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Ahstract 

We consider the class of the Orthogonal Projection Methods (OPM) to solve iter- 
atively large eigenvalue probIems. An OPM is a method that projects a large eigenvaIue 
problem on a smaller subspace. In this subspace. an approximation of the eigenvalw 
spectrum can be cornput& from a small cigenvdue problem using a direct method. 
ExampIes of OPMs are the Arnoldi and the Davidson method. We show how an OPM 
can be restarted - implicitly and explicitly. This restart can be used to remove a specific 
subset of vectors from the approximation subspace. This is called exphcit f&e&g. An 
implicit restart can also be combined with an implicit tittering step, i.e. the application of 
a polynomial or rational function on the subspace, even if inaccurate arithmetic is as- 
sumed. However, the condition for the implicit apphcation of a filter is that the rank of 
the residual matrix must be small. 0 1999 Elsevier Science Inc. AI1 rights reserved. 
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Consider the problem of finding a limited set of solutions to the eigenvalue 
problem 
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Ax = i..r. A E C”““. 

If the dimension of this problem is very large or if A is sparse, then it cannot be 
tackled using a dense or direct method, such as the QR method, due to time 
and memory limitations, Therefore, a large family of iterative solvers has &en 
derived that are able to find one or more specific eigenvalues of A, e.g. the 
rightmost eigenvalues, Most of these methods build iteratively a subspace basis 
4 of dimension k on which the eigenvalue problem is projected. ‘The eigen- 
values are then approximated from this small projected problem, using a direct 
solver. We call these methods Orthogonal Projection Methods (OPM). 

However, if the size of the subspaee 4 becomes too large, then the eigen- 
value solver slows down (or it can reach a memory limit). The method then has 
to be restarted. The restart can be worked out explicitly, deriving new starting 
conditions from the unsatisfying sk;Iution. It can also be done implicitly, by 
reducing the size k of the subspace basis to k - p and thus removing a subset of 
the infor~tion in I$. A well known example of an ilnplicitly restarted ei- 
genvalue solver is the implicitly Restarted Amoldi method (IRA) of [I]. 

Generally, an implicit restart is cheaper and more stable than an explicit 
restart. It has the additional advantage that it often impIemen:s an itnpiicit 
jilm on the subspace basis. If an implicit filter is applied, then the new basis can 
be se:n as a copy of the old basis, multiplied by a polynomial (or rational) function 
in A. Hence, by implementing implicitly a filter, a restart procedure impfements a 
form of subspace iteration. Spence and Meerbergen (21 noticed that the implicit filter 
can be used in order to remove spurious eigenvalues from the pronto problem. 

The idea of implicitly filtering is based on the assumption that exact arith- 
metic is used. For example, if the Arnoldi method is used on a shifted an 
inverted matrix (A - ai)-‘, then the accuriicy of the implicit filter that is im- 
plemented by the implicitly restarted Atioldi algorithm depends on the ac- 
curacy of the solved systems with A - ai..There are many methods, such as 
Davidson, Jacobi-Davidson or even the Rational Krylov Sequence method 
(RIB), that do not require the use of accurate system solutions. ‘“r’r these 
methods, a restarting procedure cannot implement in general an implicit litter. 

It is the aim of this text to show how a general eigemalue solver can be 
filtered implicitly in combination with a restart. In Iaci, iye ~xplairr why it is hard 
to do so if the eigenvalue solver uses an inexact method to solve the line& system% 
involved. It is hard because it is expensive or even irn~~ibl~~, in some cases. 

The problem is that implicit filtering always comes with the s~gni~caut cost 
of the c;it‘~~yutationai work of one or more iteratitin steps, i.e. the loss of some 
computed basis vectors. If the purpose of the restart is to reduce tbz size of the 
approximating subspace basis 6, then this cost is the key behind thz reduction, 
and the loss of basis vectors is not considered di~d~ntageou~ But if e.g. 
spurious eigenvalues must be filtered away. then the cost of more than one 
iteration step can not be considered as a ‘fair deal’. 



Let us give a;: example. Each step of the Arnoldi method requires essentially 
a matrix vector m~lltiplication (plus some overhead that we neglect here). Each 
of these steps adds a vector to the basis yk. ff we reduce the size of V, with p, 
using the IRA algorithm, then we throw away the work of p iteration steps. 
The indirect cost of the restart is thus p matrix vector products. Suppose that 
the fR.4 algur~tl~uk reduces the subspace V, to a subspace P&, of size k - p such 
that it implements implicitly a ~~ynomial filter QI,{A) = flf_,(A - ail) 

The zeros Pi of ;he filter polynomial are provided by the user. They are chosen 
on the basis cf on the knowledge ibat is present in the basis V,. They allow us to 
filter out less relevant information and to keep the relevant subspace. Clearly, 
the p matrix vector products that are lost by removing p basis vectors are 
impliciti~~ recovered by the filter polynomial (of degreep). Since the polynomial 
consists of p multiplications with A, we can say that as many matrix vector 
products are recovered as lost. 

t%~ could a’;o apply the function &,(A) ~.~~I~ci~~? on the subspace basis, but 
this would cost p(k - p) matrix vector products (plus the o~hogonalisation of 
&tP). Therefore an explicit application of the filter is often ruled out as being 
too expensive. 

