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Abstract

We extend the geometric approach to vertex algebras developed by the first author to
twisted modules, allowing us to treat orbifold models in conformal field theory. Let V' be a
vertex algebra, H a finite group of automorphisms of 7, and C an algebraic curve such that
H cAut(C). We show that a suitable collection of twisted V'-modules gives rise to a section of
a certain sheaf on the quotient X = C/H. We introduce the notion of conformal blocks for
twisted modules, and analyze them in the case of the Heisenberg and affine Kac-Moody vertex
algebras. We also give a chiral algebra interpretation of twisted modules.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Conformal field theory (CFT) in two dimensions provides a rich setting in which
several areas of mathematics such as representation theory and algebraic geometry
interact in a natural way. In recent years, much effort has been spent on setting up a
precise mathematical framework for CFT. The algebraic aspect of the theory has
been formalized in the language of vertex algebras (see [B,FLM,K,FB]). In order to
understand the rich geometry behind CFT, this algebraic approach must be
combined with a geometric formalism.
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In [FB], an algebro-geometric approach to vertex algebras is introduced (see
[H,BD] for other approaches). Starting with a conformal vertex algebra 7 and an
algebraic curve X, one can construct a vector bundle "y on X such that vertex
operators become (endomorphism-valued) sections of #7%. This gives a coordinate-
free description of vertex operators and allows one to make contact with the
fascinating geometry pertaining to X and related moduli spaces.

If a vertex algebra has a group of automorphisms, then its representation theory
may be enhanced by the inclusion of twisted modules. The systematic study of
twisted modules was initiated in [FLM] where twisted vertex operators were used in
the construction of the Moonshine Module vertex algebra (see Chapter 9 of [FLM]
and the works [Lel,Le2]). The notion of the twisted module was formulated in
[FFR,D] following [FLM]. Twisted modules (or twisted sectors as they are known in
the physics literature) appear as important ingredients of the so-called orbifold
models of conformal field theory (see [DHVW,DVVYV]). They have been extensively
studied in recent years (see, e.g., [Li, DLM,BKT]).

In this paper we extend the geometric formalism developed in [FB] to twisted
modules over vertex algebras. Let C be a smooth projective curve, and H < Aut(C) a
finite group of automorphisms of C such that the stabilizer of the action of H on at a
generic point of C consists of the identity element of H. Suppose furthermore that
is a conformal vertex algebra, and that H acts on V' by conformal automorphisms.
We show that with these data, the vector bundle ¥ ¢ acquires a H-equivariant
structure, lifting the action of H on C. Let X = C/H be the quotient curve, and
v: C— X the quotient map, ramified at the fixed points of /. Denote by C = C the
locus of points in C whose stabilizer in H is the identity element. Let X < X be the
image of C in X and v: C —» X the restriction of v to C. Thus, C is a principal
H-bundle over X . The vector bundle 7~ . over C carries a H-equivariant structure
and hence descends to a vector bundle on X which we denote by 7~ ;1 .

Let xe X. Then x corresponds to a H-orbit O, in C. For each point pev~!(x), the
stabilizer H,, is a cyclic group, which has a canonical generator /,, the monodromy
around p (generically, H, = {e} and /&, = e). We call a collection {Mg”} of h,-twisted
modules satisfying certain compatibilities, a ’-module along v=!(x). For example, if
h, = e, then each M;,"’ is an ordinary V-module and the requirement is that if p’ =
g(p)ev=!(p), then M;,’" is obtained from Mll;" by twisting the V-action by the
automorphism of ¥ corresponding to g. If, on the other hand, H = Z/NZ and h, is a
generator of H, then MII,I” can be an arbitrary /,-twisted V'-module.

We attach to a ¥-module .#, along v~'(x) a section &/~ of "' on &%, the

X
punctured disc at x. Using this structure we define the spaces of conformal blocks in
the twisted setting. The space of conformal blocks is associated to a pair (C, H) as
above and a collection of V-modules along v~!(x) attached to a set of points of

X\ X, and a (possibly empty) collection of ¥-modules along v=!(x),xe X . We give

two equivalent definitions of the space of conformal blocks: using the action of a
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certain Lie algebra obtained from Fourier coefficients of vertex operators, and using
analytic continuation (as in [FB]). In the case of the Heisenberg and affine Kac—
Moody vertex algebras this definition may be simplified using twisted versions of the
Heisenberg and affine Lie algebras, respectively.

Finally, we explain the connection with the chiral algebra formalism. The right
Dy-module of =¥y ®Qy is a chiral algebra on X in the sense of Beilinson and
Drinfeld [BD] (see [FB, Chapter 18]). The action of H on V induces an action of H

by automorphisms of .«Z. Then the twist o< of ,;zi\):( by the H-torsor C, o =

of ‘j( X C7 is also a chiral algebra. Twisted }J'-modules correspond to ./ _modules
supported at the points xe X\ X, and the above space of conformal blocks may be

defined in terms of these .o/ C-modules.

2. Vertex algebras and modules

In this paper we will use the language of vertex algebras, their modules, and
twisted modules. For an introduction to vertex algebras and their modules see
[FLM,K,FB], and for background on twisted modules, see [FFR,D,DLM].

We recall that a conformal vertex algebra is a Z, -graded vector space

together with a vacuum vector |0) € V5, a translation operator T of degree 1, a
conformal vector we V5, and a vertex operation

Y: V—-EndV[z*]],

A—Y(4,z) ZA,,)Z”’

ne”Z

These data must satisfy certain axioms (see [FLM,K,FB]). In what follows we will
denote the collection of such data simply by V.
A vector space M is called a V-module if it is equipped with an operation

Y™V —End M[[z%"]],

A YM(A4,z) = ZAM —n-l

ne”Z
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such that for any ve M we have A( )V = 0 for large enough n. This operation must
satisfy the following axioms:

o YM(|0),z2) = Idu;
® For any ve M there exists an element

foeM[z, W)z W (z=w) 7'
such that the formal power series
M4, 2)YM(B,w)v and Yy (Y(A,z—w)B,w)v

are expansions of f, in M((z))((w)) and M((w))((z — w)), respectively.

The power series Y™ (A,z) are called vertex operators. We write the vertex
operator corresponding to w as

_ M _—n-2
—E L z ,

nez

where LM are linear operators on V' generating the Virasoro algebra. Following [D],
we call M admissible if L)' acts semi-simply with integral eigenvalues.

Now let o be a conformal automorphism of ¥V, i.e., an automorphism of the
underlying vector space preserving all of the above structures (in particular
oy(w) = w). We will assume that o) has finite order N> 1. A vector space M7 is
called a op-twisted V-module (or simply twisted module) if it is equipped with an
operation

- 1
Y™ . vV - End M°[[zFV]],

A YM (4, zN Z ANz
VlEN

such that for any ve M? we have Af‘,f;v = 0 for large enough n. Please note that we

use the notation YM"(A,zN) rather than YM'(A4,z) in the twisted setting. This
operation must satisfy the following axioms (see [FFR,D,DLM,Li]):

. 1
o YM(]0),zN) = Idye.
® For any ve M?, there exists an element

1

foe MR, w2V, w N, (z — w) ]
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such that the formal power series

a L a L a L
YM (4, zN) Y (B,wN)y and Y™ (Y(A4,z — w)B,wN)v

1 1 1
are expansions of f, in M?((zN))((wN)) and M?((wN))((z — w)), respectively.
2mnin
® If AeV is such that o (A4) = e%/l, then Af‘,f; =0 unless nef + Z.

