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Abstract

We extend the geometric approach to vertex algebras developed by the first author to

twisted modules, allowing us to treat orbifold models in conformal field theory. Let V be a

vertex algebra, H a finite group of automorphisms of V ; and C an algebraic curve such that

HCAutðCÞ: We show that a suitable collection of twisted V -modules gives rise to a section of

a certain sheaf on the quotient X ¼ C=H: We introduce the notion of conformal blocks for

twisted modules, and analyze them in the case of the Heisenberg and affine Kac–Moody vertex

algebras. We also give a chiral algebra interpretation of twisted modules.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Conformal field theory (CFT) in two dimensions provides a rich setting in which
several areas of mathematics such as representation theory and algebraic geometry
interact in a natural way. In recent years, much effort has been spent on setting up a
precise mathematical framework for CFT. The algebraic aspect of the theory has
been formalized in the language of vertex algebras (see [B,FLM,K,FB]). In order to
understand the rich geometry behind CFT, this algebraic approach must be
combined with a geometric formalism.
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In [FB], an algebro-geometric approach to vertex algebras is introduced (see
[H,BD] for other approaches). Starting with a conformal vertex algebra V and an
algebraic curve X ; one can construct a vector bundle VX on X such that vertex
operators become (endomorphism-valued) sections of V�

X : This gives a coordinate-

free description of vertex operators and allows one to make contact with the
fascinating geometry pertaining to X and related moduli spaces.

If a vertex algebra has a group of automorphisms, then its representation theory
may be enhanced by the inclusion of twisted modules. The systematic study of
twisted modules was initiated in [FLM] where twisted vertex operators were used in
the construction of the Moonshine Module vertex algebra (see Chapter 9 of [FLM]
and the works [Le1,Le2]). The notion of the twisted module was formulated in
[FFR,D] following [FLM]. Twisted modules (or twisted sectors as they are known in
the physics literature) appear as important ingredients of the so-called orbifold
models of conformal field theory (see [DHVW,DVVV]). They have been extensively
studied in recent years (see, e.g., [Li,DLM,BKT]).

In this paper we extend the geometric formalism developed in [FB] to twisted
modules over vertex algebras. Let C be a smooth projective curve, and HCAutðCÞ a
finite group of automorphisms of C such that the stabilizer of the action of H on at a
generic point of C consists of the identity element of H: Suppose furthermore that V

is a conformal vertex algebra, and that H acts on V by conformal automorphisms.
We show that with these data, the vector bundle VC acquires a H-equivariant
structure, lifting the action of H on C: Let X ¼ C=H be the quotient curve, and

n : C-X the quotient map, ramified at the fixed points of H: Denote by C
3

CC the

locus of points in C whose stabilizer in H is the identity element. Let X
3

CX be the

image of C
3

in X and n
3

: C
3

-X
3

the restriction of n to C
3

: Thus, C
3

is a principal

H-bundle over X
3

: The vector bundle V
C
3 over C

3

carries a H-equivariant structure

and hence descends to a vector bundle on X
3

which we denote by VH

X
3 :

Let xAX : Then x corresponds to a H-orbit Ox in C: For each point pAn�1ðxÞ; the
stabilizer Hp is a cyclic group, which has a canonical generator hp; the monodromy

around p (generically, Hp ¼ feg and hp ¼ e). We call a collection fM
hp
p g of hp-twisted

modules satisfying certain compatibilities, a V -module along n�1ðxÞ: For example, if

hp ¼ e; then each M
hp
p is an ordinary V -module and the requirement is that if p0 ¼

gðpÞAn�1ðpÞ; then M
hp0
p0 is obtained from M

hp
p by twisting the V -action by the

automorphism of V corresponding to g: If, on the other hand, H ¼ Z=NZ and hp is a

generator of H; then M
hp
p can be an arbitrary hp-twisted V -module.