For more gctreral methods. the cost of an implicit pr~uct with a matrix 
polynomial (rationed} function of degree p* comes with a cost of lip basis vec- 
tors, with I > I, inst& of the p basis vectors for IRA. These methods loose lp 
vectors but only recovcp ohe work ofp iteration steps: so there is more lost than 
recovered. 

We prove in this text thar t&e factor I in the cost of one implicit Ah+ring step 
~~rr~s~nds to the rank of the Mdual matrix. This matrix spans thi: v&space 
of the residuals of all approximate eigenvectors in the column range of 4. For 
Arnold?s method and for the RKS rethod, this rank is one. For block vari- 
ants of these methods, the rank equa& .‘he block size. 

2% pipe; .c(in:;i;r~ of two p;~rts.,~irst, \ 3 prove a simple recurrence reiarion 
between the residual matrices of subcequenl steps of an eigenvaiue solver. This 
recursion is used to define the concept of a m& ~~ns~~vuciv~ ~~g~~~~ui~~ soh~. 
That is a solver for which the rank of the residt& does not grow when the size 
of V, grows. It can be shown that all meFhods t?-tst use a spectral transfor- 
mation (i.e. the solution of a linear system with a m trix A - al) within their 

%iteration, are rank ~~n~~tive, and vice versa. 
Then it is shown how rank ~on~~ative solvers can be filtered implicitly. 

This implicit filtering comes with the removal of I basis vectors, where I is equal 
to the residual rank. An algorithm is de&bed that does so, based on a shifted 
QR d~om~sition of the projection matrix. The analysis assumes exact 



arithmetic, but generalisations to a floating point context with rounding errors 
are made at each step. 

PIan of the paper: The paper is structured as follows. In Section 1, we recall 
some basic facts on projectors and on orthogonal croje:tiotr methods. Sec- 
tion 2 derives a recurrence relation for the residual matrix. The concept of rank 
conservative eigenvalue solvers is introduced. Section 3 is concerned with the 
restarting of the eigenvalue solver. We show how solvers can be filtered ex- 
plicitly and implicitly. Some conclusions are presented in Section 4. 

~uf~f~~u~z: In this text. matrices are denoted by upper Case characters. vectors 
by lower case characters and complex numbers by Greek characters. The 
I-lermitian transpose of a matrix or vector is denoted by v” or ~7’ and 11 . 11 
denotes the 2-norm. The identity matrix is denoted by I and the kth unit vector 
b:; ek. The column range of a matrix V is denoted by .&(V). 

The arialysis of an orthogonal projection method makes use of projection 
matrices. Let us recall some facts about projection matrices that are employed 
in the foliowing sections. These properties are used to show that the difference 
between the solutions of an eigenvalue solver in exact arithmetic and the so- 
lutions in floating poit?t a~tbmetic, are acceptably small. 

Definition 1.1. Given a matrix .P E Crxn . d is called a projection matrix if 
,p$@ z 3. If :fP z .<a*, then 9 is called an orthogonal projection matrix. 
Otherwise, 9 is called an ob!ique projection matrix. 

If we apply 9 to the columns of a matrix K E C”““, then .PS$ is the pro- 
jection of I$ on the column space of 9. For an orthogonal projection matrix, 
.?ri is orthogonal to (I - .4) V,. An orthogonal projection matrix can, using its 
singular value decomposition, always be written as d = QQ’, with Q‘Q = I,,,. 
The orthogonal matrix Q then forms an orthogonal basis for the column space 
of P. Inversely, we will denote the dual projection matrices that are generated 
by a matrix W by 

.‘plr ZE QQt *!‘;. 3 I - *4,F, 

where .#( Q) = .&?( W) and QQ = I. 
The goal of an iterative eigenvalue solver is to produce an invariant sub- 

space for a given matrix A. For the iterative eigenvalue solver to be competitive 
with the ‘direct’ eigenvalue solvers, such as the QR method, the dimension of 
this subspace must be much smaller than the dimension of the eigenproblem 
itself. In general, the algorithm generates an orthogonal matrix 
v, =; [c,,.... ok]. The columns of this matrix span the subspace m1 which A is 
then projected, 
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In general, the projection is described by a pair of k 
a residual matrix & It is summa~s~ in an equation 

xk matrices 

AVkL_k = &Kk + (7kA - d;kZ)Fk, with YFk = 0, (1) 

where rk, ok E @. This eqUatiOn is called the projectiort ~~~i~ii~~. u’e assume 
that sk/rk is not an eigenvalue of A, so (~4 - a& is non-singular. In practice, 
a projection equation will emerge in one of two special forms. The first one 
corresponds to Eq. (1) with Lk = I, & = CR, rk = 0 and a& = -1, such that s 

A& = r/kCk+Fk. (2) 

The matrix Gk rz yk*A& describes explicitly the projection of A on a(&). The 
eigenvalues of Gk are the Ritz values and they approximate eigenvalues of A. 

