_{k}\right)+A V_{k}\left(\rho_{k}-x_{k} h_{k}\right)-\xi r_{k, 1} .
$$

with $\xi=-\left(\alpha_{k}{ }_{j}+\beta_{k}\right) \eta$. If $\alpha_{k} \neq 0$, then this means that $r\left(A, r_{k, 1}\right) \in \mathscr{A}\left(V_{k-1}\right)$ $\cup \mathscr{n}\left(A V_{k}\right)=\mathscr{R}\left(V_{k-1}\right) \cup \mathscr{R}\left(R\left(A, V_{k}\right)\right)$ so that $r\left(A, r_{k-1}\right) \in \mathscr{P}\left(V_{k, 1}\right) \cup \mathscr{A}\left(\dot{F}_{k}\right)$. Using Lemma 2.3, this is equivalent to saying $\operatorname{rank}\left(\dot{F}_{k-1}\right) \leqslant \operatorname{rank}\left(\dot{F}_{h}\right)$.

If $x_{k}=0$, then

$$
r_{h-1}=V_{k}\left(p_{k}+\beta_{k} h_{k}\right)+A i_{k}
$$

Applying $\boldsymbol{P}_{5_{k}}^{i}$ gives

$$
\check{c} r_{k \cdot 1}=\mathscr{P}_{i_{1}} A H_{k} q_{k}=\dot{F}_{k} q_{k} .
$$

By Lemma 2.3 this implies again that the rank does not increase.
Let us now prove the second part. Using $r\left(A . r_{h-1}\right)=A r_{h, 1}-\because_{h=1}$ $=\left(A-\beta_{k} I\right) r_{k \cdot 1}+\left(\beta_{k}-\eta\right) r_{h, 1}$, we can derive

$$
\begin{aligned}
r\left(A \cdot r_{k} \cdot 1\right) & =\frac{1}{\eta}\left(\left(A-\beta_{k} I\right) w_{k}-\left(A-\beta_{k} I\right) v_{k} h_{k}\right)+\left(\beta_{k}-\ddot{\prime}\right) r_{k \cdot 1} \\
& =\frac{1}{\eta}\left(l_{k}\left(p_{k}-\beta_{k} h_{k}\right)+A V_{k}\left(\varphi_{k}-h_{k}\right)-s_{k}\right)+\left(\beta_{k}-\because\right) r_{k \cdot 1}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \mathscr{P}_{i_{i, 1}} r\left(A \cdot r_{k, 1}\right)=\mathscr{P}_{i_{i}} r\left(A, r_{h, 1}\right)=\frac{1}{\eta}\left(R\left(A . I_{k}\right)\left(q_{k}-h_{k}\right)-\mathscr{P}_{i_{k}} s_{i}\right) \\
& =\frac{1}{\eta}\left(\tilde{F}_{k}\left(g_{k}-h_{k}\right)-\mathscr{P}_{i_{i}} x_{k}\right)\left\|\cdot P_{i_{k}} \cdot P_{i_{i}} r\left(A, r_{k, 1}\right)\right\| \\
& =\frac{1}{i n \|}\left\|\mathcal{P}_{i_{i}} \mathcal{P}_{i_{i, 1}}, s_{i}\right\| \leqslant s .
\end{aligned}
$$

reminding that $|n|=\left\|\cdot P_{i} w_{k}\right\|$. Using Lemma 2.3 , this proves the theorem.
Basically, Lemma 2.4 says that in exact arithmetic there are only three rank conservative eigenvalue solvers: Arnoldi. RKS and a Davidson algorithm that used an direct linear system solver. Inversely, any eigenvalue solver that has a residual of rank I can be interpreted as a generalisation of an Arnoldi or an RKS process.

Example 2. \mathbf{z}. We illustrate the difference between rank-conservative cigenvalue solvers and ;-rank-conservative solvers with a small example of the RKS method.

We constructed a 100×100 bidagonal matrix A, setting $(A)_{t, i}=-i$ and $(A)_{i, i}=1$. We compute the rightmost eigenvalue $i=-1$ using Algorithm 1.1. The starting vector is $r_{1}=[0.1,0.1 \ldots .0 .1]^{\prime \prime}$ and $r_{k, 1}$ is computed from $w_{k} \leftarrow\left(A-\mu_{k} I\right) r_{k}$, where $\mu_{1}=1$ and $\mu_{i}=\theta_{i}$. for $i>1$. The approximation θ_{i} is computed as the rightmost eigenvalae of G_{k}. The linear systems are solved with Gaussian elimination. It is well known that the systems will only be solved with
a (relative) error proportional to the condition number of the matrix. i.e. relative to $\left.\left\|A-\mu_{k} l\right\| H_{1} A-\mu_{k} I\right)^{-1} \|$. The error will be large when the method converges. This effect is illustrated in Table 1. The table shows for iteration step 4-8 the error on the eigenvilue, the residual norm and the absolute error on the solved system. It also displays ihe three largest singular values of F_{k}. In theory, this RKS method is rank conseriative. In this eximaple, the second singular value of the residual can not be neglected at the point of convergence. in this case the sixth step.