The series Y (A, z) are called twisted vertex operators. In particular, the Fourier
coefficients of the twisted vertex operator

YM wZN E LM
neZ

generate an action of the Virasoro algebra on M°. The o -twisted module M7 is
called admissible if L)" acts semi-simply with eigenvalues in +Z.

One shows in the same way as in [FB, Section 4.1], that the axioms imply the
following commutation relations between the coefficients of twisted vertex operators:

Al Bl 1= (m)<A<n> B) ik (2.1)

n=0 n

where by definition

(I:>:mw_l)“ﬁ!(m_n+l)’ ne’o; <IZ)=1.

We also have the following analogue of Proposition 4.1 of [FB]:

1 1
Lemma 2.1. For any AeV, YM (TA,zN) = 3. Y™ (4,zN).
Proof. We apply axiom (2) in the situation where B =|0). Then

a L g 1
YM(Y(A,z—w)|0)>, wN) = Z YM (A0, W )o(z — w)".

n=0

But A(_5)|0) = T4, therefore Y™ (TA, wN N)v appears as the coefficient in front of
(z— w) in this series. Hence it should coincide with the coefficient in front of (z — w)

4 L . . . 1 .
in the expansion of Y™’ (4, zN)v in a power series in wN and (z — w). But the latter is
- 1
equal to 9, Y™ (A4, wN).

Applying formula (2.1) in the case when 4 = w and m = 1 (so that 4,,) = L), we
obtain that

e .
(16", BfY] = (Lo~ B)jy + (L1 - B){},)-
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But in a conformal vertex algebra L_;- B = TB and (TB)?Z; ) = (=k = 1)By) by
Lemma 2.1. Therefore if B is homogeneous of degree 4, then

[Ly", BY] = (4 —k = 1)B. (2.2)

Suppose that M? is an admissible module. Then we define a linear operator S, on

M as follows. It acts on the eigenvectors of L!" with eigenvalue 2 by multiplication

2nim
by ¢ N . Hence we obtain an action of the cyclic group of order N generated by ¢ on

M°, 6—S,. According to the axioms of twisted module and formula (2.2) we have
the following identity:

- 1 - 1
S1YM (6. A4,2N)S, = YM'(4,zN). (2.3)

Finally, we remark that there is an analogue of the Reconstruction Theorem for
twisted modules. Namely, suppose that V' is generated by vectors a*€ V', o€ S, in the
sense of the usual Reconstruction Theorem (see Theorem 4.5 of [K] or Theorem 3.6.1
of [FB]). Then if M° is a o-twisted V-module, the twisted vertex operators

o L . . L
YM’(A,zN) for all Ae V may be reconstructed from the series Y™ (a* zN), a€S.

I 1
This follows from H. Li’s formula for Y™" (4, B,zN) in terms of Y™'(4,zN) and

1
YM’(B,zN) [Li]. But this formula is more complicated than its untwisted analogue,
so the resulting formula for a general twisted vertex operator usually looks rather
cumbersome (see for example formula (7.1) below).

3. Torsors and twists

Let M? be an admissible conformal gy -twisted V-module where ord(gy) = N. In
this section we define a group Auty @ which naturally acts on M?, as well as natural
torsors for Auty@. This will allow us to twist M? by a certain torsor of formal
coordinates.

3.1. The group Auty0

1 1
Let AutC|[zN]] denote the group of continuous algebra automorphisms of C[[zN]].

i 1 1
Since C[[zN]] is topologically generated by z¥, an automorphism p of C[[zVN]] is

1
completely determined by the image of zV, which is a series of the form

o= S (3.1)

neﬁl,n>0
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1 1
where ¢ #0. Hence we identify AutC[[zN]] with the space of power series in zN
N

i
having non-zero linear term. For more on the structure of the group AutC[[z¥]], see
Section 5.1 of [FB]. Recall that we denote C[[z]] by €.

1
Definition 3.1. Auty( is the subgroup of AutC[[zN]] preserving the subalgebra

Cll=]] = Cl[V]).

Thus, Auty© consists of power series of the form

ZN) = ¢z, c¢1 #0. 3.2
p(zN) 12 n i (3.2)
neN+Z,n>0

1
There is a homomorphism g: Auty@— Aut@ which takes peC[[zN]] to the
automorphism of CJ[z]] that it induces. At the level of power series, this is just the

map p:p(z)—p(z)Y. The kernel consists of the automorphisms of the form
1

1 1 . . .
zN+—>¢ezN, where ¢ is an Nth root of unity, so we have the following exact sequence:
1>Z/NZ— AutyO— AutO— 1

making Auty @ a central extension of Aut® by the cyclic group Z/NZ.
1
The Lie algebra of AutC[[zVN]] is

DerC[[zV]) = NCIN]A |,

zN

1
and the Lie algebra of Auty( is its Lie subalgebra Derg\(y@ = zNC|[z]]0 1. The
zN
homomorphism u induces an isomorphism of the corresponding Lie algebras

sending

1
FNY | >N, kel k>0.
ZN

3.2. The AutyO-torsor of special coordinates

Let (2,04) be a pair consisting of a formal disc 2 = Spec R, where R~ C]|[z]] and
an automorphism ¢4 of 2 (equivalently, of R) of order N. We denote by Z the
quotient of & by (o4 », i.e., the disc Spec R°?, where R°? is the subalgebra of g4-
invariant elements.

A formal coordinate 7 is called a special coordinate with respect to o4 if 64(t) = et,
where ¢ is an Nth root of unity, or equivalently, if " is a formal coordinate on 2. We
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denote by oZut(2) the set of all formal coordinates on & and by Zuty(Z) the subset
of /ut(2) consisting of special formal coordinates. The set Zuty(Z) carries a
simply transitive right action of the group Auty (@ given by #+ p(t), where p is the
power series given in (3.2), i.e., uty(2) is an AutyO-torsor.

3.3. Twisting modules by </uty(9)

Let M? be an admissible o -twisted module over a conformal vertex algebra V.

Define a representation ™" of the Lie algebra Derg\(,))cﬂ on M? by the formula
l (2
KNG | - - NI
ZN

It follows from the definition of a twisted module that the operators LY, k>0, act
locally nilpotently on M° and that the eigenvalues of L}!" lie in %Z, so that the
operator N - L} has integer eigenvalues. This implies that the Lie algebra
representation ™" may be exponentiated to a representation R™" of the group
Auty 0.

In particular, the subgroup Z/NZ of Auty0 acts on M? by the formula i+ S’
where S, is the operator defined in Section 2.

We now twist the module M? by the action of Auty (@ and define the vector space

(DY guty(2) x M. (3.3)

Auty 0
Thus, vectors in .#?(2) are pairs (t,v), up to the equivalence relation
(p(1),v)~(t, R™ (v)), teduty(Z),ve M°.

When 2_2,., the formal neighborhood of a point x on an algebraic curve X, we will
use the notation /7.

4. Twisted vertex operators as sections

Our goal is to give a coordinate-independent description of the operation Y. In
order to do this we need to find how the operation Y*" transforms under changes of
special coordinates. This is the subject of this section.