For some methods, the projection equation is written by use of a pair of 
matrices (& 7 ,), a shift ok E c and no~alising rk = 1 in the following form 

A Y,Lk = VkKk + (A - Q/)Fk. (3 

This notation useful for methods where the shiif ok is dit%erenr for different k, 
e.g. for the RKS algorithm. Eq. (3) can be rewritten in the form of Eq. (2), but 
for a matrix (A - a&-‘: 

(A - b&G = &&(Kk - @J&k)-’ + &(Kk - @&)--‘. (4) 

he can prove that (hrk - a&k) is non-singular unless & contains an exact 
eigenvalue of A or unless Lk is singular, 

The Ritz values of (A - a&-’ are then given by the eigenvalues of the small 
general&d eigenvalue problem (Lk, Kk - fl&k). These values are the Harmonic 
Rifz ~~~~c~~ of ,? [3]. In this text, we will derive most of the properties on the 
residual matrix assuming that Eq. (2) holds and then general& them to 
Eq. (3). 

The framework in which we will view the iterative eigenvalue solvers in this 
text is the framework of the urf~ug~na~ projection rne~~o~. Algorithm 1.1 de- 
fines a tempiate that covers the.projection methods that generate the relation 
(1). Notice that the most importaut and distinctive step, the computation of wk. 
is not specified by this template. Therefore, we underline that this template lies 
far from an algorithm in pseudo code that would be ready-to-impl~ent. It 
only shows which entries must be computed to find a solution and at what 
stage of the algorithm they can be computed. For many methods, these ma- 
trices come for ‘free’ and they must not be computed explicitly. 



i&k = (I,(& - t&)&p 
2.4. Set yk + fi.&. 

2.7. Set uk.+l t ~~~~v~/l~.~~~~~ll. 
2.8. Set &.+I +- vk,&+f [ 1. 
Since the orthogonality of V, is used implicitly, we must take care that this 

property is always true - to working precision. Therefore, ~orthogo~lisation 
must be considered (41. 

The residual of an arbitrary unit vector and the residial of an orthogonal 
matrix is defined as follows. 

Defin&ian 1.2. Given a matrix A E Cnxn and a vector u E C” with Ilull = 1. The 
residual r(A,u) of u is given by r(A,lc) = Au - (as*Au)u = .+$A& If V E Cnxk is 
orthogonal, then R(A, V) s $$AV. 

We can write for Eq. (2) that R(A, 15) = 9kA& = A& - &ySAY, = A& 
-Gck = 4. For Eq. (3) however, we apply .Pi and_ see that R(A, ;vR) 
= @;A& = iPi(A - c&I)&&‘. In the sequel, we shall use 4 to denote-RCA, &) 
in general. Thus in case of Eq. (2). F k = fi, while in case of Eq. (31, f$ and fi 
are related by 

By using Eq. (4), we could obtain an explicit expression for Fkr namely 

fi = R((A - @&I)-‘, &)(& - ~,&), 

which is iess attractive to deal with than R(A, &k). if y = vkz is a Ritz vector in 
yk, then it is easy to see that r(A,y) = &. 

There are different possibilities to check the convergence at step 25, de- 
pending on the individual method. Most commonly, some measure for the 
residual nOllll ~~~(~,yk)~~ = I1a’i,Vk - @kll is used, e.g. le~zalll;~~Mtkll/ll~~kll. 

Example 1.1, Many well known iterative methods for solving eigenvatue 
problems can be fitted into this scheme. 
?? A~~~~d~‘s method [S]: If we choose rrk = Auk, then we get Arnoldi’s method. 

The matrix Gk is upper Hessenberg and its kth column gk contains the 
o~hogonali~tion coefficients of the kth iteration step: wk = &+tgk. More- 
over, &. = (0 *sm Ofk], withfk = ljf II k &+I. The next W&X in the Arnoldi it- 
eration is equal to the residual of Eq. (2) - which’ is called the Amoldi 



equation. If44 is symmetric, then Gk is a tridiagonal matrix and the method is 
the symmetric Lanczos procedure [6]. 