We attach to a V -module Mx along n�1ðxÞ a section YMx of VH;�
X
3 on D	

x ; the

punctured disc at x: Using this structure we define the spaces of conformal blocks in
the twisted setting. The space of conformal blocks is associated to a pair ðC;HÞ as
above and a collection of V -modules along n�1ðxÞ attached to a set of points of

X \X
3

; and a (possibly empty) collection of V -modules along n�1ðxÞ; xAX
3

: We give

two equivalent definitions of the space of conformal blocks: using the action of a
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certain Lie algebra obtained from Fourier coefficients of vertex operators, and using
analytic continuation (as in [FB]). In the case of the Heisenberg and affine Kac–
Moody vertex algebras this definition may be simplified using twisted versions of the
Heisenberg and affine Lie algebras, respectively.

Finally, we explain the connection with the chiral algebra formalism. The right
DX -module A ¼ VX#OX is a chiral algebra on X in the sense of Beilinson and
Drinfeld [BD] (see [FB, Chapter 18]). The action of H on V induces an action of H

by automorphisms of A: Then the twist A
C



of Aj
X
3 by the H-torsor C

3

; A
C



¼

Aj
X
3 	

H
C
3

; is also a chiral algebra. Twisted V -modules correspond to A
C



-modules

supported at the points xAX \X
3

; and the above space of conformal blocks may be

defined in terms of these A
C



-modules.

2. Vertex algebras and modules

In this paper we will use the language of vertex algebras, their modules, and
twisted modules. For an introduction to vertex algebras and their modules see
[FLM,K,FB], and for background on twisted modules, see [FFR,D,DLM].

We recall that a conformal vertex algebra is a Zþ-graded vector space

V ¼
MN
n¼0

Vn;

together with a vacuum vector j0SAV0; a translation operator T of degree 1, a
conformal vector oAV2; and a vertex operation

Y : V-EndV ½½z71��;

A/YðA; zÞ ¼
X
nAZ

AðnÞz
�n�1:

These data must satisfy certain axioms (see [FLM,K,FB]). In what follows we will
denote the collection of such data simply by V :

A vector space M is called a V -module if it is equipped with an operation

Y M : V-End M½½z71��;

A/Y MðA; zÞ ¼
X
nAZ

AM
ðnÞz

�n�1

ARTICLE IN PRESS
E. Frenkel, M. Szczesny / Advances in Mathematics 187 (2004) 195–227 197



such that for any vAM we have AM
ðnÞv ¼ 0 for large enough n: This operation must

satisfy the following axioms:

* Y Mðj0S; zÞ ¼ IdM ;
* For any vAM there exists an element

fvAM½½z;w��½z�1;w�1; ðz � wÞ�1�

such that the formal power series

Y MðA; zÞY MðB;wÞv and YMðY ðA; z � wÞB;wÞv

are expansions of fv in MððzÞÞððwÞÞ and MððwÞÞððz � wÞÞ; respectively.

The power series Y MðA; zÞ are called vertex operators. We write the vertex
operator corresponding to o as

Y Mðo; zÞ ¼
X
nAZ

LM
n z�n�2;

where LM
n are linear operators on V generating the Virasoro algebra. Following [D],

we call M admissible if LM
0 acts semi-simply with integral eigenvalues.

Now let sV be a conformal automorphism of V ; i.e., an automorphism of the
underlying vector space preserving all of the above structures (in particular
sV ðoÞ ¼ o). We will assume that sV has finite order N41: A vector space Ms is
called a sV -twisted V -module (or simply twisted module) if it is equipped with an
operation

Y Ms
: V-End Ms½½z7

1
N ��;

A/Y MsðA; z
1
NÞ ¼

X
nA 1

N
Z

AMs

ðnÞ z�n�1

such that for any vAMs we have AMs

ðnÞ v ¼ 0 for large enough n: Please note that we

use the notation Y MsðA; z
1
NÞ rather than Y MsðA; zÞ in the twisted setting. This

operation must satisfy the following axioms (see [FFR,D,DLM,Li]):

* Y Msðj0S; z
1
NÞ ¼ IdMs :

