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Epidemiological studies have shown a positive correlation between poor lung function and respiratory
disorders like asthma and the development of adverse cardiovascular events. Increased adenosine (AD) levels
are associated with lung inflammation which could lead to altered vascular responses and systemic
inflammation. There is relatively little known about the cardiovascular effects of adenosine in a model of
allergy. We have shown that A1 adenosine receptors (AR) are involved in altered vascular responses and
vascular inflammation in allergic mice. Allergic A1wild-type mice showed altered vascular reactivity,
increased airway responsiveness and systemic inflammation. Our data suggests that A1 AR is pro-
inflammatory systemically in this model of asthma. There are also reports of the A2B receptor having anti-
inflammatory effects in vascular stress; however its role in allergy with respect to vascular effects hasn't been
fully explored. In this review, we have focused on the role of adenosine receptors in allergic asthma and the
cardiovascular system and possible mechanism(s) of action. This article is part of a Special Issue entitled:
“Adenosine Receptors”.
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1. Generation of adenosine and its metabolism

Adenosine is a ubiquitous purine nucleoside with multiple
physiological effects. It has several regulatory functions including
relaxation of the vascular smooth muscle, neuromodulation, regula-
tion of inotropy and chronotropy, amongst others [1]. Under normal
physiological conditions, adenosine is formed by the intracellular
conversion of S-adenosyl-L-methionine (SAM) to S-adenosyl-L-
homocysteine (SAH), which is then converted to adenosine and
homocysteine by SAH-hydrolase [2,3]. Adenosine can also be
produced extra-cellularly through successive dephosphorylation of
ATP; ATP is dephosphorylated to ADP and then AMP which is
converted to adenosine via ecto-5′-nucleotidases [4,5]. Adenosine,
thus produced, can be further converted to inosine by the enzyme
adenosine deaminase (ADA) and finally is broken down to uric acid
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Table 1
Vascular responses to adenosine in Balb/C mice aorta [40].

Group Response to 10−4 M adenosine (%)

Control 21.44±3.94
Allergic 7.02±2.94⁎

Allergic+adenosine −4.45±3.8 (contraction) ⁎
#

+ Relaxation; − contraction.
⁎ Pb0.05 compared to control.
# Pb0.05 compared to allergic tissues.
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which is excreted in urine. Adenosine can be phosphorylated to AMP
via the enzyme adenosine kinase. Extra-cellular concentrations of
adenosine are elevated several-fold during periods of increased
metabolic demand, injury or stress such as ischemia [6] and
inflammation.

2. Adenosine receptors

Adenosine acts on specific cell surface purinergic receptors to
induce various physiological effects, and thus far, four subtypes have
been identified, namely A1, A2A, A2B and A3. All four adenosine
receptors are G-protein coupled and the effects that adenosine
produces depends on both the receptor subtype that is activated as
well as organ/tissue in which the receptor is present. A1 and A3

receptors are coupled to Gi while the A2A and A2B receptors are
coupled to Gs. A1 and A2A have a high affinity for adenosine, while A2B

is low affinity and A3 is intermediate [7,8]. The A1 receptor signals
through Gi/Go-proteins and its activation leads to an inhibition of
adenylyl cyclase (AC) which causes a lowering of cyclic AMP (cAMP).
Signaling through the A1 receptor can also lead to the activation of IP3/
DAG through the PLCβ-III pathway [9]. The A2A receptor signals
through the Gs pathway and its activation leads to stimulation of AC
resulting in increased production of cAMP. The A2A receptor is mainly
anti-inflammatory and is involved in coronary vasodilation as well as
vascular smooth muscle relaxation to various degrees depending on
the species [10–12]. The A2B receptor signals through Gs/q and its
activation can either result in increased cAMP or IP3/DAG and Ca2+

levels. Lastly, the A3 receptor signals through Gi and is negatively
coupled to AC [13].

3. Asthma

Asthma is a chronic lung disease characterized by inflammation
and airway hyper-reactivity. There are over 16 million people
diagnosed with asthma in the US, with 7 million under the age of
18 years. Allergic asthma accounts for about half of these numbers.
The disease consists of episodic events which manifest as hyper-
responsiveness of the airways to common triggers like dust, pollen,
cold air, exercise, cigarette smoke and other pollutants, resulting in
bronchospasm and difficulty in breathing. Airway obstruction occurs
due to inflammation, excessive mucus production, and overactive
bronchial smoothmuscle. Initially, the inflammation is acute in nature
but eventually becomes chronic with the progression of the disease,
and long term effects of asthma are linked to its inflammatory
component. Disease management consists of anti-inflammatory
drugs, leukotriene modifiers and bronchodilators.