The second part of the table shows what happens when we fix the shift $\mu_{k}=\theta_{5}$ for $k=5$. The quadratic convergence is lost. but the convergence rate is very high. The secosed singular value of F_{k} remains of order le-12. If we set e.g. $\varepsilon==1 \mathrm{l} \cdots 1 \mathrm{i}$, then the ε-rank of F_{k} is one.

3. Restarting and fittering

In practice, we cannot assume that Algorithm 1.1 will converge in a predictable amount of steps. Furthermore, if several eigenvalues must be found, then the number of iteration steps that the algorithm needs in order to find them all, ill likely exceed an acceptable amouni. A restarting procedure for relation (1) must be considered. A different reason for restarting the Arnoldi reiation (for the generalised eigenvalue problem) was formulated in [2]: if the problem has an infinite eigenvalue, then spurious approximations of this infinite eigenvalue can pop up and bring about wrong results. The filtering property of the Implicitiy restarted Arnoldi i2] algorithm can be used to filter away these spurious eigenvalues. In [16], it is shown how the restarting of the Arnoldi equation can be generalised to the RKS equation. A different restarting procedure, based on the Schur decomposition of G_{k} for the Jacobi-

Table :
Using RKS with shift $\sigma_{k}=\eta_{k}$ gives quaduratic convergence. but a residual with farge rank. The stcond part shows RKS with a fixed shift ($\sigma_{k}=0$, for $k>5$). The convergence is slower but the residual rank remains one

k	$\left\|0_{1}-2\right\|$	$\left\\|4 y_{k}-y_{4}\right\\|^{\prime}$	$\left\\|A-H / 1 / w_{k}-r_{k}\right\\|$	π	\square	${ }_{3}$
4	$3.8 \mathrm{se}-1$	7.7e-1	1.5c-16	$2.76+1$	5.5e-14	1.0e-14
5	1.2e-3	$7.5 \mathrm{e}-2$	5.9e-14	$2.60+1$	$8.3 \mathrm{e}-12$	1.4e-14
6	2.3e-7	1.10-5	3.1e-11	$2.5 \mathrm{c}+1$	3.0e-12	1.1e-14
3	$2.2 e-15$	2.2e-13	2.2e-3	$2.5 \mathrm{e}+1$	1.8e-9	9.4e-13
8	$1.2 \mathrm{e}-16$	1.0e-14	3.0e-2	$2.50+1$	$7.1 \mathrm{e}-2$	$5.2 \mathrm{e}-10$
6	$23 \mathrm{e}+1$	1.0e-5	$4.3 \mathrm{c}-15$	$2.5 \mathrm{e}+1$	$3.0 \mathrm{e}-12$	$1.0 c-14$
7	$9.40-12$	$1.2 \mathrm{e} \cdot 9$	$1.3 \mathrm{c}-15$	$2.5 \mathrm{e}+\mathrm{l}$	5.6e-12	5.7e-14
8	2.te-15	1.1e-13	4.6e-15	$2.5 \mathrm{e}+1$	$8.0 e-12$	1.2e-13

Davidson algorithm is proposed in [17]. In this section. we will consider these two related procedures for an arbitrary OPM.

When we use the word restarting, we mean the reduction of Eq. (1) to an equation

$$
\begin{equation*}
A V_{k-p}^{+} L_{k-p}^{+}=V_{k-p}^{-} K_{k-p}^{\prime}+\left(\tau_{k-p}^{+}-\sigma_{k-p}^{+} I\right) F_{k-p}^{+} . \tag{9}
\end{equation*}
$$

with $V_{k-p}^{+}, F_{k-p}^{+} \in \mathbb{C}^{n \times k-p}$ and $K_{k-p}^{+}, L_{k-p}^{+} \in \mathbb{C}^{k-p<k-p}$. If these are matrices that could have been generated by the same OPM. using a new starting vector v_{1}^{+}, then we call this operation an impleit restart. Otherwise, the equation is restarted explicitly. Often, an implicitly restart procedure can be seen as a filtering procedure. After the filtering, the new basis $V_{k-,}^{+}$, contains a filtered version of the old basis V_{k-p}.

$$
h\left(V_{k-p}^{+}\right)=M\left(\phi_{p}(A) V_{k-p}\right)
$$

where $\phi_{p}(A)$ is a polynomial or a rational filter function that depends on the restart algorithm.

3.1. Reducing the projection equation

Consider the reduction of Eq. (1) to an Eq. (9) of lower dimension. It is clear that a transformation of V_{k} into V_{k-p}^{*} must be orthogonal. i.e. there exists an orthogonal matrix Q such that $V_{k=p}^{*}=V_{k} Q$. A corresponding transformation will then be applied on G_{k}. The following lemma shows this for the general case.