* For any vAMs; there exists an element

fvAMs½½z
1
N ;w

1
N ��½z�

1
N ;w� 1

N ; ðz � wÞ�1�
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such that the formal power series

Y MsðA; z
1
NÞY MsðB;w

1
NÞv and Y MsðYðA; z � wÞB;w

1
NÞv

are expansions of fv in Msððz
1
NÞÞððw

1
NÞÞ and Msððw

1
NÞÞððz � wÞÞ; respectively.

* If AAV is such that sV ðAÞ ¼ e
2pim

N A; then AMs

ðnÞ ¼ 0 unless nAm
N
þ Z:

The series Y MsðA; zÞ are called twisted vertex operators. In particular, the Fourier
coefficients of the twisted vertex operator

Y Msðo; z
1
NÞ ¼

X
nAZ

LMs

n z�n�2;

generate an action of the Virasoro algebra on Ms: The sV -twisted module Ms is

called admissible if LMs

0 acts semi-simply with eigenvalues in 1
N
Z:

One shows in the same way as in [FB, Section 4.1], that the axioms imply the
following commutation relations between the coefficients of twisted vertex operators:

½AMs

ðmÞ;BMs

ðkÞ � ¼
X
nX0

m

n

� �
ðAðnÞ � BÞMs

ðmþk�nÞ; ð2:1Þ

where by definition

m

n

� �
¼ mðm � 1Þyðm � n þ 1Þ

n!
; nAZ40;

m

0

� �
¼ 1:

We also have the following analogue of Proposition 4.1 of [FB]:

Lemma 2.1. For any AAV ; Y MsðTA; z
1
NÞ ¼ @zY

MsðA; z
1
NÞ:

Proof. We apply axiom (2) in the situation where B ¼ j0S: Then

Y MsðYðA; z � wÞj0S;w
1
NÞv ¼

X
nX0

Y MsðAð�n�1Þj0S;w
1
NÞvðz � wÞn:

But Að�2Þj0S ¼ TA; therefore Y MsðTA;w
1
NÞv appears as the coefficient in front of

ðz � wÞ in this series. Hence it should coincide with the coefficient in front of ðz � wÞ
in the expansion of Y MsðA; z

1
NÞv in a power series in w

1
N and ðz � wÞ: But the latter is

equal to @wY MsðA;w
1
NÞ:

Applying formula (2.1) in the case when A ¼ o and m ¼ 1 (so that AðmÞ ¼ L0), we

obtain that

½LMs

0 ;BMs

ðkÞ � ¼ ðL0 � BÞMs

ðkÞ þ ðL�1 � BÞMs

ðkþ1Þ:
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But in a conformal vertex algebra L�1 � B ¼ TB and ðTBÞMs

ðkþ1Þ ¼ ð�k � 1ÞBðkÞ by

Lemma 2.1. Therefore if B is homogeneous of degree D; then

½LMs

0 ;BMs

ðkÞ � ¼ ðD� k � 1ÞBMs

ðkÞ : ð2:2Þ

Suppose that Ms is an admissible module. Then we define a linear operator Ss on

Ms as follows. It acts on the eigenvectors of LMs

0 with eigenvalue m
N
by multiplication

by e
2pim

N : Hence we obtain an action of the cyclic group of order N generated by s on
Ms; s/Ss: According to the axioms of twisted module and formula (2.2) we have
the following identity:

S�1
s Y Msðs � A; z

1
NÞSs ¼ Y MsðA; z

1
NÞ: ð2:3Þ

Finally, we remark that there is an analogue of the Reconstruction Theorem for
twisted modules. Namely, suppose that V is generated by vectors aaAV ; aAS; in the
sense of the usual Reconstruction Theorem (see Theorem 4.5 of [K] or Theorem 3.6.1
of [FB]). Then if Ms is a s-twisted V -module, the twisted vertex operators

Y MsðA; z
1
NÞ for all AAV may be reconstructed from the series Y Msðaa; z

1
NÞ; aAS:

This follows from H. Li’s formula for Y MsðAðnÞB; z
1
NÞ in terms of Y MsðA; z

1
NÞ and

Y MsðB; z
1
NÞ [Li]. But this formula is more complicated than its untwisted analogue,

so the resulting formula for a general twisted vertex operator usually looks rather
cumbersome (see for example formula (7.1) below).