4. Adenosine and asthma

Adenosine has long been implicated in the pathogenesis of asthma
[14]. Inhalation of adenosine was shown to be a potent bronchopro-
vocant in asthmatic patients [15]. Inosine, the deaminated metabolite
of adenosine does not produce bronchoconstriction [16] suggesting
that the effect on bronchial smooth muscle is specific to adenosine
and possibly involves adenosine receptors. Increases in adenosine
levels correspond to increased airway inflammation and tissue
damage, and asthmatic patients also have significantly higher levels
of adenosine in bronchoalveolar lavage fluid (BAL) and exhaled breath
condensate than normal healthy subjects [17,18]. Adenosine causes
degranulation of mast cells which leads to the release of histamine
and subsequent cascade of events including H1 receptor-mediated
bronchoconstriction and inflammatory response [19,20]. This mast-
cell mediated response is believed to occur through the A2B receptor
although this has not been conclusively proven as yet [21].

Mice that lack the adenosine deaminase (ADA) enzyme have large
amounts of adenosine in their lungs and severe lung inflammation
[22]. In fact, these mice are unable to survive beyond three weeks due
to respiratory distress. ADA deficient mice demonstrate the presence
of eosinophilia in the lungs, extensive mast cell degranulation and
increased levels of serum IgE [23], indicating a strong correlation
between chronic elevation of adenosine levels and increased lung
inflammation. There is evidence that adenosine causes recruitment of
inflammatory cells to the lung [24] and amplification of the
inflammatory response [25].

In allergic mice, adenosine, among other inflammatory mediators
from allergic lung and activated leukocytes, is released [16,26]. This
adenosine may be involved in further release of chemotactic and
inflammatorymediators in the lung and systemic circulation by acting
on its receptors present on different cells including mast cells,
eosinophils, neutrophils and other inflammatory cells [25,27–29].
Experimentally induced temporary elevations in lung adenosine
levels through the inhalation of adenosine (resulting from breakdown
of adenosine 5′-monophosphate) have been shown to cause an
increase in infiltration of eosinophils in patients with asthma [30].

5. Reactive airway diseases and cardiovascular complications

There is epidemiological evidence indicating that people suffering
from asthma, chronic obstructive pulmonary disease (COPD) and
reactive airway diseases are at an increased risk for developing
cardiovascular disease (CVD) [31–33]. There is an association
between atherosclerosis and stroke with reactive airway diseases.
One study found that adult-onset asthma was associated with
increased carotid atherosclerosis in women [34]. Impaired lung
function has been found to be a risk factor for CVD [35]. Bronchial
hyper-responsiveness to methacholine is associated with increased
carotid intima-media thickness [36]. One of the leading causes for
hospitalizations and deaths occurring in COPD patients is cardiovas-
cular events [37].

Recent evidence in animal models indicates that CV complications
associated with asthma are independent of asthma therapy and could
be a result of asthma itself. Myocardial ischemia–reperfusion injury
was enhanced in a rabbit model of systemic allergy and asthma [38]
and allergic inflammation in the airways enhanced neutrophil
recruitment to the myocardium and severity of ischemia–reperfusion
in a murine model [39]. Allergic mice have poor vascular responses
and systemic inflammation, with adenosine aerosol exacerbating
these effects [40]; Table 1). In our study, we found that use of an A1 AR
antagonist ameliorated some of these effects, which led to the
hypothesis that A1 receptor is involved in pro-inflammatory effects
systemically in a mouse model of allergic asthma.

6. Adenosine receptors in asthma and vasculature

Adenosine has a well established role in the control of vascular tone,
and its effects are exerted through the activation of four ARs [41]. A1 and
A3 ARs have been shown to be involved in vasoconstriction [9,42–44]
whereas A2A and A2B ARs cause vasorelaxation [45–47].

The four ARs have different modulatory roles in asthma, and the
cardiovascular system [48–50]. Many reports suggest that the A1 AR is
involved in direct bronchoconstrictor effects of adenosine. The
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Fig. 1. Systemic inflammatory markers in plasma A) IL-5 B) IL-13 C) TNF-α in A1WT
non-allergic control (A1WT CON), A1WT allergic (A1WT SEN), A1WT allergic further
challenged with adenosine (A1WT SEN+AD) mice [40] *Pb0.05 compared toWT CON;
#Pb0.05 compared to WT SEN.