Lemma 3.1. Given a set of mutrices V_{k}, K_{k}, L_{k} and F_{k} that fulfil $A V_{k} L_{k}=V_{k} K_{k}+\left(\tau_{k} A-\sigma_{k} I\right) F_{k}$. Say $\operatorname{rank}\left(F_{k}\right)=l$ and $F_{k}=g r^{*}, g \in \mathbb{C}^{n \times i}$. $r \in \mathbb{C}^{k \times 1}$. If $[Q q]$ is a unitary matrix. with $Q \in \mathbb{C}^{k \times k-p}$ and $q \in \mathbb{C}^{k \times p}$, and if $Z \in \mathbb{C}^{k \times k-p}$ is a full rank matrix such that
(a) $q^{*} K_{k} Z=0$ or $q^{*} K_{k}=g_{\kappa} r^{*}, \quad g_{K} \in \mathbb{C}^{1 \times l}$.
(b) $q^{*} L_{k} Z=0$ or $q^{*} L_{k}=g_{I} r^{*} \quad g_{!} \in \mathbb{C}^{i \times i}$
then with $V_{k-p}^{*} \equiv V_{k} Q, K_{k-p}^{*} \equiv Q^{*} K_{k} Z, L_{k-p}^{*} \equiv Q^{*} L_{k} Z$ and $F_{k-p}^{*}=\Gamma_{k} Z+w^{*} Z$, for some $w \in \mathbb{C}^{n \times 1}$, we get

$$
A V_{k-p}^{+} L_{k-p}^{+}=V_{k-p}^{+} K_{k-p}^{+}-\left(\tau_{k} A-\sigma_{k} I\right) F_{k-p}^{*}
$$

Moreover, $\operatorname{rank}\left(F_{k-\rho}^{+}\right) \leqslant l$.
Proof. Since $Q Q^{*}+q q^{*}=I$, multiplication of $A V_{k} L_{k}=V_{k} K_{k}+\left(\tau_{k} A-\sigma_{k} I\right) F_{k}$ with Z gives

Thus, $F_{k}=F_{k} Z+w r^{\prime} Z=(\underline{q}+w) r^{\prime} Z$ and thus $\operatorname{rank}\left(F_{i}{ }_{i}\right) \leqslant l$.
If we reduce the size of the subspace V_{k} by the rank of the residual, i.e. $l=p$. then the distinction between (a) and (b) in Lemma 3.1 may become obsolete. Indeed. if $Z \in \mathbb{C}^{k \cdot k}$ '. then the null space of Z has dimension $/$. which is equal to rank (r). So there will atways exist a Z such that $r Z=0$. In that case, supposing that $q K_{k}=g_{h^{\prime}} r^{*}$ and $q^{\cdot} L_{k}=g_{f} r^{\circ}$ implies that there exists a Z such that $q K_{h} Z=0=q L_{k} Z$. Notice also that if $w \neq 0$. then the property that $F_{h} \perp F_{k}$ is not aherited atcomatically by V_{k}, , and $F_{k} p^{*}$.

The two ways to estart an OPM are clear from the proof of Lemma 3.1. The first solution is constructed such that the additional residual term $\left(A V_{k} q q_{h}-V_{k} q \mathcal{C}_{k}\right) Z$ is equal to zero. The second solution makes this residual of the same form as the original residual. Both solutions result in a new residual F_{h}, that has the same rank as the residual before the restart.

From a different point of view. there are also two different possibilities for reducing the size of the projection equation. Reducing the size of the subspace If means the removal of a subset of its vectors. We call this filtering of the subspace. These vectors can be selected in an explicit waty. e.g. as the Ritz vectors that approximate "uninteresting cigenvectors. The filtering can also be worked out in an implicit mamer.

3.2. Reduction with Schur rectors

in the explicit approach. we can make use of the generalised Schur decomposition of the matrices k_{h} and L_{h}. This corresponds to the restarting approach in [17]. This decomposition computes a set of orthogonal matrices $Q . Z \in \mathbb{C}^{h \cdot h}$. such that $O K_{h} Z=T_{K}$ and $Q L_{k} Z=T_{l}$. with upper triangular matrices T_{K}. $T_{1} \in 0^{h \cdot h}$. If we mutiply the projection equation on the right by Z. then

$$
\begin{aligned}
& A H_{k} Q Q I_{k} Z=I_{k} Q O K_{k} Z+\left(\tau_{k} d-\sigma_{k} I\right) F_{k} Z \\
& H_{k} Q T_{i}=V_{k} Q T_{k}+\left(\tau_{k} \cdot 1-\sigma_{h} I\right) F_{k} Z
\end{aligned}
$$

If $F_{h} Z=0$. then this would be a partial Schur decomposition of A. We set $V_{k} Q=V_{i}$ and denote by V_{k}, the same matrix. but restricted to its lirst $k-p$ columns. Because of the upper triangulat form of T_{κ} and T_{l}. the relation can be reduced to Eq. (9) by simply deleting the las! n columns. If Q can be computed efliciently such that the wanted information is collected in the first $k-p$ columns of I_{h}. then the restart may be expected to give good results. We expect also that $\operatorname{rank}\left(F_{h}\right)=\operatorname{rank}\left(F_{i}\right.$, , $)$.

The matrices involved in this restarting procedure can also be found without using a Schur decomposition. This is shown in the following lemma, that says how a set of Ritz values can be removed explicitly from the aproximation. Therefore, we call these explicit fiftering procedures. in contrast with the implicit filtering in the next section.