3. Torsors and twists

Let Ms be an admissible conformal sV -twisted V -module where ordðsV Þ ¼ N: In
this section we define a group AutNO which naturally acts on Ms; as well as natural
torsors for AutNO: This will allow us to twist Ms by a certain torsor of formal
coordinates.

3.1. The group AutNO

Let AutC½½z
1
N �� denote the group of continuous algebra automorphisms of C½½z

1
N ��:

Since C½½z
1
N �� is topologically generated by z

1
N ; an automorphism r of C½½z

1
N �� is

completely determined by the image of z
1
N ; which is a series of the form

rðz
1
NÞ ¼

X
nA 1

N
Z;n40

cnzn; ð3:1Þ
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where c 1
N

a0: Hence we identify AutC½½z
1
N �� with the space of power series in z

1
N

having non-zero linear term. For more on the structure of the group AutC½½z
1
N ��; see

Section 5.1 of [FB]. Recall that we denote C½½z�� by O:

Definition 3.1. AutNO is the subgroup of AutC½½z
1
N �� preserving the subalgebra

C½½z��CC½½z
1
N ��:

Thus, AutNO consists of power series of the form

rðz
1
NÞ ¼

X
nA 1

N
þZ;n40

cnzn; c 1
N

a0: ð3:2Þ

There is a homomorphism m : AutNO-AutO which takes rAC½½z
1
N �� to the

automorphism of C½½z�� that it induces. At the level of power series, this is just the

map m : rðzÞ/rðzÞN : The kernel consists of the automorphisms of the form

z
1
N/ez

1
N ; where e is an Nth root of unity, so we have the following exact sequence:

1-Z=NZ-AutNO-AutO-1

making AutNO a central extension of AutO by the cyclic group Z=NZ:

The Lie algebra of AutC½½z
1
N �� is

Derð0ÞC½½z
1
N �� ¼ z

1
NC½½z

1
N ��@

z
1
N

;

and the Lie algebra of AutNO is its Lie subalgebra Der
ð0Þ
N O ¼ z

1
NC½½z��@

z
1
N

: The

homomorphism m induces an isomorphism of the corresponding Lie algebras
sending

zkþ 1
N@

z
1
N

/Nzkþ1@z; kAZ; kX0:

3.2. The AutNO-torsor of special coordinates

Let ðD; sDÞ be a pair consisting of a formal disc D ¼ Spec R; where RDC½½z�� and
an automorphism sD of D (equivalently, of R) of order N: We denote by %D the
quotient of D by /sDS; i.e., the disc Spec RsD ; where RsD is the subalgebra of sD-
invariant elements.

A formal coordinate t is called a special coordinate with respect to sD if sDðtÞ ¼ et;
where e is an Nth root of unity, or equivalently, if tN is a formal coordinate on %D:We
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denote by AutðDÞ the set of all formal coordinates on D and by AutNðDÞ the subset
of AutðDÞ consisting of special formal coordinates. The set AutNðDÞ carries a
simply transitive right action of the group AutNO given by t/rðtÞ; where r is the
power series given in (3.2), i.e., AutNðDÞ is an AutNO-torsor.