Fig. 2. Plasma levels of IL-5 in A1KO non-allergic control (A1KO CON), A1KO allergic
(A1KO SEN), A1KO allergic further challenged with adenosine (A1KO SEN+AD) mice
(unpublished observation; IL-13 and TNF-α were not detected in A1KO plasma).
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expression of A1 AR was found to be elevated in a rabbit model of
asthma and the use of an A1 antisense nucleotide to inhibit this
upregulation resulted in blunted bronchoconstriction to adenosine
[51,52]. Use of a selective A1 antagonist (L-97) produced significant
reduction of airway hyper-responsiveness in allergic rabbits by
blocking these receptors [53]. A recent study reported that the
expression of A1 AR is significantly elevated in airway smooth muscle
in asthmatic patients [54]. Other than the effects on airway smooth
muscle, the A1 AR has been implicated in increased mucin production
in human tracheal cells [55] and in mediating monocyte phagocytosis
[56]. All these studies suggest a strong role for the A1 AR in asthma,
both in airway obstruction and inflammation.

A1 ARs also have systemic effects and are involved in blood pressure
regulation [57] and vasoconstriction [9,42–44]. Recent studies suggest a
role for A1 AR in altered peripheral vascular reactivity and increased
systemic inflammation [40]; Table 1 and Figs. 1, 2). In this study, Balb/C
(A1 wild-type: A1WT) mice were divided into 3 groups: control or non-
allergic (A1WTCON), ragweed sensitizedmice (A1WT SEN) and ragweed
sensitized mice further challenged with a single aerosol of adenosine
(A1WT SEN+AD) were studied.

The A2B AR has been found to play a protective role in vasculature
against arterial injury (vascular stress) and is involved in the
regulation of TNF-alpha, which contributes to the anti-inflammatory
actions of adenosine [58]. In A2B receptor-null mice, the expression of
vascular adhesion molecules was increased, as also the levels of pro-
inflammatory cytokines [59,60]. A2B antagonism also produced
further impairment of adenosine-mediated aortic vasorelaxation in
allergic mice [40].

Despite these data, there is little information specifically regarding
the role of lung inflammation (as seen in asthma) in the development
of cardiovascular disease, in relation to the vascular and systemic
effects of adenosine. Systemic inflammation, endothelial dysfunction
and altered vascular reactivity appear to be associated with asthma.
Adenosine plays an important role in these effects and exogenously
administered adenosine to increase the lung levels experimentally
beyond the allergen exposure exacerbates observed outcomes.

Recent work from our lab [61] using A1 AR knockout (A1AR KO)
mice has shown the involvement of A1 ARs in systemic and vascular
inflammation. Data showed that the allergic A1WT mice (A1WT SEN
and A1WT SEN+AD groups) had lower adenosine-mediated aortic
relaxation to 5′-N-ethylcarboxamidoadenosine (NECA; non-selective
adenosine analog) (Table 2) and higher contraction to 2-chloro-N6-
cyclopentyladenosine (CCPA; selective A1 AR agonist), with increased
protein expression of A1 AR in the aorta. There were also significantly
higher levels of inflammatory markers in the plasma, and in aortic
tissue. In contrast, no impairment in adenosine-mediated vascular
responses was observed in A1 AR KO (Table 2; allergic and non-
allergic controls: control or non-allergic A1KO CON, ragweed
sensitized A1KO SEN and ragweed sensitized further challenged
with a single aerosol of adenosine A1KO SEN+AD) aortic tissues.
There were also significantly lower (or undetectable) levels of
inflammatory markers in aortic tissue in allergic KO mice. These
data implicate the A1 AR in the deleterious systemic effects in allergic
mice that may occur as a result of inflammation. The exact signaling
mechanism(s) of the A1 AR remains to be elucidated.

The A2A receptor has been reported to have anti-inflammatory and
protective role in the lung, especially lung injury A2A KO mice were
showntohavehigher levels of pro-inflammatory cytokines andextensive
tissue damage when subjected to an inflammatory insult that were less
in the corresponding A2A WT mice [62].

Our lab has reported that A2A KOmice have higher oxidative stress
that leads to impaired tracheal relaxation [63]. There have also been
reports that the A2A AR protects against myocardial ischemia
reperfusion injury [64]. In some preliminary data from our lab
(unpublished), we have also observed that allergic A2A KO mice have
poor aortic relaxation and increased airway response (whole body



Table 2
Vascular responses to 5′-N-ethylcarboxamidoadenosine (NECA; non-selective AR
agonist) in A1 wild-type and knockout Balb/C mice aorta [61].