. RKS [7-91: If we choose rvk = (A - cqf)-’ &t,. with tk E ck some co~tin~tion 
uect~~r, we get t,he (RKS) sequence method. RKS corresponds to an OPM 
that builds Eq. (S), where Lk contains the orthogonali~tion coeticients 
and & =. CI, diag(a,) f G is an upper Hessenberg matrix. G is the upper tri- 
angular matdx that collects the continuation vectors. As for the Arnoldi al- 
gorithm, 5 only contains one non-zero column. For RKS, the s&diagonal 
elements of & will always be non-zero - unless the method has converged to 
some solution. 

?? ~f~U~~~o~ [l&l I]: If we choose IV& = (A -- #&-‘(A - ~k~~yk = (A - @k~)-‘r 

(A, yk), then Algorithm 1.1 corresponds to Davidsons method. The Davidson 
method is well suited for use with an inexact linear system solver. If the sys- 
tem (A - akljw% = r(A,yk) is solved exactly, then this method corresponds to 
an extended RKS method and rank(Fk) = 1. if the linear system is solved in- 
exactly, e.g. with an iterative method, then rank(Fk) 3 1. 

?? ~~~~~~-~~~?~~~o~ 1121: If pvk is computed as 9; (A - &2):9+~ ~tk = -(A’ - OkI) 
x _&r by use of an iterative system solver, then the OPM is the Jacobi-Da- 
vidson algorithm. This method is a.o. an extention of the Davidson method. 
A short comparison between both methods call be found in [I2,13]. Notice 
that for both Davidson variants, Gk is no longer an upper Hessenberg ma- 
trix. As for Davidson’s method, it holds that if the system is solved in exact- 
ly, then rank(&) r I. 

We define the (numerical~ rank of a matrix as follows. 

astir 1.3. Given a matrix F E Cnrx”, with singutar values ~1, 02.. . . 
define the rank of F and its numerical c-rank as 

then 

rank(F) = #(gi 1 q # 0) and rank(F,E) = #{ai 1 Cri > c). (3 

In order to understand the ~orres~?nden~e of an OPM to its numerical 
implementation, we show how a projection matrix acts on the ~numeri~al~ rank 
of a matrix and on its singular values. 



Proof. For this proof, we use the fact that the 
F are 

values of a k x II 

rri P-11 Ilfill = max mm - = min max -, SEX, rE*V ll4l .Vf.Y 1 ‘1. .@.Y 11x11 

where -g’* is the set of subspaces of dimension i [ IS,15]. Therefore. 

We also rely on the fact that 

i.e. the maximum 
original set 3,. 

over a ‘smaller’ set Xi-r is larger than maximum 

1. The first property is very well known: 

2. For the p - I-th singular value. it holds that 

3. Say_[=fi+g 2nd lety= [A-” cx*]*, where x E C’. We normdise llvll = I, 
thus 1x1” = 1 - x*:;. There exists a ,VO = Cr; x(;]“, such that .;ro + Q/Z = O.Without 
loss of generality, we may assume that the Q are real and positive. Hence, 



If r = 0, then this vafuc is equal to fl.r!!: if :! = 1, then it is Go. The extremum 
inside the interval [O.l] is found at x2 = il./ll’/(of + llfil’). The value of the 

maximum is then d-. El cl + /fll 

Note that the conclusions of this iemma only hold for orthogonal projection 
matrices. When oblique projectors .flOb are used, it is possible that 
/l.PG&f/ >> IV/!. In practice, this will be merely an exception, bc: it keeps us 
from drawing broad conclusions about the generafised eigenvalue problem, 
because the generalised eigenvalue probIem makes use of oblique projector 
matrices. The standard eigenvalue problem onty needs ortho,qonai projccto~s, 
Consider some extremal cases of Lemma i.i(3): 

IfS E .1(F) then &4#l/ = 0 and the matrix [F, fl wiK have a new singular 
value that is equal to zero. If @$!$/I = e is small, then the new singular vaf- 
ue will be at most equal to E. The other singular values will zrow iip propor- 
tion to llfl/. 
Iff I .4$(F) then h = 0. We then expect a uew singular vaiue that is equal to 
I/f/l. The other singular values do not than ge. If jhI/ is small, then the new 
singular value will be approximately equal to li.P$‘l~ ~?r I&J/. The other sin- 
gutar values will not change much. 
Iff I 1(F). but ltfll is small, then the singular values will not grow much 
either. The new singuiar value will be approximately equal to lff/I. , 



2. monitoring the residual matrix 

We prove in this section a recurrence relation between the res’dual matrices 
of different steps of the eigenvalue solver. This relation is then used to show 
which orthogonal projection methods are rank conservative and thus may be 
considered for implicit filtering. 