3.3. Twisting modules by AutNðDÞ

Let Ms be an admissible sV -twisted module over a conformal vertex algebra V :

Define a representation rMs
of the Lie algebra Der

ð0Þ
N O on Ms by the formula

zkþ 1
N@

z
1
N

-� N � LMs

k :

It follows from the definition of a twisted module that the operators LMs

k ; k40; act

locally nilpotently on Ms and that the eigenvalues of LMs

0 lie in 1
N
Z; so that the

operator N � LMs

0 has integer eigenvalues. This implies that the Lie algebra

representation rMs
may be exponentiated to a representation RMs

of the group
AutNO:

In particular, the subgroup Z=NZ of AutNO acts on Ms by the formula i/Si
s;

where Ss is the operator defined in Section 2.
We now twist the module Ms by the action of AutNO and define the vector space

MsðDÞ ¼def AutNðDÞ 	
AutNO

Ms: ð3:3Þ

Thus, vectors in MsðDÞ are pairs ðt; vÞ; up to the equivalence relation

ðrðtÞ; vÞBðt;RMsðvÞÞ; tAAutNðDÞ; vAMs:

When D¼Dx; the formal neighborhood of a point x on an algebraic curve X ; we will
use the notation Ms

x:

4. Twisted vertex operators as sections

Our goal is to give a coordinate-independent description of the operation Y Ms
: In

order to do this we need to find how the operation Y Ms
transforms under changes of

special coordinates. This is the subject of this section.

4.1. The transformation formula for twisted vertex operators

Let O ¼ C½½t��: Denote by RV the representation of the group AutO on V obtained

by exponentiating the representation rV of the Lie algebra Derð0ÞO sending tnþ1@t to

�Ln; nX0 (see Section 5.2 of [FB]). Recall that for any rðt
1
NÞAAutNO; we have
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rðt
1
NÞNAAutO: For any tðtÞAAutO we denote by tz the element of AutðC½½z��c##OÞ

obtained by expanding tðz þ tÞ � tðzÞ in powers of t (see Section 5.4.5 of [FB]). Then
we have the following analogue of Lemma 5.4.6 from [FB] (that lemma is originally
due to Y.-Z. Huang [H]).

Lemma 4.1. For any AAV ; rAAutNO

RMsðrÞY MsðRV ððrNÞzÞ
�1

A; rðz
1
NÞÞRMsðrÞ�1 ¼ Y MsðA; z

1
NÞ: ð4:1Þ

Proof. The exponential map Der
ð0Þ
N -AutNO is surjective, so it suffices to consider

the infinitesimal version of (4.1). Write

r ¼ expðevðz
1
NÞ@

z
1
N

Þ � z
1
N ;

where

vðz
1
NÞ ¼ �

X
kAZ;kX0

vkzkþ 1
N :

We have

rN ¼ expðeuðzÞ@zÞ � z;

where

uðzÞ ¼ �N
X

kAZ;kX0

vkzkþ1:

To check that formula (4.1) holds, it suffices to check that the e-linear term in it

vanishes. Denote rMsðvðz
1
NÞ@

z
1
N

Þ by rMs

v and the e-linear term in RV ððrNÞzÞ by rV
u;z:

The e-linear term in (4.1) reads

ðIdþ erMs

v ÞY MsððId� erV
u;zÞA; z

1
N þ evðz

1
NÞÞðId� erMs

v Þ � Y MsðA; z
1
NÞ

¼ e½rMs

v ;Y Msða; z
1
NÞ� � eY MsðrV

u;z � A; z
1
NÞ þ evðz

1
NÞ@

z
1
N

Y MsðA; z
1
NÞ: ð4:2Þ

We find that

rV
u;z � A ¼ �

X
mX0

1

ðm þ 1Þ!ð@
mþ1
z uðzÞÞLm � A
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and

rMs

v ¼ N
X

mAZ;mX0

vmLMs

m ;

so that vanishing of (4.2) is equivalent to the identity

½rMs

v ;Y MsðA; z
1
NÞ� ¼ �

X
mX�1

1

ðm þ 1Þ! ð@
mþ1
z uðzÞÞY MsðLm � A; z

1
NÞ:

Since

vðz
1
NÞ@

z
1
N

¼ uðzÞ@z;

this identity follows from the OPE between a twisted vertex operator and the
Virasoro field in the same way as in Section 5.2.3 of [FB]. &