4.1. The transformation formula for twisted vertex operators

Let ¢ = C[[1]]. Denote by R” the representation of the group Aut on V obtained
by exponentiating the representation r” of the Lie algebra Der”) ¢ sending "+'9, to

i
—L,,n>0 (see Section 5.2 of [FB]). Recall that for any p(fN)eAuty®, we have



E. Frenkel, M. Szczesny | Advances in Mathematics 187 (2004) 195-227 203

p(t%)NeAut@’. For any (r) e Aut@ we denote by . the element of Aut(C[[z]]® ¢)
obtained by expanding t(z + ¢) — t(z) in powers of ¢ (see Section 5.4.5 of [FB]). Then
we have the following analogue of Lemma 5.4.6 from [FB] (that lemma is originally
due to Y.-Z. Huang [H]).

Lemma 4.1. For any AeV, pe Auty0

RY (o) YM" (RY ((p).) " A, p(¥)RM ()" = Y™ (4, 21). (4.1)

Proof. The exponential map Dersg) — Auty 0O is surjective, so it suffices to consider
the infinitesimal version of (4.1). Write

1 1
p = explen(z¥)d 1) - =V,
zN

where
1 s
v(zN) = - vz N,
keZk=0
We have
N _ .
P = exp(au(z)d.) - =,
where
u(z) = —N vzt
keZ k>0

To check that formula (4.1) holds, it suffices to check that the e-linear term in it

z

o, L o . .
vanishes. Denote ™" (v(zN)d 1) by r” and the ¢-linear term in R”((p").) by r} .
L ,

The ¢-linear term in (4.1) reads

“ rx 1 L a " 1
(Id + ey Y™ ((Id—S}’IZ_,)A,ZN-I-SU(ZN))(Id—S}’l/)V[ ) — YM'(4,zN)

" 4 L 4 1 L a L
= e[ YM (a,2N)] — e YM' (r) - A, 2N) + ev(zN)0 | YM' (4, 2N). (4.2)
2 &

We find that
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and

M M°
r, =N g UmLm )

meZm=0

so that vanishing of (4.2) is equivalent to the identity

AR CAVIES

m>=-—1

1 a L
CEDI (@ u(2) YM (L - 4, 2V).
Since
|
v(zN)0 1 = u(z)0:,
zN

this identity follows from the OPE between a twisted vertex operator and the
Virasoro field in the same way as in Section 5.2.3 of [FB]. [

4.2. Example: primary fields

Recall that a vector A € V' is called a primary vector of conformal dimension 4 if it
satisfies

L,A=0, n>0; LyA=AA.

As shown in Lemma 5.3.4 of [FB], the corresponding vertex operator Y(4,z)
transforms under coordinate changes as an endomorphism-valued A-differential on
the punctured disc. Now formula (4.1) implies an analogous transformation formula

- 1
for the corresponding twisted vertex operator Y™’ (A4, zN).
Corollary 4.1. Let A€V be a primary vector of conformal dimension A, and
peAutyO. Then

RM () Y (4, p(N )R (p) (000" (2¥))! = YM (A, 28).  (43)

5. Coordinate-independent interpretation of twisted vertex operators
5.1. Recollections from [FB]
Let X be a smooth curve and Zuty the principal Aut@-bundle of formal

coordinates on X. The fiber of «Zuty at xeX is the Aut@®-torsor .«7ut, of formal
coordinates at x (see Section 5.4 of [FB] for details). Given a conformal vertex
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algebra V', set
V =9y = {sz/utXAuxw V. (5.1)

This is a vector bundle whose fiber at xe X is the .«Zut,-twist of V,
V.= dut, x V.
Aut(

i.e., the set of pairs (z, 4) where z is a formal coordinate at x and 4 € V', modulo the
equivalence condition (p(z), 4) ~(z, R" (p) - A) for pe Aut0.

As explained in Chapter 5 of [FB], for any xe X the vertex operation Y gives rise
to a canonical section %, of the dual bundle ¥ on the punctured disc Z; with
values in End7",. Equivalently, we have a canonical linear map

Y T(27,7 Q@Qx)>End? "y, s—Res {¥,,s).

If we choose a formal coordinate z at x and use it to trivialize 77|, , then %[ is given
by the formula

Y (AR"dz) = A,.
Furthermore, the map % factors through the quotient
UV y)=T(25,7 ®Qy)/Im V.

The latter is a Lie algebra and the resulting map U(7",)—End?", is a Lie algebra
homomorphism (see Section 8.2 of [FB]).

More generally, let M be an admissible J'-module. We attach to it a vector bundle
./ on X in the same way as above. The module operation Y™ then gives rise to a
canonical section @i” of v~ *|g\g with values in End.Z. Equivalently, we have a

canonical linear map
YMY (27,7 ®@Qx) —End. A,

which factors through U(7",) (see Section 6.3.6 of [FB]).
In this section we obtain analogous results for twisted modules over vertex
algebras.

5.2. The vector bundle ”Vg

Let C be a smooth projective curve, and H<Aut(C) a finite group of
automorphisms of C. Suppose furthermore that V' is a conformal vertex algebra,
and that H acts on V' by conformal automorphisms. The vector bundle ¥"¢ carries a
H-equivariant structure lifting the action of H on C. It is given by

h-(p, (4,2) E(h(p), (h(A),zoh™")), (5.2)
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where zoh~! is the coordinate induced at /(p) from z. Let X = C/H be the quotient
curve, and v: C— X the quotient map, ramiﬁed at the points where H has non-trivial

stabilizers. Denote by cccC (resp. XcX ) the complement of the ramlﬁcatlon
points (resp. branch points) of v, and by v : C - X the restriction of v. Thus, C isa
H-principal bundle over X . The action of H on C is free, and 7" c descends to a

vector bundle #~ ;’ on X . More explicitly,

v — ofut. x V (5.3)
X C AutOxH

Here, H acts on ./ut, by h(p,z) = (h(p),zoh™!), and this action commutes with the

action of Aut@. The actions of H and Aut® on V' commute because H is a conformal
automorphism of V', and thus commutes with the Virasoro action.
The vector bundle ¥ z possesses a flat connection V. If z is a local coordinate

xe X7 V# is given by the expression d + L ®d:.
5.3. Modules along H-orbits

Let xe X. Then every point pev~!(x) has a cyclic stabilizer of order N, which we
denote H,. Each H, has a canonical generator /,, which corresponds to the
monodromy of a small loop around x. For a generic point p, H, = {e} and we set
h, = e. Suppose that we are given the following data:

(1) A collection of admissible V’-modules {M,},”}
fiber, such that M;” is hy-twisted.
(2) A collection of maps S, , () : Ml" HMJE:Z’) geH, pev~!'(x), commuting with

pev-1(x)» one for each point in the

the action of Auty (@ and satisfying

Sokp.gk(p) = Sqe(p).gk(p) *Sk.pk(p)s

qu 9(p) — = Sy 1410

and

h
_ M) hp
g,zlf«,g(p)y W0 (g A,2)Sgpgp) = Y™ (4,z).

(3) If geH,, then S, , , = S,;, where S, is the operator defined in Section 2.