The subspace ?$ depends directly on the commutation of the vectors 
Wj..... ~;t_~. As for the Arnoldi algorithm, these computations can often be 
written as a recurrence relation, The same can be done for the residual matrix, 

Proof. The proof is quite trivial. Since 
= [.Pk .,A& .&.,Aw! and since .y’; , = ._P; .Pk , = 

From this lemma. 
residual matrices. 

immediately recurrence relation for the 

Proof. The recurrence (7) is given in the previous lemma. The relatiu;k’% Fk 
folloas from combining the relation fiLj = .;$(,Q - ~l)fi, i = k,k -t. 1 with 
Eq. (7j. tl 

The interpretation of Theorem 2.2 reveals info~tion about tine possible 
convergence properties of the algorithm. Indeed. by (7) the new residual matrix 
consists of the old residual o~hogonalised to vk+i and of the residual of the new 
vector o~ho~onalised to vk. If the residual norm lir’;il or /lRll is small, then the 



method converges. In order to get a small residual norm l/Fkji, one should try to 
satisfy as much as possible these conditions: .+$‘(r;;i) c .&( Ci. I) and 
r(A. Q_.~> E .#( ?&t). The first condition is optimally fulf%ed by the Arnoldi 
method, the second by a Davidson type approach. 

Concerning the rank of the residual matrix,we first observe that in case 
Eq. (2) 4 = &. = R(A. &). so rank(&) = rank(Fl;,f. In case Eq. (3) however, it 
may happen that rank(F;,) 3 rank(&), because Fk = 9; (-4 - G&F&-t (and 
rank(&) = rank(@ - c&F&t)). The strict inequality will only hold in very 
specific situations. However, generically we uiso have rank(&) = rank(Fk) in 
case of Eq. 13) and thus for the general case Eq. ( 1). We will assume further in 
this paper that rank&.) z rank(&) holds for the general case. 