4.2. Example: primary fields

Recall that a vector AAV is called a primary vector of conformal dimension D if it
satisfies

LnA ¼ 0; n40; L0A ¼ DA:

As shown in Lemma 5.3.4 of [FB], the corresponding vertex operator YðA; zÞ
transforms under coordinate changes as an endomorphism-valued D-differential on
the punctured disc. Now formula (4.1) implies an analogous transformation formula

for the corresponding twisted vertex operator Y MsðA; z
1
NÞ:

Corollary 4.1. Let AAV be a primary vector of conformal dimension D; and

rAAutNO: Then

RMsðrÞY MsðA; rðz
1
NÞÞRMsðrÞ�1ð@zðrNðz

1
NÞÞÞD ¼ Y MsðA; z

1
NÞ: ð4:3Þ

5. Coordinate-independent interpretation of twisted vertex operators

5.1. Recollections from [FB]

Let X be a smooth curve and AutX the principal AutO-bundle of formal
coordinates on X : The fiber of AutX at xAX is the AutO-torsor Autx of formal
coordinates at x (see Section 5.4 of [FB] for details). Given a conformal vertex
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algebra V ; set

V ¼ VX ¼ AutX 	
AutO

V : ð5:1Þ

This is a vector bundle whose fiber at xAX is the Autx-twist of V ;

Vx ¼ Autx 	
AutO

V :

i.e., the set of pairs ðz;AÞ where z is a formal coordinate at x and AAV ; modulo the

equivalence condition ðrðzÞ;AÞBðz;RV ðrÞ � AÞ for rAAutO:
As explained in Chapter 5 of [FB], for any xAX the vertex operation Y gives rise

to a canonical section Yx of the dual bundle V� on the punctured disc D	
x with

values in EndVx: Equivalently, we have a canonical linear map

Y3
x : GðD	

x ;V#OX Þ-EndVx; s/Resx/Yx; sS:

If we choose a formal coordinate z at x and use it to trivialize VjDx
; then Y3

x is given

by the formula

Y3
x ðA#zndzÞ ¼ AðnÞ:

Furthermore, the map Y3
x factors through the quotient

UðVxÞ ¼ GðD	
x ;V#OX Þ=Imr:

The latter is a Lie algebra and the resulting map UðVxÞ-EndVx is a Lie algebra
homomorphism (see Section 8.2 of [FB]).

More generally, let M be an admissible V -module. We attach to it a vector bundle

M on X in the same way as above. The module operation Y M then gives rise to a

canonical section YM
x of V�jD	

x
with values in EndMx: Equivalently, we have a

canonical linear map

YM;3
x : GðD	

x ;V#OX Þ-EndMx;

which factors through UðVxÞ (see Section 6.3.6 of [FB]).
In this section we obtain analogous results for twisted modules over vertex

algebras.

5.2. The vector bundle VH
X

Let C be a smooth projective curve, and HCAutðCÞ a finite group of
automorphisms of C: Suppose furthermore that V is a conformal vertex algebra,
and that H acts on V by conformal automorphisms. The vector bundle VC carries a
H-equivariant structure lifting the action of H on C: It is given by

h � ðp; ðA; zÞÞ ¼defðhðpÞ; ðhðAÞ; z3h�1ÞÞ; ð5:2Þ
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where z3h�1 is the coordinate induced at hðpÞ from z: Let X ¼ C=H be the quotient
curve, and n : C-X the quotient map, ramified at the points where H has non-trivial

stabilizers. Denote by C
3

CC (resp. X
3

CX ) the complement of the ramification

points (resp. branch points) of n; and by n
3

: C
3

-X
3

the restriction of n: Thus, C
3

is a

H-principal bundle over X
3

: The action of H on C
3

is free, and V
C
3 descends to a

vector bundle VH

X
3 on X

3

: More explicitly,

VH

X
3 ¼ Aut

C
3 	
AutO	H

V ð5:3Þ

Here, H acts on Aut
C
3 by hðp; zÞ ¼ ðhðpÞ; z3h�1Þ; and this action commutes with the

action of AutO: The actions of H and AutO on V commute because H is a conformal
automorphism of V ; and thus commutes with the Virasoro action.