Lemma 2.2. Gitch matrices $V_{h}, K_{k} . L_{k} . F_{k}$ as in Lemmat 3.1 with $V_{k}^{*} F_{k}=0$. Let $\left(\theta_{i}, y_{i}=I_{k} L_{h} z_{i}\right) . i=1 \ldots \ldots k$ be the (Harmonic) Ritz pairs of the prohlem. i.e. $K_{k} z_{i}=U_{i} L_{k} Z_{i}$. Define the matrices Q and $Z \in \mathbb{C}^{\hbar * k} p$ such that Q is orthogonal and

$$
\mathscr{R}(Z)=\mathscr{R}\left(-1 \ldots A_{n}\right) \quad \text { and } \quad \mathscr{B}(Q)=\mathscr{R}\left(L_{k} Z\right) .
$$

 tion celuction that sincrates the sathe (Harmonic) Bit= pairs, evcept for

Proof. We only have to prowe that if $q^{\prime} Q=0$. then $q^{\prime} K_{k} Z=0=q^{*} L_{k} Z$, so we can apply Lemma 3.1 . Since there exist a non-singular matrix P for which $Q^{P}=L_{k} Z . q^{*} L_{k} Z$ must be zero. Also. for all $i<k-p, q^{*} K_{k}=\left\|_{i}=\right\|_{i}^{*} L_{k} Z_{i}=0$, which proves $q K_{k} Z=0$. Since $F_{k}=F_{n} \%$ it follows directly from $V_{k}^{*} F_{k}=0$ that $\left(F_{k}{ }_{p}\right) \cdot F_{k}{ }_{j}=Q F_{h} F_{k} Z=0$.

This lemma illustrates the difference between implicitiy iestarted Arnoldi [1] and implicitly restarted RKS [16]. For Arnoldi, $L_{k}=I$ and thus one may choose $Q=Z$. whereas for RKS, $I_{k} \neq I$.

3.3. Implicit filtoring

IRA gives us another way to look at a restarting algorithm. Given a shift μ. a step of IRA combines the basis vectors F_{5} of a Krylov subspace $\mathscr{K}_{6}\left(A, r_{1}\right)$ to a new orthogonal basis for $\mathscr{F}_{k},\left(A \cdot(A-\mu I) r_{1}\right)$. Thus, it computes the results $V_{k ;} . G_{k, 1}$ of an Arnoldi iteration with a new starting vector $\tau_{i}=\left(A \cdots \mu{ }^{\prime}\right) c_{1}$. The vector that is removed from the subspace l_{i} is not selected explicity, but it is an implicit result of the choce of μ. One can prove that if the shift is chosea equal to a Rite value $\mu=0$. then the corresponding Ritz vector is removed from V_{h}. so imphicitly Lemma 3.2 is executed.

Let us recall briefly the mechanism behind IRA. Suppose that we ran the Arnoldi algorithm to obtain $A_{h}=V_{h} G_{h}+F_{h}$, with G_{h} upper Hessenberg and $F_{k}=f_{h} e_{k}^{*}$ the rank one residual. Given a shift $!$. we compute the QR decomposition $Q R=G_{k}-\mu I$. with Q unitary Hessenberg and R upper triangular. Hence, we can write

$$
(A-\mu I) V_{k}=V_{k}\left(G_{k}-\mu I\right)+F_{k}=V_{k} \underline{Q}+F_{k}=V_{k}\left[Q_{1} q_{2}\right]\left[\begin{array}{cc}
R_{1} & r_{2} \\
0 & r_{3}
\end{array}\right]+f_{k} e_{k}^{*} .
$$

Deleting the last column of both sides of this equation makes F_{k} vanish, so

$$
(A-\mu I) V_{k-1}=V_{k} Q_{1} R_{1} .
$$

If we define $V_{k-1}^{+1} \equiv V_{k} Q_{\mathrm{i}}$, then this means that $V_{k-1}^{\prime}=(A-\mu I) V_{k-1} R_{1}^{-1}$ and thus

$$
\begin{equation*}
\mathscr{R}\left(V_{k-1}^{+}\right)=\mathscr{R}\left((A-\mu I) V_{k-1}\right) . \tag{10}
\end{equation*}
$$

supposing that R_{1} has full rani (one can see that this is true if μ is no eigenvalue of A). Eq. (10) proves the implicit filtering property of the IRA algorithm, since V_{k-1}^{*} equals the old subspace V_{k-1} filtered with a polynomial of degree 1 in A. The zero of the polynomial is μ. Repeating the restarting algorithm builds a polynomial of higher degree.

On the other hand. if we multiply the equation from the right by Q_{1}, then we get

$$
\begin{aligned}
& (A-\mu I) V_{k} Q_{1}=V_{k} Q R Q_{1}+F_{k} Q_{1} . \\
& A V_{k-1}^{-}=V_{k-1}^{\prime-}\left(\left[R_{1} r_{2} \mid Q_{1}+\mu Q_{1}\right)+\left(V_{k} q_{2} r_{3} e_{k}^{-}+f_{k} c_{k}\right) Q_{1}=V_{k-1}^{-} G_{k-1}^{+}+F_{k-1}^{+} .\right.
\end{aligned}
$$

The matrix Q_{1} fulfils the conditions of Lemma 3.1. It is easy to see that $G_{k-1}^{*}=Q_{i}^{i} G_{k} Q_{1}$ is upper Hessenberg and

$$
F_{k-1}^{\prime}=\left[0 \cdots 0 f_{k-1}^{\prime}\right] \Rightarrow \operatorname{rank}\left(F_{k-1}^{\prime}\right) \leqslant 1 .
$$

Lemma 2.4 showed that we cannot filter the subspace using a restarting procedure that decrements the size of the subspace V_{k+1} by one if the rank of the residual is larger than one. However, we can implicitly apply a filter, but then we will need to delete more than one vector.