Given a collection {M } (x)» We can form the collection {/%ZP(QZ,,)}

pev pevi(x)
where J%ﬁ”(gp) is the AutyO-twist of M,/f” by the torsor of special coordinates at p.
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Let

L
This is a representation of H, where H acts as follows. If AeM,’f”, z} is a special

coordinate at p, and ge H, then

1 1
g- (AvZ}])V) = (SSIJ’-,Q(P) 'A721]1V°g_l)

Note that this action is well-defined since the S-operators commute with the action
of Auty0®. Now, let .#, = ()", the space of H-invariants of .#.. The
composition of the inclusion .#— .4, and the projection ./ —./(Z,) is an
isomorphism for all pev~!(x). For vpe%]”/’(QPL denote by [v,] the corresponding
L 1
vector in .#,. Note that for each (A,z,’,")pez/%ﬁf’(@p), and geH, [(4,z)),] =
1
[(Sgp.9p) 'A’Zgyog_l)g(p)] in M.

Definition 5.1. We call .Z, a V-module along v='(x).

Henceforth, we will suppress the square brackets for elements of .#, and refer to
1 1

[(4,2),] simply as (4, 2}).
5.4. Construction of Modules along H-orbits

In this section we wish to give a construction of a module along v=!(x) starting

with a point pev~!(x) and a h,-twisted module M,/f”. Note that when H, is trivial,
this is just an ordinary V-module M.

Thus, suppose we are given pev~!(x), and a h,-twisted module M,]f”. Observe that
the monodromy generator at the point g(p) is hy(,) = ghpg“7 i.e. the monodromies
are conjugate.

(1) For ge H, define the module M;Zj)‘(f]

module structure given by the vertex operator

to be M;” as a vector space, with the V-

ghpg™ hp
YM (4,2) = Y™ (g7 4,2) (5.4)

—1
It is easily checked that this equips M;’ZZ;’ with the structure of a gh,g~!-twisted

module. Furthermore, if ge H,, this construction results in a /,-twisted module

. . h
isomorphic to M,".
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(2) Recall that for gev='(x), Mf}q is canonically isomorphic to M,lf” as a vector space
by the previous item. Thus, if g(¢) #¢, define S, , ) to be the identity map.

(3) If ge H,, then g is conjugate to an element ¢'e€ H,. Define S, ,, = Sy ,, also
using the canonical identification.

It is easy to check that this construction is well-defined, and satisfies the
requirements of Definition 5.1.

Remark 1. If H), is trivial, and M = V/, then for any ge H, the new module structure
(5.4) is isomorphic to the old one, and so the resulting module .#, along v=!(x) is
isomorphic to ¥ the fiber of the sheaf " at x.

X

Remark 2. If H = H,, then p is unique, and so any /i,-twisted module results in a
module along v=!(x).

5.5. Twisted vertex operators as sections of ¥ g*

We begin with the observation that a section of ¥~ ;’ over Uc X is the same as a

H-invariant section of W«C over v 1(U), and likewise for W;I* Thus, defining a

section of 7" on 27 is equivalent to defining an H-invariant section of ¥~ *C on

« X
Hpev*‘(x) 9[1 :
1

Let pev='(x), and let zpﬁ be an /,-special formal coordinate at p. This coordinate

gives us a trivialization 1, of ¥ ol We will denote by 1.,(A4) the section of ¥ c
P
1
corresponding to A€V with respect to this trivialization. The coordinate z} also

gives us an identification of ﬂﬁ/’(@p) with M,’Z”.

%
7y

Theorem 5.1. Let xe X, and ./  a V-module along v='(x). For each pev~'(x), choose
1

a hy-special coordinate z} at p. Define an End(4 y)-valued section %"~ of ¥ *C on

H,yev1) 2, by the formula

1 1 T
(2, qﬁ),?’/“”*(lzp(A)) (2N 0)> =<, Y (4,2)) - v). (5.5)

1
Then this section 4"~ is independent of the choice of special coordinate z) on each @;.
Furthermore, it is H-invariant.

1
Proof. We begin by checking coordinate-independence. Choose a pev~!(x). Let wN
be another special coordinate at p. Then there exists a unique p e Auty @ such that
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1 1 1 1 .
wN = p(z') (thus, w = p¥(z}')). We attach to wN a section %)/ of “V*C|9x with
P

values in End(.#,) by the formula
1 ~ ~ 1 ~ w o o~ L
<(WN7 (rb)? @{//x(l}v(A)) ’ (WNv ﬁ)> = {9, yM (A7 WN) ).

We must show that %%« = %"~ We have

L 1 hp
(2 @) = WV, ¢ - RM" (p))
+ Lo 1
(ZP ,U) = (WN,R (p) : D)
1
As explained in [FB], the section 1,(4) of ¥ ‘C appears in the coordinate w = p"(z})

as 1,,(R” ((pN).)™" - A). It follows that

Therefore
1 N 1
(=), D" (1, (A) - (2, 0)>

L h,
= (. RM" (p) Y™ (RV ((p™).) ™" - A4, p(z)))RM" (p) 0.

By (4.1), %" = @“x and we obtain that our section is coordinate-independent.

We now proceed to show that %+ is H-invariant. This amounts to checking, for
geH

=

1 1 L
), %" (g 15,(4) - (2),0)> = g- (2, 0), %" (1,(4) - (), 0)
where the action on the right is by pullback of functions. The right-hand side is
1
(P, M (4,25 og7") - v>. On the left, we have

g- lZp(A) = lz0g- (g A)
1
(Z;7V7¢)§(ZP og d) qpq(p))e‘ﬂ;

1 1
(z),v)= (Z,{Jvogil’sgﬁpyg(p) "v) €M
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Thus we get

1 1
<(ZII7Va (/))7 @Vﬂ" (g ' lzp(A) . (ZII7V7 U)>

1 L
= (ZP °g~ d) qpq(p))? @JI ( Zpeg~ (g A))7 (Zjévogilasg,p,y(p) ’ U)>

S M ANy S,
¢ qpq(p g1 (g yZp °g ) 9.0,9(p) U>

1 1
=g <(Zlév7¢)a0<yjlx(l_’p(‘4)) ' (Z}]’V’U)> O

Remark 3. In view of the comments at the beginning of Section 5.5, #“#~ is the
pullback under v of a unique section of ¥ ;’ " on 2. We will abuse notation by

denoting the latter by %%~ as well.

In the case of twisted primary fields, (4.3) implies the following analogue of
Proposition 5.3.8 of [FB]:

Proposition 5.1. Let xe X, and 4, a V-module along v='(x). For each pev='(x),
1

choose a hy-special coordinate ZPN at p. Define an End (A )-valued A-differential w on
[lc1(0 2, by the formula

1 1 Iy L
D, ), @ (2),0)) =<, Y (4,2)) - v)(dz,)”

(N-1) 1
SN o M () - o ()

!
Then o is independent of the choice of z)’s.

Recall from Section 5.4.9 of [FB] that a primary vector A€} determines a line
subbundle j; : Q-4 & 77 ¢, and by dualizing a surjection ¥ : 7% » Q. The section @

7 appearing in Proposition 5.1 is just the image of the section %/~

of QA‘H

pevi(x)
under j7.

5.6. Dual version

Let xe X, and .#, a V-module along v~'(x). As in the case of ordinary vertex
operators (see Section 5.4.8 of [FB]), dualizing the construction we obtain a linear
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map

YV r(@;n//;’ ®Q,)~End.A..