The vector bundle VH

X
3 possesses a flat connection rH : If z is a local coordinate

xAX
3

; rH is given by the expression d þ LV
�1#dz:

5.3. Modules along H-orbits

Let xAX : Then every point pAn�1ðxÞ has a cyclic stabilizer of order N; which we
denote Hp: Each Hp has a canonical generator hp; which corresponds to the

monodromy of a small loop around x: For a generic point p; Hp ¼ feg and we set

hp ¼ e: Suppose that we are given the following data:

(1) A collection of admissible V -modules fM
hp
p gpAn�1ðxÞ; one for each point in the

fiber, such that M
hp
p is hp-twisted.

(2) A collection of maps Sg;p;gðpÞ : M
hp
p /M

hgðpÞ
gðpÞ ; gAH; pAn�1ðxÞ; commuting with

the action of AutNO and satisfying

Sgk;p;gkðpÞ ¼ Sg;kðpÞ;gkðpÞ3Sk;p;kðpÞ;

S�1
g;p;gðpÞ ¼ Sg�1;gðpÞ;p;

and

S�1
g;p;gðpÞY

M
hgðpÞ
gðpÞ ðg � A; zÞSg;p;gðpÞ ¼ Y M

hp
p ðA; zÞ:

(3) If gAHp; then Sg;p;p ¼ Sg; where Sg is the operator defined in Section 2.

Given a collection fM
hp
p gpAn�1ðxÞ; we can form the collection fMhp

p ðDpÞgpAn�1ðxÞ;

where Mhp
p ðDpÞ is the AutNO-twist of M

hp
p by the torsor of special coordinates at p:
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Let

Mx ¼
M

pAn�1ðxÞ
Mhp

p ðDpÞ

This is a representation of H; where H acts as follows. If AAM
hp
p ; z

1
N
p is a special

coordinate at p; and gAH; then

g � ðA; z
1
N
p Þ ¼ ðSg;p;gðpÞ � A; z

1
N
p 3g

�1Þ

Note that this action is well-defined since the S-operators commute with the action

of AutNO: Now, let Mx ¼ ðMxÞH ; the space of H-invariants of Mx: The

composition of the inclusion Mx-Mx and the projection Mx-Mhp
p ðDpÞ is an

isomorphism for all pAn�1ðxÞ: For vpAMhp
p ðDpÞ; denote by ½vp� the corresponding

vector in Mx: Note that for each ðA; z
1
N
p ÞpAMhp

p ðDpÞ; and gAH; ½ðA; z
1
N
p Þp� ¼

½ðSg;p;gðpÞ � A; z
1
N
p 3g

�1ÞgðpÞ� in Mx:

Definition 5.1. We call Mx a V-module along n�1ðxÞ:

Henceforth, we will suppress the square brackets for elements of Mx and refer to

½ðA; z
1
N
p Þp� simply as ðA; z

1
N
p Þ:

5.4. Construction of Modules along H-orbits

In this section we wish to give a construction of a module along n�1ðxÞ starting
with a point pAn�1ðxÞ and a hp-twisted module M

hp
p : Note that when Hp is trivial,

this is just an ordinary V -module M:

Thus, suppose we are given pAn�1ðxÞ; and a hp-twisted module M
hp
p : Observe that

the monodromy generator at the point gðpÞ is hgðpÞ ¼ ghpg�1; i.e. the monodromies

are conjugate.

(1) For gAH; define the module M
ghpg�1

gðpÞ to be M
hp
p as a vector space, with the V -

module structure given by the vertex operator

Y
M

ghpg�1

gðpÞ ðA; zÞ ¼ Y M
hp
p ðg�1 � A; zÞ ð5:4Þ

It is easily checked that this equips M
ghpg�1

gðpÞ with the structure of a ghpg�1-twisted

module. Furthermore, if gAHp; this construction results in a hp-twisted module

isomorphic to M
hp
p :
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(2) Recall that for qAn�1ðxÞ; M
hq
q is canonically isomorphic to M

hp
p as a vector space

by the previous item. Thus, if gðqÞaq; define Sg;q;gðqÞ to be the identity map.