If algorithms have the property that the rank of their residual matrix does 
not grow, i.e. rank(Fk) 2 rank(&), then they are called rcIItlz co~~.ser~~rfii~~. If 
the numerical rank is constant for the method, then they are called c-rusk 
cmserzwtive. However, due to t ounding errors. the numerical rank of the re- 
sidual can increase slightly, even for a theoretically &rank conservative 
method. 

~~~j~ion 2.1. if for an OPM, based on Algorithm 1.1. it holds generically {i.e. 
for almost any matrix A) that rankj&.t ) d rank(~). k 2 1. then the method is 
called rank-conservative. 

If rank(~~~.~) < rank(&d). with r:’ = O(F). then the method is called e- 
rank conservative. 

From Theorem 
must fulfill. 

2.2, we derive a condition that a rank conservative sclver 

Proof. Since Theorem 2.2 shows that &I = [.z+;,~#$ .P~r(A,r~+t)j. we have 
rank(Fk+t j < rankj~~)if.~~r(A.q+i) E .~(~)orifrank(~~~_~~) = rank(&)-1. 
The first condition is true iff r(A, l,+.l) E .R(&) U~~(~+I). the second one 



andifrr,<cfori= I . . . . . k. then 

Lemma 2.3 divides the set of rank conservative sohcrs into two diRerent 
types. First. t!tere is the hrnoldi type ~~l~orithti~ for which rx, I f .#(l$). This 
condition ;orrcqponds to setting 1~~ = A &lx. for some vector t4 E 42’. 

The second type is an RKS or Davidson type algorithm. These methods 
compute Q. I such that r’(A. 1~. 1 ) E .@( ‘4 fii ) u .,R( Ii ) = .d( & ) u .@p( I< ). In order 
to compute rA. 1 (even implieitl}~) from ~$21. I -A . , ). these methods witi need to 
solve a linear system. Both methods arc rank conserva:rve. as we show in the 
foilowing theorem. 
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and hence 

reminding that /y/ = (/.Bj; 8~ 11. Usins Lcmmu 2.3. this proves the theorem. n 

Basicalfy. Lemma 2.4 sqs that in esuct arithmetic there we only three rank 
conservative eigenvaiue solvers: Arnoidi. RKS and B Davidson algorithm that 
used an direct linear system solver. Inversely. any eigenwiue solver that has a 
residual of rank I can be interpreted as a ~ener~~i~lti~~n of an Arnold1 or an 
R KS process. 

Example 2.i. We illustrate the difference between r~~nk-conserv~~tive eigenvalue 
solvers and ~;-r~nk-~onserv~tti~~~ solvers with a small example of the RKS 
method. 

We constructed a IO0 x 100 ~id~~~on~~i matrix ~1. setting (J),.i = -i and 
w,, ) I = 1. We compute the rightmost eigenvalue i. = -1 using Algorithm 1.1. 
The starting vector is rl = [O.I. 0.1.. . . . 0.1 J” and ti. I is computed from 
8~ - +I - crxl)r6, where 11) = 1 and /ii = 0,. for i : I. The ~lpproximution :I, is 
computed as the rightmost cigenvaiae of GA. The iincur systems we solved with 
Gaussian eiiminztion. It is well known that the systems will only be solved wirh 
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a (relative) error proportional to the coudition uumber of the matrix. i.e. rel- 
ative to /I,4 - @~~i[(4 - Q)-’ 11. The error wili he large when the method 
converges. This effect is ;:!llstrated in Table 1. The table shows for iteration 
step 4-S the error on the eigen\r,:‘ue, the residual norm and the absolute error 
on the solved system. It also displays :r?q;three largest singular values of &. in 
theory. this RKS method is rank conse&%tive. In this ext;;lple. the second 
singular value of the residual can not be neglected at th? coint of convergence. 
in this case the sixth step. 

The seynd part of the table shows what happens when we fix the sltift 
11~ = lip for ii zQ. The quadratic convergence is lost. but the convergence rate is 
very high. The secZ& singular value of Fk remains of order I e- 12. If we set e.g. 
c = le-- I i. then the E-rank of .pk is one. 

In practice. we cannot assume that Algorithm I.1 will conve:ge in a pre- 
dictable amount of steps. Furthermore, if several eigenvaluc; must be found. 
then the number of iteration steps that ?he a!gorithm needs in order to find 
them all, I ill likely ex cced an ~~cc~pt~~ble al~ount, A restarting procedure for 
relation (!) must be considered. A different reason for restarting the Arnoldi 
ieiation (For the gencralised eigenvalue problem) was formulated in [Z]: if the 
problem has zn infinite eigenvalue, then spurious approxim~~tions of this inf- 
nite eigenvalue can pop up and bring about wrong results. The filtering 
property of the Implicitly restarted Arnoldi 121 algorithm can be used to filter 
away these spurious eigenvalues. In [16]+ it is shown how the reslarting of the 
Arnoidi equation can be generalised to the RKS equation. A different re- 
starting procedure. based on the Schur decomposition of Gk for the Jacobi- 
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Davidson algorithm is proposed in [f7]. In this section. we will consider these 
two related procedures for an arbitrary OPM. 

When we use the word resrurrirzg, we mean the reduction of Eq. (1) to an 
equation 

it C&,Li._I, -= t; :&, f jz&, - ~~‘_JfF,‘_,. (9) 

with C;,:,, J?& E @*‘C-p and Xl_,,_ L& E @-.@+“. If these are matrices that 
could have been generated by the same OPM. using a new starting vector r;, 
ihen we call this operation an i4~4~~~_*it restart. Otherwise, the equation is re- 
started explici!&. Often, an implicitiy restart procedure can be stun as a fil- 
tering procedure. After the fittering, the new basis F;_;, contains a filtered 