Proposition 3.3. A restarting algorithm that reduces she size of the suhspace i_{k+1} with one, can only be a polynomial (or rational) filter of degree one, if the rank of the resianal matrix equals one.

Proof. Due to the correspondence with an Arnoldi or RKS process (Lemma 2.4), a relation with $\operatorname{rank}\left(F_{k}\right)=1$ can be filtered while restarting. This is shown in [16.1]. Inversely, for a rational filter, given a full rank matrix $P \in \mathbb{C}^{k \times h}$ (set $\left.\bar{P}=\left[P^{*} 0\right]^{*}\right)$. given any vector $t_{k+1} \in \mathbb{C}^{k+1}$ and a pair $\alpha, \beta \in \mathbb{C}$. If v_{k}^{+}spans a filtered version of V_{k}, then

$$
V_{k}=V_{k+1} Q=(x A-\beta I)^{-1}(A-H I) V_{k} P .
$$

so

$$
A V_{k \cdot 1}(\alpha Q+\bar{P})=V_{k+1}(\beta Q-\mu \bar{P}),
$$

and

$$
\begin{aligned}
A V_{k+1}\left[\chi Q+\tilde{P}_{t_{k+1}}\right]= & V_{k+1}\left[(\beta Q-\mu \tilde{P})\left(V_{k+1}^{*} A V_{k+1} t_{k+1}\right)\right] \\
& +\left[0 \cdots P_{k+1}^{1} A V k+1 t_{k+1}\right]
\end{aligned}
$$

Thus, $\operatorname{rank}\left(F_{k}\right)=\operatorname{rank}\left(\mathcal{P}_{\dot{v}_{k+1}} A v_{k+1}\right)=1$. Setting $x=0$ and $\beta=1$. gives the result ho: a polynomial filter.

The Sollowing theorem shows how in general an eigenvalue solver can be restarted in combination with an iniplicit filtering step.

Theorem 3.4. Given V_{k}, K_{k}. L_{k} and F_{k} that fulfil the projection Eq. (1). Suppoxe that $F_{k}=\left[0 F_{p}\right] . F_{p} \in \mathbb{C}^{n *}$ and $\operatorname{rank}\left(F_{k}\right)=p$ and suppose that $\alpha . \beta \in \mathbb{C}$ are giten such that β / x is not an cigomal!e of A and $\beta \tau_{k} \neq \sigma_{k} x$. If $V_{k}^{*} F_{k}=0$, then with the $Q R$ factorisation $\chi K_{k}-\beta L_{k}=\left[Q_{1} Q_{2}\right] R$ and $Z \equiv\left(\tau_{k} K_{k}-\sigma_{k} L_{k}\right)^{-1} Q_{1}$, we define $L_{k-p}^{+} \equiv Q_{1}^{*} L_{k} Z, K_{k-p}^{+} \equiv Q_{1}^{*} K_{k} Z$ and $V_{k \sim p}^{+} \equiv V_{k} Q_{1}$. The relation

$$
A V_{k-p}^{*} L_{k-p}^{-}=V_{k-p}^{*} K_{k-p}^{*}+\left(\tau_{k} A-\sigma_{k} l\right) F_{k-p}
$$

is a restarted projection equation. so $\sigma_{k-i}^{*}=\sigma_{k}$ and $\tau_{k-p}^{*}=\tau_{k}$. Morcoter, $\left(V_{k-p}^{+}\right)^{*} F_{k-p}^{+}=0 a n d$

$$
\mathscr{n}\left(V_{k-p}^{*}\right)=\mathscr{n}\left(\left(\tau_{k} A-\sigma_{k} I\right)^{-1}(x A-\beta I) V_{k-p}\right) .
$$

Proof. It can easily be derived that by shifting the projection equation.

$$
\begin{aligned}
\left(\tau_{k} A-\sigma_{k} I\right) V_{k}\left(x K_{k}-\beta L_{k}\right)= & (x A-\beta I) V_{k}\left(\tau_{k} K_{k}-\sigma_{k} L_{k}\right) \\
& -\left(\beta \tau_{k}-x \sigma_{k}\right)\left(\tau_{k} A-\sigma_{k} I\right) F_{k} .
\end{aligned}
$$

If we apply Lemma 3.1 on this equation, then r is defined by $F_{k}=F_{p}\left[0 I_{p}\right]=F_{p} r^{r} . \quad$ On the one hand. $Q_{2}^{*}\left(x K_{k}-\beta L_{k}\right)=Q_{2}^{*}\left[Q_{1} Q_{2}\right] R$ $=\tilde{R}\left[0 t_{p}\right]=\tilde{R} r^{*}$, where \dot{R} is the $p \times p$ lower triangular submatrix of R. On the other hand. $Q_{2}\left(\tau_{k} K_{k}-\sigma_{k} L_{k}\right) Z=Q_{3}\left(\tau_{k} K_{k}-\sigma_{k} L_{k}\right)\left(\tau_{k} K_{k}-\sigma_{k} L_{k}\right)^{-1} Q_{1}=0$. so Lemma 3.1 may be applied. Hence.