Given by
s—Res (U s> (5.6)

Moreover, this map factors through the quotient

U E (s ee,) /m v,

which has a natural Lie algebra structure. The corresponding map U (7" Y > End. 4/,
is a homomorphism of Lie algebras. Note that x does not have to lie in X but can be

any point of X.

5.7. A sheaf of Lie algebras

Following Section 8.2.5 of [FB], let us consider the following complex of sheaves

(in Zariski topology) on X :
077 Yy @ -0,
X X X

where "/1; ®Q}~( is placed in cohomological degree 0 and 7~ I; is placed in
cohomological degree —1 (shifted de Rham complex). Let h(’V;I ) denote the sheaf
of the Oth cohomology, assigning to every Zariski open subset X c X the vector
space

def

H H
Ur(v1) = 12,77 ®Q,)/Im vH

One can show as in Chapter 18 of [FB] that this is a sheaf of Liec algebras.
According to formula (5.6), for any xe X', where X' < X is such that X'~ X = X,

restriction induces a Lie algebra homomorphism Us (7" ;I )= U(7" ). We denote the

image by Us(7"1).
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5.8. Interpretation in terms of chiral algebras

A. Beilinson and V. Drinfeld have introduced in [BD] the notion of chiral algebra
(see also [G]). A chiral algebra on a smooth curve X is a right Z-module o7 on X
together with homomorphisms of Z-modules Q — .o/ and

Jof (A Rt ) Ay(),

where 4 : X — X? is the diagonal embedding, and j: (X*\4) — X? is the complement
of the diagonal. These homomorphisms must satisfy certain axioms.

As shown in Chapter 18 of [FB], for any conformal vertex algebra ' and any
smooth curve X, the right Z-module ¥ y ® 2y is naturally a chiral algebra.

Recall that a module over a chiral algebra .7 on X is a right Z-module # on X
together with a homomorphism of -modules

a:jj (A RR)— N(R).

This homomorphism should satisfy the axioms of [BD].

Suppose that Z is supported at a point xe X and denote its fiber at x by #,. Then
R = ix1(Ay), where iy is the embedding x — X. Applying the de Rham functor along
the second factor to the map a we obtain a map

Ax: ]x*];(&/) ® @‘C _)'%’

where j,: (X\x)— X. The chiral module axioms may be reformulated in terms of this
map. Note that it is not necessary for .o/ to be defined at x in order for this definition
to make sense. If o7 is defined on X'\x, we simply replace j..ji(.#) by jy. ().

If M is a module over a conformal vertex algebra V', we associate to it the space
M« as in Section 5.1. Then the right Z-module i, (.#.) is a module over the chiral
algebra 7~ ® Qy supported at x and the corresponding map a is defined as follows.
Choose a formal coordinate z at x and use it to trivialize ’VL% and .#, and to
identify

(M) = M((2))dz/M]|[z]]dz.
Then
a(1.(4) ®f (2)dz, B) = YM(4,z)B®f(z)dz mod M([z]]dz.

The independence of ¥ on z is proved in the same way as the independence of @i” .
Note that applying to ¢¥ the de Rham cohomology functor we obtain the map
@Q’IV (see Section 5.1).

Now let ¥ 1; be the vector bundle on X with connection defined by formula (5.3).

Then “Vg ® Qy is a right Z-module on X. Suppose that H = Z/NZ = {a ). Given
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a full ramification point pe C and a twisted V-module M?, we define a map

a[])VI"; ]\*(V§®Qx)®ﬂ;—>lpl(ﬂ;),

where x = v(p) € X\ X, as follows. Observe that sections of "%1; ® Qyx|,~ are the same

1
as o-invariant sections of v*(7 x) ® Qc¢|,~. Choose a special coordinate zV at p and
“p

use it to trivialize v*(7") ® Q¢|,~ and .4, and to identify
P

ip(oA5) = M(2))d= [N} d:.
Then

def

0 (1(A) ®f (N)d:N, B) ™S Y (4, 28) B (2N )N mod M{[zN]jd=v.

(2 L . .
The independence of a;,” on zN may be proved in the same way as the independence

M°

of @]Ajﬂ was proved. Applying to a,” the de Rham cohomology functor we obtain

the map @M"'V from Section 5.6.

Now let H be an arbitrary finite group acting (generically with trivial stabilizers)
on a smooth curve C. Then as before we have an H-torsor C over X c X = C/H.
Let .o/ be a chiral algebra on X equipped with an action of H by automorphisms.
Then the é-twist of .o,

C:&xesai,
H

inherits the chiral algebra structure from .o/. So we can consider #“-modules
supported at arbitrary points xe X. If .o/ = ¥y ® Qyx, where V is a conformal vertex
algebra on which H acts by automorphisms, then such modules may be constructed
from twisted V-modules. Namely, to each V-module along v=!(x) (see Definition

5.1) we can attach to it in the same way as above a ./ “_module supported at x.

6. Conformal blocks

We use the notation of Section 5.2. Let {x;},_,...,, be a collection of distinct points
of X, which contains all of the branch points of v. Let {.#,},_, ..., be a collection of
V-modules, such that .#,, is a module along v=!(x;). Let

m

7F=Q i,
i=1
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Given ¢peF*, Aie My,,

(P, A1® - @U™" A, @ @Ay (6.1)

. . H,
is a section of ¥"" on 7.
v ;

We can now define the generalized space of conformal blocks, extending
Definition 9.1.1 of [FB]:

Definition 6.1. The space of conformal blocks

(gV(Xa {xi}7 e%x,),':]..

-m

is by definition the vector space of all linear functionals ¢ € #* such that for any
A;e My, sections (6.1) can be extended to the same section of ¥~ I; *, regular over

X\{X,’} .
Remark. Observe that in this definition a// branch points of v are required to carry

module insertions, so that X\{x;} < X. O

We can pull back sections (6.1) by v to sections of “//*C on I[,c,1x) ;-

Equivalently, Definition 6.1 can be rephrased as follows:
Definition 6.2. The space of conformal blocks
(gV(Xv {xi}a %Xi)

i=1---m

is by definition the vector space of all linear functionals ¢ € #* such that for any
Aje My, the pullbacks of sections (6.1) can be extended to the same H-invariant

section of ”V*C, regular over C\{v~!(x;)}.
6.1. Alternative definition

Composing map (5.6) with the map

m
UX\{x,-}(VI;) - @ U(Wi‘{)
i=1

we obtain an action of the Lie algebra Uy, (7 ‘) on 7. We will employ the Strong
Residue Theorem (see [T]):
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Theorem 6.1. Let & be a vector bundle on a smooth projective curve Z. Let
ty, ..., t,€Z be a set of distinct points. Then a section

n
rer(z;,6)
i=1
has the property that
Z Rest,-<:uvf> :Ov VMGF(Z_{tlv”'vtn};éﬁ@-QZ)
i=1

if and only if © can be extended to a regular section of & over Z — {1, ..., t,} (i.e.,
tel(Z—{t,....ta}, &)

Applying Theorem 6.1 to Definition 6.1, we obtain that ¢ F* is a conformal

block if and only if it vanishes on all elements of the form s - v, s€ Ux\ 1y ("V;’), VEF.