version of the old basis b&,. 

where &(A) is a po~yno~nia~ 
restart algorithm. 

or a ru!ional filter function that depends on the 

Consider the reduction uf Eq. (1) to an Eq. (9) of lower dj~k~ct~sion. It is 
clear that a trans~o~ation of E’x into Q:,, must be orthogonal. i.e. there exists 
an orthogonal mutrix Q such that &, = &Q. A corresponding transfo~ation 
will then be appiied on Gk. The foi~~wiug lemma shows this for the general 
case. 

Praqf. Since Qp + qq’ = I, multipli~tion of AbiLk = C;i,& i- jf.+A - ~kZ)F~ 
with Z gives 



then the 1tistincti19n Mwccn tit) and (b} in icmmu 3.1 may beCome obsolete. 
Ii&xl if7 E \;” . - 6x& ” ‘. then the null space of % has ~Jii~l~nsi19Il 1. which is cqud 
to rank(~). So there will ai.2:uys esist :I % such lhat r’Z =-I 0. In that case, 
supposing that cl’& = ,gKf and q’L& = g/r’ implies that there exists a % such 
that q’KhZ “= 0 --L q.Li.Z. Nctico also that if w f 0. then the property that 
8; _L & is nvt inherited ;II!t~9m;iticully by 1;. ,, and 4’ ,,. 

The two wa>s to restart a11 CPM xc clear from the proof of Lemma 3.l. 
The lirst solution is c19.nstnv.d such that the ~I~~iti19Il~Il r&dud term 
(:ll&i’I.r, - ~~~~~1.~~ 1% is alual to are. The second solution makes ?his re- 
sidual of the smlx form as the original residual. Both solutions result in a new 
residual FL’ !, that h:rs the same rank as the residual b&xv the restart. 

From II di%zrcnt point 191’ view. there arc also two clifforcnl possibilities tbr 
rducinp the siL:c of the pr19jjcction equation. Kc&Icing the side ~9f the subspax 
fi m~;ms the removal of it subset of its sectors. WC cull this filttxing of the 
subspucc. Theso vectors can 190 sclcct~‘cl in an c~splkit wrtr. e.g. as the Ritz 
actors titut tIppmsim& .t~nir~t~r~~t~~~~’ oigcn~~cctors. The filtering ~311 also be 
worked out in itn implicit tllitMlC~. 
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The matrices involved in this restarting procedure cun also be found without 
using a Schur ~i~~~~tll~~~~iti~~n. This is shown in the following lemma. that says 
how a set of Ritz values can bc rcmovod cxpficitiy from the ~2~,~roxim~tion. 
Therct‘orc. we call these evplkit .fi/rn’iqq procedures. in contrast with the im- 
plicit fiituring iu the 126% section. 



Deleting the last column of both sides of this equation makes 6 vanish, so 

If we define C)A*.. I s QQt. then this means that I$:{ = (A - ~fIft;_~R;~ and thus 

.#(I’;:,) = .?AP((A - pl)t;;_,). (icij 

supposing that RI has full rank (one can see that this is true if cc is no eigenvalue 
of A). Eq. ( 109 proves the il~l~i~~it.~lt~ritr~ property of the IRA algorithm, since 
I/ * k__, equals the old subspace G-8 filtered with a polynomial of degree 1 in A. 
The zero of the polynomial is ~1. Repeating the rest~lrting algorithm builds a 
polynomial of higher degree. 

On the other hand. if we ml~ltiply the equation from the right by Qt. then we 
get 

The matrix Qt fulf& the conditions of Lemma 3.1. It is easy to see that 
Gi_, = QiGAQi is uppr Hessenberg and 

F ,:, = p s.. (if;’ ,j =s- rankt/$‘.,)f I 

Lemma 2.4 showed that we cannot filter the subspace using a restarting 
procedure that decrements the size of the subspdce r/; cl by one if the rank of 
the residual is Isrger than one. However. we can implicitly apply a filter, but 
then we wilt need to delete more than one vector. 

Proof. Rue to the correspondence with an Arnoldi or RKS process (Lemma 
2.49, a relation with rank(Fk) = 1 can be filtered while restarting. This is shown 
in f16.1]. Inversely, for a rational filter, given a full rank matrix P E CA-’ (set 
P’= [P 0]‘9. given any vector t&,1 f CL+’ and a pair r. [j E @. Sf ii’ spans a 
filtered version of F2. then 



and 

The :‘&xving theorem shows how in general an eigenvalue 
restarted ilk c~rnbjn~lti~n with an implicit Mering step. 

solver 

Proof. It can easily be derived that by shifting the projection eqtlarron, 

If we apply Lemma 3,t on this equation, then I’ is defined by 
6 = F;,fO i,,] = l$r’. On the cme hand. Q;{r& - I&) = Q;fQi Qz]R 
= RfO I”/ = /be. where fi is the p x p lower triangular s~b~?~~tri~ of R. On the 
other hand. Q;(T*& - G&)Z = Q;(t& - ~~L~)(~~K~ - c~L~)-~QI = 0, so 
Lemma 3.1 may be applied. Hence, 

and shifting back the new projection equation proves the first result. We find 
that I$, =F;kZ3-(Sr~+rc7~)“(ri.A- ~~r)~Q~~~O fP!,IZ. So if !~Fx = 0. then 
(t:k:JJ& = 0 because Q;Q2 = 0. El 



This theorem ran also 
flk = -1 and this gives: 

bc applied in the special LA = I. rh = 0 and 

we derive that xG~ _I” = Qii zG~ - ir! + /M)Qi = [RI 6:]Q1 + /ii. U 

The implicit rcstart cannot bc rcptr:ltcd imm~di~~t~ly. because the first k - 2p 
columns of F,: ,, ure not equal :o zero. However. the restart am be repeated on 
the rotatgd system 

with c’ G - I = GG’ and F,’ _!,G =e [iI e a e 0 ?k], Notice that G can be comported 
from Z or Qt (G must be constructed such that the p x (k - p) tower left part of 
ZG or QIG is zero), 

The results for the inexat liltering procedure are s~lmrn~tri~ed in the Algo- 
rithms 3.1 und 3.2. We do not need to know the matrix T, to compute the 
restarted equation. 



Example 3.1. WC iilustratc the use of an implicit filter for a I:-rank conservative 
solver with an example. The cxamplc involves n gcncruliscd cigcnvuluc problem 