$$
\begin{gathered}
\left(\tau_{k} A-\sigma_{k} I\right) V_{k-n}^{*}\left(\alpha K_{k-n}^{*}-\beta L_{k-p}^{*}\right)=(\alpha A-\beta I) V_{k-p}\left(\tau_{i} K_{k-p}-\sigma_{k} L_{k \cdots p}\right) \\
\left.-\left(\left(\beta \tau_{k}+\chi \sigma_{k}\right) F_{p}+\left(\tau_{k} A-\sigma_{k} I\right) V_{k} Q_{2} \tilde{R}\right) 0 I_{p}\right] Z
\end{gathered}
$$

and shifting back the new prejection equation proves the first result. We find that $F_{k \sim p}^{*}=F_{k} Z+\left(\beta \tau_{k}+x \sigma_{k}\right)^{-1}\left(\tau_{k} A-\sigma_{k} I\right) V_{k} Q_{2} \tilde{R}\left[0 I_{p} \mid Z\right.$. So if $V_{k}^{*} F_{k}=0$, then $\left(V_{k-p}^{*}\right)^{*} F_{k-p}^{*}=0$ because $Q_{i} Q_{2}=0$.

This theorem can also be applied in the special case where $L_{h}=1, \tau_{h}=0$ and $\sigma_{k}=-1$ and this gives:

Theorem 3.5 Giten V_{k}. G_{k}. F_{k}, such that $A V_{k}=V_{k} G_{k}+F_{k}$. Suppose that $F_{h}=\left[0 F_{p}\right], F_{p} \in \mathbb{C}^{n \times p}$ and $\operatorname{rank}\left(F_{k}\right)=p$. If, giten the parameters $\% . \beta \in \mathbb{C}$ such that β / α is no cigenculue of A. the matrix Q_{1} contains the first k columns of the $Q R$ decomposition of $x G_{k}-\beta I=\left[Q_{1} Q_{2}\right] R$, then $G_{h-p}^{+} \equiv Q_{i} G_{k} Q_{1}$ and $V_{k-p}^{+} \equiv V_{k} Q_{1}$ definc a restarted relation

$$
A V_{k-p}^{\prime}=V_{k, p}^{\prime} G_{k, p}^{\prime}+F_{k-p}^{\prime}
$$

with $\operatorname{rank}\left(F_{k-p}^{*}\right) \leqslant p$. Moreorer. if $V_{k}^{*} F_{k}=0$, then

$$
\left(V_{h-p}^{\prime}\right)^{\prime} F_{k-p}^{\cdot}=0 \text { and } A n\left(V_{h-p}^{\cdot}\right)=\mathscr{A}\left((x A-\beta I) V_{k-p}\right) .
$$

Proof. This theorem is a special case of Theorem 3.4 with $L_{k}=I, G_{k}=K_{k}$. $\sigma_{k}=-1$ and $\tau_{k}=0$.

Notice that with

$$
x G_{h}-\beta I=\left[Q_{1} Q_{2}\right]\left[\begin{array}{cc}
R_{1} & R_{2} \\
0 & R_{+}
\end{array}\right] .
$$

we derive that $\alpha G_{k \cdot p}=Q_{1}\left(\alpha G_{k}-\beta I+\beta I\right) Q_{1}=\left[R_{1} R_{1}\right] Q_{1}+\beta I$.
The implicit restart cannot be repeated immediately, because the first $k-2 p$ columns of $F_{k, p}$ are not equal to zero. However, the restart can be repeated on the rotated system

$$
A V_{k, p}^{*} G=V_{k, p}^{*} G\left(C^{\prime} G_{k, p} G\right)+F_{k, p} G
$$

or

$$
A V_{k p}^{\prime \prime} G\left(G^{\cdot} I_{k}{ }_{p} G\right)=V_{k}^{\prime} G\left(G^{*} K_{k}, G\right)+\left(A-\sigma_{k}^{\prime}, p\right) F_{k, p} G .
$$

with $G^{\prime} G=I=G G^{\prime}$ and $F_{k-p}^{*} G=[0 \cdots 0 \star \mid$. Notice that C can be computed from Z or Q_{1} (G must be constructed such that the $p \times(k-p)$ lower left part of $Z G$ or $Q_{1} G$ is zero).

The results for the inexaci filtering procedure are summarised in the Algorithms 3.1 and 3.2 . We do not need to know the matrix T_{p} to compute the restarted equation.

Alogrithm 3.1. Inevact polynomial filtering
In: $V_{k} \cdot F_{k}=\left[0 \ldots 0 . F_{p}\right]$ with $V_{k}=0$, and $G_{k}, x . \beta \in \mathbb{C}$
Out: $G_{k-p}^{+} . V_{k-p}^{*}$ such that $n\left(V_{k-p}^{+}\right)$
$=, p\left((x A-B D) V_{t}\right)$
$=R\left((x A-\beta I) V_{k p p}\right)$

1. Set $\left[G_{k \ldots}, G_{p}\right]=\chi G_{k}-\beta I$
2. Compute $Q_{1} \cdot R_{1}$ from $\dot{G}_{h-p}=Q_{1} R_{1}$
3. Set $R_{2}-Q_{i} \bar{G}_{1}$,
4. Compute G from Q_{1}
5. Set $V_{k-p}^{-p}-V_{k} Q_{1} G$
6. Set $\left.G_{k-p}^{+}-\frac{1}{x} G^{+}\left[R_{1} R_{1}\right] Q_{1} G+\frac{{ }_{2}^{2}}{2}\right]$