This leads to the following equivalent definition, extending Definition 9.1.2 of [FB]:

Definition 6.3. The space of coinvariants is the vector space

%V(X7 {xi}7ﬂxi)i:]~-~:97/U)(“\{x1}(%g) T

The space of conformal blocks is its dual: the vector space of Uy (7 I; )-invariant
functionals on &

(gV(X7 {xi}7 %xi)

i=1--

= Homy, (”Vg)(g", Q).

7. Example: Heisenberg vertex algebra

The definition of conformal blocks given in Section 6 is quite abstract, and
involves a priori all of the fields of the vertex algebra V. When vertex algebras are
generated by a finite number of fields the definition of conformal block can be
simplified to involve only those generating fields. In this section we illustrate this in
the case of the Heisenberg vertex algebra with an order 2 automorphism.

7.1. The vertex algebra m and its 7 /27-twisted sector

Let # (resp. #°) denote the Lie algebra with generators {b},l&}nez (resp.
{b”’K}nelJrz)’ and commutation relations
2

[bNilv bm] = nénﬁ—mk
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(resp. same but with b,’s) where K (resp. K) is central. Let # (resp. A4 7) be the
subalgebras generated by {B,},>o (resp. {bu}, o). For ZeC, let C* denote the
1-dimensional representation of #. @ C - K on which b,, n>0 acts by 0, by acts by 4,
and K acts by the identity. Let

> 2
% 7Ind/f @CKC‘

It is well known that 7 = 7 has the structure of a vertex algebra (see for instance
Chapter 2 of [FB]), generated by the field assignment

Y™ (b-1|0),z Zb

ne”Z

Let us take w = %b? | to be the conformal vector of =. With this conformal structure,

7 has a conformal automorphism ¢ of order 2, induced from the automorphism of
A which acts by b,— — b,. All 7* have the structure of conformal m-modules. If
) =+/M, M even, then n’ is admissible. We write

Y™ (5-1|0),2) = § Z buz™
cZ
Now let C denote the 1-dimensional representation of Ji”i(-BC - K on which K
acts by the identity. The #°-module

= Ind7, //o @CKC

has the structure of an admissible conformal o-twisted n-module, generated (in the
sense of [Li]) by the field assignment

Y™ (h_1]0),z) = b( z2 Z bz~

1162+Z

The twisted vertex operator assigned to an arbitrary vector ven is given as follows
(see [FLM,KP,D]). Let

1 1
[T TR P T

W™ (by, ...by, 207" b(2)... 07 b(z)

0),2) =

and set
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where the constants c¢,,, are determined by the formula

| 12 1/2
Z Cmnxm n__log<( +X) ;( +y)

mmn=0

Then for any ven we have

Y™ (v,2) = W™ (exp4. - v, z). (7.1)

7.2. The Lie algebra A o

Using the notation of earlier sections, we now restrict to the case where V' = 7,
H=>=<{oc),where a¢ has order 2, and v: C —» X has degree 2. This is for example the
case when C is hyperelliptic, o¢ is the hyperelliptic involution, and X = CP'. The
vector bundles ¥~ o v g will be denoted I1 o IT)’T( respectively.

For xe X we can construct r-modules along v~!(x) by applying the construction
in Section 5.4. If 7~!(x) consists of one point, we obtain a module 77 along v=!(x)
starting with 7%, If 7~!(x) consists of two points, we obtain a module 7’# along
v~!(x) starting with a point p in the fiber and a 7, 1e\/2Z.

Let {x;},_,...,, be a collection of points of X containing all of the branch points of
v, and {m,} a collection of m-modules along v~!(x;), where 7, ~ng or nx,;nﬁ:iﬁf"'
depending on whether v=!(x;) consists of one or two points. The vector b_, 0> emis
primary and has conformal weight 1. Applying Proposition 5.1, for each x;, we

obtain an End(ny)-valued I-form @; on [, Z, - Let

m

= ® Tx;
i=1

and let # o, (Cygr) be the abelian Lie algebra C[C\{v !(x;)}] of regular functions on
O\ '(x;)}. If A;em,,, then f € # oy (Casr) acts on F by

m

[ @ -04)=Y Y 4® - @Resym)A® - @An (12)

=1 pevi(x)

We will say that a meromorphic function /" on C is even if ¢.(f) =f and odd if
oc(f)=—fIffiseven, then ), i, Resyf ;= 0, so only odd functions act non-

trivially. Let # ou(Cagr)’ denote the space of odd elements in C[C\{v~!(x;)}].
7.3. Coinvariants and conformal blocks

Now we give a simpler, alternative definition of the spaces of coinvariants and
conformal blocks for (twisted) n-modules, extending Definition 8.1.7 in [FB].
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Definition 7.1. The space of coinvariants associated to (X, {x;},{n,,}) is the vector
space

c}%’/‘ﬂ(){v {xi}v 7-l:)ﬁ')i:ln-m = g/%om(caff)o T
The space of conformal blocks associated to (X, {x;},{ny,}) is the vector space

(gﬂ(Xv {X,'}, nxi)[:l-~-m = Hom,, (Caff)o(gja C)

out

of A out(Cagr)°-invariant functionals on 7.

Remark. The discussion at the end of Section 7.2 implies that these definitions
remain the same if we replace # oy (Car)® by A out(Carr)-

We can ask how the space of conformal blocks changes under the addition of
points. Suppose then that to our collection of points {x;},_;...,,, we add X, . Since
{x:i},_,...,, contains all the branch points of v, v !(X,u11) consists of two points. Set

Ty = 0P > pev ! (x,y1). Observe that in the case of the vacuum representation,

X+
= 127 5o there is no choice of point in the fiber. There exists a natural map:
%R(Xa {xi}7 T[x!)iil"'l77+l _)Eéﬂ(X’ {X[}, ﬂ:«‘Ci)izl-nm (73)
given by
(l’)_)(b|®;”:lnxi®|0>7 (7.4)

i.e., we restrict the functional ¢ to the vacuum vector in ny,, . The following lemma,
analogous to Proposition 8.3.2 in [FB], will be proved in Section 7.5.

Lemma 7.1. Map (7.4) is an isomorphism.

7.4. Equivalence of Definitions 6.1 and 7.1

We now have two seemingly different definitions of the space of conformal blocks:
the general Definitions 6.1 and 7.1, which is specific to the case V' = n. We will show
that these two definitions agree. Applying the Strong Residue Theorem 6.1 to our
collection of End(%)-valued one-forms, we obtain

Corollary 7.1. A functional ¢ is a conformal block if and only if VA;emny,, the
one-forms

(p,41® - ®(wi-4)®@-@4>el' | [] 2.2, (7.5)

pevt(xi)

can be extended to a single one-form @y on C\{v='(x;)}.
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Remark. o¢ acts on the space of holomorphic one-forms. It is clear that zoy is odd
under this action.

We are now ready to prove the equivalence of the two definitions of conformal
blocks. The proof is a generalization of the proof of Theorem 8.3.3 of [FB].

Theorem 7.1. Let ¢ be a linear functional on F such that ¥V A; e ny,, the one-forms (7.5)
can be extended to a single, odd, regular one-form gy on C\{v~'(x;)}. Then the
sections

(p,A1® @ (U™ A)® - @Ay el H N (7.6)

pev(x;)

can be extended to a single, invariant, regular section of ITy. on C\{v=1(x;)}, and vice
versa.