with a singular i?. WC bring this problem back to u .~tt~~~c/~ir~~ eigcnvalue 
problem by studying the cigenvrtluv~. of (,*I - nB)- ‘8. which has the same 
cigenvcctors as the 01 i_ginal problem. The mutriccs come from the ~iln~ll~~tion of 
llow of a viscous fluid with free st:rfucc on a tiitcd plane. &ng a finite clement 
approach. The size of the cigcnvaluc problem .J.s = i.& is tz = 536 and the 
rightmost ci~cnv~iluc is computed. The rightmost eigenvaluc is equal to 
il = -9.4883. 

Since the matrix B is singular. the cigcnvuluc problem has un intinitc ei- 
genvalue. Approxim~~tions of the infinite eigcnvnluc will occur in the solution 
as large. firiite eigcnvulueb. If such a .spllri(~if.s cigenvalue becomes the rightmost 
one, it will misicud the ~ll~orithrn and the cxaot solution will not bc found. 
Thercforc. wc will filter than out with the inexact filtering procedure of AI- 
I;oriihm 3. I. 

We itcrutcd the OPhS algorithm X- = IO times with II starting vector 
t’t = /I .I. I]*/fi and ,Q = (.d - nB) ‘&. with a shift c - -I. Setting the 
matrices &, = (I;‘BEi)“’ and Lx = (~,~‘,~~~~) ‘. wt” computed the approximate 
eigenvalues as the cigcnvalucs of the small system 

L, I= =L (iA;‘-‘=. 

WC do not know the matrices C;, or 6 in the relation 

but we 
to 

can compute fhe which correqwnds 
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Setting Gk = Lk(& - QL~)~’ and using F& - qLk)-‘+ will give the input 
matrices for Algorithm 3.1. 

The iinear system was solved using GMRES to a tolerance of 10 x iO_“, for 
the first eight steps and to a tolerance of 10 x 10m9 for the last two steps (since 
inexact iterative methods converge asymptotically well, it is better to use a 
higher tolerance at the end of the process [IS]). The results are shown ia Ta- 
ble 2. 

Implicitly restarting the relation seems not to conflict with the convergence. 
i.e. it does not reduce the residual norm. Only when the parameter p - the 
assumed rank of G, - is taken too large, some convergence is lost. The quality 
of the implicit filter grows with p, because the neglected part of the residual 
then becomes smaller. Since there are no eigenvalues with a positive real part, 
Ritz values with a positive real part can be considered as spurious eigeavalues. 
With p 3 2, all spurious eigenvalues with a positive real part are filtered away. 
The filter is then applied with very good accuracy. But if we set p = 3, then 
some convergence is lost (1[&4,yk)l] = 1 x lo-“). Comparing the third row to 
the stqond column, one can see that the accuracy of the filter is proportional to 
fl,+l. 

4. Conclusion 

We showed in this text that an implicit filtering procedure can only be ap- 
plied on rank conservative methods or methods that have numerisally a low 
residual rank. The larger the rank of the residual matrix is, the more inaccurate 
the implicit filtering will be or the more basis vectors must be sacrificed. We 

Tubie 2 
Applicution of the implicit ~~turting nIgo~thm 011 an incxuct OPM. The first column shows the 
residual norm of the Ritz-vector. the number of eigenvaiues with a positive reai part, the error on 
the implicit filter (F&;, = (A - a@- ‘&CL ,,I and the largest singular vah~es of /$(& - nf&)-‘. The 
following columns show the same yuuntities after a restart with un assumed residual rank of 
p” 1. 2, 3 

Y. 
k- 1@ I;=1 p=2 p=3 

Itr(A.~~l? 1.1 x w 1.1 x IO-’ 5.9 x IO’- 1.0 x 10-J 
fie positive 1 t 0 0 
ll.~~.~~~~~l 5.9 x IO-? 1.9 x 10-x 3.4 x 10-R 

61 I.! x 10 J 5.1 x 10-2 6.7 x 10-J 8.7 x 10-J 
fl2 6.3 x IO.? 3.5 x 10-L 2.0 x 10-J 2.6 x 10-J 
0% 3.1 x IO-” 6.7 x IO-‘” 2.5 x 10-v 5.6 x itF 
a 5.0 x 10 -1” 2.1 x IO-‘” 2.1 x IO’.‘” 2.3 x IO’” 
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showed that the set of rank co~~~~tive eigenvalue solvers is restricted to those 
methods that use an Arnoldi type of scheme (with matrix-vector products) or 
that perform Rational Krylov like computations (solving R linear system with 
the matrix A accurately). Other methods and inexact variantsof rank conser- 
vative methods cannot be filtered implicitly in combination with an implicit 
restart. 

Alternatively, unwanted Ritz or Schur vectors can also be filtered away 
explicitly by using a Schur de~om~sition of the projection of A on the column 
range of 5. The disadvantage of this explicit approach is that one must identify 
the unwanted vectors and that only Ritz vectors or harmonic Ritz vectors may 
be removed. Using an implicitly filtering function. one can also remove those 
vectors that correspond to spurious eigenvalues, even if these are not Ritz 
vectors. So the message is relatively pessimistic: true implicit filtering can only 
be applied in a very limited set of cases. If a belter filter must be applied, then 
the cost - in terms of ‘lost’ subspace vectors - will be larger. 

This text presents research results of the Belgian Incentive Programme 
~~nfo~tion Technology’ - Computer Science of the Future (IT/IF/S), and the 
Belgian programme on Inte~niversity Poles of Attraction (IUAP 17). initiated 
by the Belgian State - Prime Minister’s Service - Federal Office for Scientific, 
Technical and Cultural Affairs. The authors are very grateful to the referees, 
who provided us with many useful comments. 
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