Alogrithm 3.2. Inexact rational filtering

In: $\boldsymbol{V}_{k} . F_{k}=\left[0 \ldots 0, F_{n}\right]$ with $V_{k}^{\prime} F_{k}=\mathbf{0}$.
and $K-k . L_{h}, x, \beta \in \mathbb{C}$

$\left.=\angle A\left(A^{\prime \prime} x_{k} f\right)^{\prime}(x A-\beta I) V_{k-p}\right)$

1. Set $\left[\hat{G}_{k+\ldots}, \bar{G}_{p} \mid=\alpha K_{k}-\beta L_{k}\right.$
2. Computa $Q_{1} \cdot R_{1}$ from $\bar{G}_{k-p}=Q_{1} R_{1}$
3. Set $Z-\left(K_{k}-\sigma_{h} L_{k}\right)^{-1} Q_{1}$
4. Compute G from Z
5. Set $V_{k, p}^{\prime}-V_{i} Q_{1} G$
6. Set $K_{h, p}-G^{*} Q_{i} K_{k} Z G$
7. Set $L_{k} \cdots,-G \cdot Q_{i}^{\prime} L_{k} Z G$

Example 3.1. We illustrate the use of an implicit filter for a $:$-rank conservative solver with an example. The example involves a generalised eigenvalue problem with a singular B. We bring this problem back to a standard eigenvalue problem by studying the eigenvalucs of $(A-\sigma B)^{-1} B$, which has the same eigenvectors as the original problem. The matrices come from the simulation of flow of a viscous fluid with free strface on a tilted plane, using a finite element approach. The size of the eigenvalue problem $A x=i B x$ is $n=536$ and the rightmost eigenvalue is computed. The rightmost eigenvalue is equal to $i=-9.4883$.

Since the matrix B is singular, the eigenvalue problem has an infinite eigenvalue. Approximations of the infinite eigenvalue will occur in the solution as large, finite eigenvalues. If such a spurious cigenvalue becomes the rightmost one, it will mislead the algorithm and the exact solution will not be found. Therefore, we will filter them out with the inexact filtering procedure of A1gor:thm 3.1.

We iterated the OPN algorithm $k=10$ times with a starting vector $r_{1}=[1 \cdots 1]^{\gamma} / \sqrt{n}$ and $\omega_{k}=(A-\sigma B)^{-1} B \%_{2}$, with a shift $\sigma=-1$. Setting the matrices $K_{k}=\left(V_{k}^{\prime} B V_{k}^{\prime}\right)^{-1}$ and $L_{k}=\left(V_{k}^{\prime} A V_{k}^{\prime}\right)^{-1}$. we computed the approximate eigenvalues as the eigenvalues of the small systen?

$$
L_{k}^{\prime}==i \kappa_{k}^{-1}=.
$$

We do not know the matrices G_{k} or \dot{F}_{k} in the relation

$$
(A-\sigma B)^{-1} B V_{k}=V_{k} G_{k}+\dot{F}_{k} .
$$

but we can compute the residual from $A V_{k} L_{k}=B V_{k} K_{k}+F_{h}$, which corresponds to

$$
(A-\sigma B)^{-1} B V_{k}=V_{k} L_{k}\left(K_{k}-\sigma_{k} L_{k}\right)^{-1}+(A-\sigma B)^{-1} F_{k}\left(K_{k}-\sigma_{k} L_{k}\right)^{-1}
$$

Setting $G_{k}=L_{k}\left(K_{k}-\sigma_{k} L_{k}\right)^{-1}$ and using $F_{k}\left(K_{k}-\sigma_{k} L_{k}\right)^{-1}$, will give the input matrices for Algorithm 3.1.

The linear system was solved using GMRES to a tolerance of 10×10^{-6}, for the first eight steps and to a tolerance of 10×10^{-9} for the last two steps (since inexact iterative methods converge asymptotically well, it is better to use a higher tolerance at the end of the process [18]). The results are shown in Table 2.

Implicitly restarting the relation seems not to conflict with the convergence. i.e. it does not reduce the residual norm. Only when the parameter p-the assumed rank of G_{k} - is taken too large, some convergence is lost. The quality of the implicit filter grows with p, because the neglected part of the residual then becomes smaller. Since there are no eigenvalues with a positive real part, Ritz values with a positive real part can be considered as spurious eige.nvalues. With $p \geqslant 2$, all spurious eigenvalues with a positive real part are filtered away. The filter is then applied with very good accuracy. But if we set $p=3$, then some convergence is lost $\left(\left\|r\left(A, y_{k}\right)\right\|=1 \times 10^{-4}\right)$. Comparing the third row to the second column, one can see that the accuracy of the filter is proportional to σ_{p+1}.