Group Response to 10−5 M NECA (% relaxation)

A1WT control 48.64±2.98
A1WT allergic 28.08±5.06⁎

A1WT allergic+adenosine 17.4±5.53⁎

A1KO control 43.0±2.45
A1KO allergic 48.48±1.93
A1KO allergic+adenosine 48.2±1.47

⁎ Pb0.05 compared to WT control.

1432 D.S. Ponnoth, S. Jamal Mustafa / Biochimica et Biophysica Acta 1808 (2011) 1429–1434
plethysmography) compared to WT. All these findings lead us to
speculate that the A2A AR may protect against vascular inflammation.

Reports have suggested that activation of A3 receptor by inosine
[65] as well as adenosine [66] leads to mast-cell induced increase in
vascular permeability and extravasation. A3 receptors can also have
anti-inflammatory effects [67]. The A3 AR also increases mucin
production in asthma [68] and has been shown to be involved in
bronchoconstriction and eosinophilia [69,70]. Other reports suggest
an anti-inflammatory role for A3 receptors in diseases like rheumatoid
arthritis [71]. The role of the A3 receptor thus could possibly be both
pro- and ant-inflammatory. How this receptor behaves in the
vasculature in allergic mice remains to be seen.

7. Possible pathway for adenosine-induced vascular
changes in asthma

Based on the literature and some of our data, we hypothesize a
speculative pathway for lung inflammation leading to systemic effects
(Fig. 3). We found that IL-13 levels were highest in allergic mice [40].
A review of the literature shows a close relationship between IL-13
and adenosine in lung inflammation [72]. IL-13 is an important
mediator in asthma and has been implicated in lung inflammation and
airway remodeling. It is a product of mast cell degranulation and is
also released from T-helper 2 (Th2) cells. Adenosine and IL-13 interact
with each other positively as shown in studies done with asthmatic
mice [72].These authors found that IL-13 caused a progressive
increase in adenosine accumulation, inhibited the activity of adeno-
sine deaminase, and augmented the expression of the A1, A2B, and A3

ARs. Their findings suggest that adenosine signaling influences the
severity of IL-13 and Th2-mediated disorders such as asthma.

IL-13 signaling occurs through the Janus kinase (JAK)/signal
transducer and activator of transcription (STAT) pathway. This
cytokine acts on its receptor (via JAK-1) and leads to phosphorylation
Adenosine

A1 AR

A2B AR

Th2

IL-13

A3 AR

Mast Cells

TNF-α IL-5

Vascular Inflammation

A2A AR

?? 5-LO
??

Fig. 3. Possible pathway for adenosine receptors as both pro- and anti-inflammatory
effectors in vascular inflammation in asthma. “??” indicates unknownor possiblemediators.
of STAT6, which induces the transcription of several genes including
5-lipoxygenase (5-LO). 5-LO, via the arachidonic acid pathway,
produces inflammatory leukotrienes (LTs) which are very important
mediators of IL-13 induced lung injury [73]. Recent studies have also
suggested a pro-atherosclerotic role for LTs with LTB4 acting as a
potent leukocyte chemoattractant that amplifies inflammation in
atherosclerosis [74].

IL-13 and IL-4 act synergistically with TNF-α to increase eotaxin
levels in the lungs. Eotaxin increases lung eosinophilia in asthma and
is very important in amplification of eosinophilic inflammation.
Though eosinophilia is considered to be a characteristic hallmark of
asthmatic inflammation, eosinophils are not found in any significant
amounts in atherosclerotic lesions. Eotaxin may have a novel role in
atherosclerosis independent of eosinophils. Haley et al. have reported
that eotaxin and its receptor, CCR3, were overexpressed in the
inflammatory infiltrate of human atheroma [75]. CCR3 was predom-
inantly expressed on macrophages and they suggest eotaxin may
participate inmast cell activation or recruitment. In addition to this, in
ourmost recent study [61] we have found significantly higher levels of
IL-5, a cytokine positively linked with eosinophilia, in aortic tissue of
allergic A1WT mice. This may further support a role for IL-5 induced
eotaxin effects in vasculature.

In conclusion, adenosine-mediated effects in asthma may extend
beyond the lung and have consequences both systemically and in the
vasculature. It is possible that inflammation underlies these additional
effects and there is evidence so far for the A1 AR having a pro-
inflammatory role. There remains much to be learnt in this field, with
each adenosine receptor's role not yet delineated. Such studies would
help to further the potential of adenosine agonists and antagonists as
therapeutic agents for systemic and vascular inflammation from a
number of disorders including hypertension, diabetes, rheumatoid
arthritis and many other complications.
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