Proof. From the discussion following Theorem 5.1, there exists a map

I -Q-.
C C

such that the one-forms (7.5) are the projections of sections (6.1) on ]_[pe‘,

Thus if (6.1) extend to C\{v~!(x;)}, so will (7.5). Denote C\{v~!(x;)} by Cdff
Let C? denote C2;\Z, where Z is the divisor in C2 consisting of pairs (x,y)e C2;

satisfying o%.(x) = o/ for some integers k,[. Let ry: C? — Cyr denote the
ying oc c\y £

projection on the first factor, whose fiber over ge Cyr is
Carr\Oy

where O, denotes the H-orbit of ¢. Let

(NQZ(}’])*(QC‘Q.

This is a quasi-coherent sheaf on C, whose fiber at g€ Cygr is C[Cogr\Oy]. Let 4
denote the sheaf 7 ®Hc|c —on C,g, where we treat % as a constant sheaf. For
g€ Cayfr, the fiber 4, is & ®(Hc) ~7 ®mn,), where by m,,) we mean the module

along v~!(v(g)) constructed out of the vacuum 7. The sheaf @ acts on % in such a
way that fiberwise we obtain the action (7.2) of C[C,\O,] on

m
T QI = ®1 Ty @ yg)
i=
Introduce the sheaf of homomorphisms

% =Homy (%, 0c,,)
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whose fiber at ge Cyir is the space of conformal blocks
(gn(X> {X;‘, v(q)}, Tx; nv(q))i:l —em*

Lemma 7.1 identifies the fibers of € with (X, {x;}, )
canonical trivialization of €. Thus, given

¢€%H(X7 {xi}7 nxi)i:l~~'m

i—1...,,» thus providing a

we obtain a section dB of € on Cir- Let (/3,, denote the value of this section at ge C.
Let 4;en,, and

m
v=Q) AieF
i=1

Contracting ¢ with ve Z, we obtain a section ¢ of IT ¢- By construction, the value of
¢' on Be(Illc), = myy) is ¢,(v® B). We wish to show that the section ¢" is the
analytic continuation of sections (6.1). We begin with the following lemma. [

Lemma 7.2. There exists a regular one-form on Cys\Qy, whose restriction to the union
Hyerix) 2, is equal to

(P A1® R, A;® - DAn @B,

and its restriction to || @) Zp IS

pev-l(v

(g A1 ® - @A @, - BY

Proof. Since q,’;q is a conformal block, we obtain, using the definition of the action of
C[Caff\Oq] on ,97®7rv(q),

O:<(f~)q,f(li®3)>: Z Z ReSp<q;q,Al®®(fwl)Al®®B>
ETm pevTin)
+ Z Res, (g, 41 ®  ®An® - ®(fw,) B).

p=(q,0¢(9))

Thus, the strong residue theorem implies that there exists a regular one-form on
C,ir\Oy having the desired properties. [

|
Remark 4. If xeX,pev='(x), v'!(x) consists of % points, and z¥ is a formal

coordinate at p, then the endomorphism-valued one-form z on 9; has the

expression

N1 1 1
w=NzN b(zN)dzN
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where

1
neN+Z

Now we prove Theorem 7.1. Suppose that ¢ is near pev~!(x;). Choose a small
1

analytic neighborhood U of p with special coordinate ziﬁ centered on p, such that
1

qge U;. If v is unramified, N = 1, and ziﬁ is any coordinate centered at p, otherwise
1

N =2 and z? is a o¢-special coordinate. Since g#p, w = z; — z;(q) is a coordinate
centered at ¢, in some neighborhood W of ¢. Near ¢, we can trivialize

nx WxIlcly
via
(B.q)~ (B,zi — zi(q))-
It remains to prove the following:

Lemma 7.3. VBem,
(P v®@BY =g 41 ® @Y™ (B,q) 4@ ®An®|0> >
={(,A1Q - ®Y™(B,q) - A;i® - @A .

Proof. The second equality follows from Lemma 7.1. The first equality is proved by
induction. It obviously holds for B=]0). Now, denote by n") the subspace of
spanned by all monomials of the form Zb} |0, where k<r. Suppose that we have
proved Lemma 7.3 for all Ben"). The inductive step is to prove the equality for
elements of the form B = b~,, - B. By our inductive hypothesis, we know that if
Ben" then

N-1

1 1
(hgy A1 ® - @ (N2, N b(zN)) - 4,®@ - @ BYdzN

N-l 1 1
={(p,A1® - @NY™ (B,q)z;V b(zN)  A4;® - @ Ay ydzV.

According to Lemma 7.2 above, we also have

N-1

N-1 1 1 N N
<<]~54,A1 ® - ®(NZiN b(Z{V)) cAi® - ®Am®B>dZ£V = <¢q7Al® ®Am®b(w) . B>dw~
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Using locality and associativity, we obtain

1 N—-1 1
(o, 1 ® - @Y™ (C,q)b(z})) - A;® -+ @ Ay ) Nz; ¥ dz)

N-1 1

1
= <¢,A1 ® ®b(Z,N) Yn'\"(cv Q) 'Ai® ®Am>NZ[ dZ,N

~ N-l o1
=P, A ® - @Y™ (b(z; — zi(q)) - B,q) 'Ai®"'®Am>NZ,-N dle

N-1

1
= (P, A, @ - @Y™ (b(w)-B,q)  A;® - ® Ay Nz; ¥ dzN

= <¢7A1 ® ® an"(bh(W) : B7q) : Al® ®Am>d“}7
N-1 1
where the last step holds because Nz;¥ dzN¥ = dw. Combining these relations, we
obtain
(g A1 ® - ® A ®b(w) - BYdw = {p, 41 ® - @ Y™ (b(w) - B,q) - A;® - @ Ay » dw.
Multiplying both sides by w" and taking residues, we find that
<¢~)qvAl ® - ®Am®b~n : B> = <¢aAl® - ® Yn/\i(b:l B,Q) Al® ®Am>~

Equivariance of sections (7.6) follows from the fact that they are invariant on all 9;
where p is a fixed point of o¢. This completes the proof of Theorem 7.1. [

7.5. Proof of Lemma 7.1
We start with the following fact.

Lemma 7.4. Let pev='(x,.1). For every principal part f_ at p, there exists an odd
Sunction f € C[Casr\Op] whose principal part at p is f_.