4. Conclusion

We showed in this text that an implicit filtering procedure can only be applied on rank conservative methods or methods that have numerically a low residual rank. The larger the rank of the residual matrix is, the more inaccurate the implicit filtering will be or the more basis vectors must be sacrificed. We

Table 2
Application of the implicit restarting algorithm on an inexact OPM. The first column shows the residual norm of the Ritz-vector, the number of eigenvalues with a positive real part, the error on the implicit filter $\left(W_{k-p}=(A-\sigma B)^{-1} B V_{k-p}\right)$ and the largest singular values of $F_{k}\left(K_{k}-\sigma L_{k}\right)^{-1}$. The following columns show the same quantities after a restart with an assumed residual rank of $p=1.2 .3$

	$k=10$	$p=1$	$p=2$	$\boldsymbol{p}=3$		
$\left\\|r\left(A, y_{k}\right)\right\\|^{\prime}$	1.1×10^{-7}	1.1×10^{-7}	$5.9 \times 10^{7-}$	1.0×10^{-4}		
\# positive	1	1	0	0		
		5.9×10^{-7}	1.9×10^{-8}	3.4×10^{-8}		
σ_{1}	1.1×10^{-3}	5.1×10^{-3}	6.7×10^{-4}	8.7×10^{-4}		
σ_{2}	6.3×10^{-7}	3.5×10^{-6}	2.0×10^{-4}	2.6×10^{-4}		
0_{3}	3.1×10^{-6}	6.7×10^{-14}	2.5×10^{-9}	5.6×10^{-5}		
σ_{4}	5.0×10^{-10}	2.1×10^{-60}	2.1×10^{-10}	2.3×10^{10}		

showed that the set of rank conservative eigenvalue solvers is restricted to those methods that use an Arnoldi type of scheme (with matrix-vector products) or that perform Rational Krylov like computations (solving a linear system with the matrix A accurately). Other methods and inexact variants of rank conseryative methods cannot be filtered implicitly in combination with an implicit restart.

Alternatively, unwanted Ritz or Schur vectors cin also be filtered away explicitly by using a Schur decomposition of the projection of A on the column range of V_{k}. The disadvantage of this explicit approach is that one raust identify the unwanted vectors and that only Ritz vectors or harmonic Ritz vectors may be removed. Using an implicilly filtering function, one can also remove those vectors that correspond to spurious eigenvalues, even if these are not Ritz vectors. So the message is relatively pessimistic: true implicit filtering can only be applied in a very limited set of cases. If a better filter must be applied, then the cost - in terms of 'lost' subspace vectors - will be larger.

Acknowledgements

This text presents research results of the Belgian Incentive Programme 'Information Technology' - Computer Science of the Future (IT/IF/5), and the Belgian programme on Interuniversity Poles of Attraction (IUAP 17), initiated by the Belgian State - Prime Minister’s Service - Federal Office for Scientific. Technical and Cultural Affairs. The authors are very grateful to the referees, who provided us with many useful comments.

References

[1] D.C. Sorensen, Implicit application of polynomial fitters in a k-step Arnoidi method, SIAM J. Matrix Anal. Applic. 13 (1992) 357. 385.
[2] K. Meerbergen, A. Spence, implicitly restarted Arnoldi and purification for the shift-invert transformation. Math. Comp. 66, (1997) 667-689.
[3] C. Paige, B.N. Parlett, H.A. Van der Vorst. Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl. 2 (1995) 115-133.
[4] J.W. Daniel, W.B. Gragg. L. Kaufman. G.W. Stewait. Reorhogrnalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30 (1976) 772795.
[5] W.E. Arnoldi. The principle of minim;zed iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9 (1951) 17-29.
$[6]$ C. Lanczos, An iteration method for the solution of the eigenvalue problem of linea: differential and integral operators, J. Res. Nat. Bur. Stand. 45 (1950) 255-281.
[7] A. Ruhe, Rational Krylov sequence metheds for eigenvalue computation, Linear Algebra Appl. 58 (1984) 391-405.
[8] A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems II: Matrix pairs. Linear Alg. Appl. 197/198 (1994) 283-296.
[9] A. Ruhe. The rational Krylov algorithm for nonsymmetric eigenvalue problems III: Complex shifts for real matrices. BIT 34 (1994) 165. 176.
[10] M. Crouzeix. B. Philippe. M. Sadkane. The Davidson method. SIAM J. Sci. Comput. 15 (1994) 6276.
(11) E.R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput. Phys. 17 (1975) 87.94.
[12] G.L.G. Sleijpen. H.A. van der Vorst. A Jacobi Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17 (1996) 401425.
[13] K. Meerbergen. Robust methods for the calculation of rightmost eigenvalues of nonsymmetric eigencalue problems. Ph.D. Thesis. Department of Computer Science, K.U. Leuven. Mareh 1996.
[14] G. Golub. C. Van Loan, Matrix Computations, 2nd ed. Johns Hopkins University Press, Battimerc. MD. 1989. 1996.
[15] J.H. Wilkinson. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford. 1965.
[16] G. De Samblanx. K. Meerbergen. A. Bultheel. The implicit application of a ratomat fitter in the RKS method. BIT 37 (4) (1997) 924945.
[17] D.R. Fokkema. G L.G. Sleijpen. H.A. Van der Vorst. Jacobi Davidson style QR and QZ algorithms for the partial reduction of matrix pencils. SIAM J. Sci. Comput. (to appear).
[IS] G. De Samblanx. A. Buthea, On the converence and the restarting of inexat eigenvalue solvers. TW-report. Department of Computer Science, K.U. Leuven. 1996.

[^0]: "Corresponding author. E-mail: Gorik.DeSamblanx@cs.kuleuven.ac.be.