Proof. Let D be an effective divisor symmetric under the action of a¢ (i.e., if D =
Ze¢q - q, then ¢; = ¢,r(y), supported on {v='(x;)},_, ... Denote the canonical divisor
of C by K¢. For deg(D)>deg(Kc¢), the Riemann—Roch theorem implies that

dim% (D) = deg(D) + 1 —gc.
It follows that
Oni1 =D+ n+1)-p+(n+1ocp)/LD+n-p+n-ac(p))

for n>=0 is two-dimensional. Furthermore, O, carries an action of ¢¢. Suppose
now that Q,. is spanned by the images of two even functions f}, f>. Since f; are even,
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they have poles of the same order at both p and o¢(p), and so will any linear
combination. But this contradicts the fact that

LD+ n+Dp+nocp))/LD+n-p+n-ac(p))

is one-dimensional. It follows that for each n>0, Q,.; contains an odd
function. [

Now we prove the statement equivalent to Lemma 7.1 that the corresponding
spaces of coinvariants

%N(Xv {xi}7nx[)i:l--~ and '%H(Xv {x[}’nxi)i:l

m cem+1

are isomorphic. Recall that =n, , here is the vacuum module ngfﬂ. Let C;ff =
Car\Op, and A oui(Casr)p = C[Ci]. The space

al

jfn (X7 {xi}7 nx;) (resp. jfn(X’ {xi}a nxi)i:l

i=1--m cem+1

is identified with the Oth homology of the Lie algebra # oy (Carr)® (resp. # out(Clr)”)

a
with coefficients in & (resp. Z ®mny,,,,). Lemma 7.4 implies that the sequence

0= H ou(Catr)° = H ou(Cle)® B wi i Chwi ] >0 (7.7)

is exact, where p is the map that attaches to a function its principal part at p. The
homology of #ou(Cly)® with coefficients in # ®m,,,, is computed using the
Chevalley complex

C'=70n,,, ® /\(Wout( ar)”)
with the differential d : C'— C'~! given by the formula

d=)_ fi®V;

where {fi} is a basis in # oy (Cly)° and {y*} is the dual basis of (#ou(Cly)®)"
acting on A\*(A# out(Cly)°) by contraction.

Choose pull-backs z,,n<0, of W/ |,n<0, in # oy (C,
exactness of sequence (7.7), we can choose a basis {fi} in #ou(Cly)® which is a

union of {z,} and a basis of # oy (Car)°. In this basis we may decompose

d=de,+3 2@,

where dC,yr is the differential for # oy (Casr)®, and ¢, denotes the element of the dual
basis to { f;} corresponding to z,.

We need to show that the homologies of this complex are isomorphic to the
homologies of the complex Z# ® A°(# ou(Cagr)®). Introduce an increasing filtration

)" under p. Because of the

n<0’
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on my, ., letting ") be the span of all monomials of order less than or equal to m in

m+l
by,n<0. Now introduce a filtration {F;} on the Chevalley complex C*® by setting

Fi= span{v®B®D|ve ,Ben ,,,117De /\(%out(C;ff)o)}.
Our differential preserves this filtration.
Consider now the spectral sequence associated to the filtered complex C*. The
zeroth term EC is the associated graded space of the Chevalley complex, isomorphic
to

(7e1® Ao ) © (7@ A malCa)).

The zeroth differential acts along the first factor of the above decomposition, and is
given by the formula

= Z bn®¢:7

n<0

because on the graded module the operator z, acts as b,, n<0. But 7, is isomorphic
to the symmetric algebra with generators b,,n<0, and our differential is simply the
Koszul differential for this symmetric algebra. It is well-known that the zeroth
homology of this complex is isomorphic to C, and all other homologies vanish.
Therefore all positive homologies of @’ vanish, while the zeroth homology is
F @ N (H# ou(Carr)). Hence, the E' term coincides as a vector space with the
Chevalley complex of the homology of # o (Carr)® with coefficients in #. Also, the
E! differential coincides with dc,,, which is the corresponding Chevalley differential.
We thus obtain the desired isomorphism

Hi(A out(Cop)°s F @ Ttmi1) Z Hi(H out(Carr), F ).

8. Affine vertex algebras

In Section 7.3 we have shown that in the case of the Heisenberg vertex algebra the
space of conformal blocks had a simple realization as the dual of a certain space of
twisted coinvariants. In this section we present a similar realization in the case of
vertex algebras attached to affine Kac-Moody algebras.

8.1. The vacuum module Vi.(g)

Let g denote a complex simple Lie algebra, Lg = g® [t, 7] its loop algebra, and §
the corresponding affine Kac—-Moody Lie algebra. For keC, let C; denote the
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one-dimensional representation of g[¢{]@ C - K where g[f] acts by 0, and K acts by k.
It is well known that the vacuum module

Vk() Il‘ldq 4+CK k

has the structure of a vertex algebra (see for instance Section 3.4.2 of [FB]).

Pick a basis {J*},_,...; (Where d = dim(g)) of g, and let {J,},_, ..., be its dual basis
with respect to the normalized Killing form. Suppose that k# — h¥ (where 4" is the
dual Coxeter number of g) and set

d

S = k+h ; @0,

This is the Sugawara vector which determines a conformal structure on Vj(g) when
k# — hY. In what follows, we will always use this conformal structure on Vi (g).
Let o4 be an automorphism of g of finite order N. Then o, induces a conformal
automorphism of Vi (g), which we will denote by oy, ().
In particular, consider the case when g is an outer automorphism (note that this is
not necessary for the results below). Thus, N =2 when g = 4,,, D,,, m#4, Eg, and
N = 3 when g = D4. The following result is proved in [Li].

Lemma 8.1. The oy, 4 -twisted Vi(g)-modules are precisely the §’-modules from the
category O, where §° is the twisted affine Kac—Moody algebra associated to the
automorphism og-

8.2. The Lie algebra o7, (Cysr)

We keep the notation of Section 7. Let C be an algebraic curve with an
automorphism o¢ of order N (where N = 2 or 3 depending on g), and let {x;},_;..,,
be a collection of points of X containing the branch points of v. Denote C\{v~!(x;)}

by Cur. Let us write g= @f\:)lg,, where g; denotes the eigenspace of oy

2mil
corresponding to the eigenvalue e N . Then o¢ acts on C[Cyg]-the ring of functions

on Cyr, and so we can write C[ dff] @ C[Cagr];, where C[Cys]; consists of those
functions f such that ¢{-.(f) = eTf. Let

N
3out (Catr) = (8, ® C[Casr];)-
/=

8.3. Coinvariants and conformal blocks

For xe X, V-modules along v~!(x) can be constructed from ordinary or twisted
V-modules using the same technique that was used in the Heisenberg case in
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Section 7.2. More precisely, if x is a branch point of v,p = v~!(x), and o¢,, is the
monodromy around x, then any o¢,-twisted V}(g)-module gives rise to a Vi(g)-
module along v~!(x). Similarly, if v=!'(x) consists of N points, then an ordinary
Vi(g)-module and a choice of point pev~!(x) gives rise to a Vj(g)-modules along
v I(x).

Let {.#,,} be a collection of V}(g)-modules along {x;} constructed in this manner.

Thus for each x;, we have a distinguished point p;ev=!(x;). Pick special coordinates
€L
zNi near p;, where N; = 1 if v is unramified at p; and N; = N otherwise. Set

F=Q ..
Then g7, (Casr) acts on & as follows:

he(A1®- @A) =Y 4@ Q] - 4;® @Ay,

where [h], denotes the Laurent series expansion of /& around peC in the special
coordinate that was selected.

We are now ready to give an alternative, simplified definition of twisted
coinvariants and conformal blocks for Vi (g), extending the definition of
Section 8.2.1 in [FB]:

Definition 8.1. The space of coinvariants is the vector space
"%Vk(g)(X7 {xi}v %xi)izl---m = y/ggut(caff) - T

The space of conformal blocks is its dual:

%Vk(g)(Xa {X,’}, ’ﬂxi)izlmm = Homggm(carr)(fyv C)

The following theorem is proved using the same methods as Theorem 7.1.

Theorem 8.1. In the case of the vertex algebra Vi(g), Definition 6.1 is equivalent to
Definition 8.1.
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