(3) If gAHq; then g is conjugate to an element g0AHp: Define Sg;q;q ¼ Sg0;p;p also

using the canonical identification.

It is easy to check that this construction is well-defined, and satisfies the
requirements of Definition 5.1.

Remark 1. If Hp is trivial, and M ¼ V ; then for any gAH; the new module structure

(5.4) is isomorphic to the old one, and so the resulting module Mx along n�1ðxÞ is
isomorphic to VH

x ; the fiber of the sheaf VH at x:

Remark 2. If H ¼ Hp; then p is unique, and so any hp-twisted module results in a

module along n�1ðxÞ:

5.5. Twisted vertex operators as sections of VH;�
X

We begin with the observation that a section of VH

X
3 over UCX

3

is the same as a

H-invariant section of V
C
3 over n�1ðUÞ; and likewise for VH;�

X
3 : Thus, defining a

section of VH;�
X
3 on D	

x is equivalent to defining an H-invariant section of V�
C
3 on‘

pAn�1ðxÞ D
	
p :

Let pAn�1ðxÞ; and let z
1
N
p be an hp-special formal coordinate at p: This coordinate

gives us a trivialization izp
of V

C
3 jD	

p
: We will denote by izp

ðAÞ the section of V
C
3 jD	

p

corresponding to AAV with respect to this trivialization. The coordinate z
1
N
p also

gives us an identification of Mhp
p ðDpÞ with M

hp
p :

Theorem 5.1. Let xAX ; and Mx a V-module along n�1ðxÞ: For each pAn�1ðxÞ; choose

a hp-special coordinate z
1
N
p at p: Define an EndðMxÞ-valued section YMx of V�

C
3 on‘

pAn�1ðxÞ D
	
p by the formula

/ðz
1
N
p ;fÞ;YMxðizp

ðAÞÞ � ðz
1
N
p ; vÞS ¼ /f;Y M

hp
p ðA; z

1
N
p Þ � vS: ð5:5Þ

Then this section YMx is independent of the choice of special coordinate z
1
N
p on each D	

p :

Furthermore, it is H-invariant.

Proof. We begin by checking coordinate-independence. Choose a pAn�1ðxÞ: Let w
1
N

be another special coordinate at p: Then there exists a unique rAAutNO such that
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w
1
N ¼ rðz

1
N
p Þ (thus, w ¼ rNðz

1
N
p Þ). We attach to w

1
N a section *YMs

p of V�
C
3 jD	

p
with

values in EndðMxÞ by the formula

/ðw
1
N ; *fÞ; *YMxðiwðÃÞÞ � ðw

1
N ; ṽÞS ¼ / *f;Y Mhp ðÃ;w

1
NÞ � ṽS:

We must show that *YMx ¼ YMx : We have

ðz
1
N
p ;fÞ ¼ ðw

1
N ;f � RMhp ðrÞÞ

ðz
1
N
p ; vÞ ¼ ðw

1
N ;RMhp ðrÞ�1 � vÞ

As explained in [FB], the section izp
ðAÞ of V

C
3 appears in the coordinate w ¼ rNðz

1
N
p Þ

as iwðRV ððrNÞzÞ
�1 � AÞ: It follows that

izp
ðAÞ ¼ iwðRV ððrN

z Þ
�1Þ � AÞ:

Therefore

/ðz
1
N
p ;fÞ; *YMxðizp

ðAÞ � ðz
1
N
p ; vÞS

¼ /f;RMhp ðrÞY MsðRV ððrNÞzÞ
�1 � A; rðz

1
N
p ÞÞRMhp ðrÞ�1

vS:

By (4.1), *YMx ¼ YMx ; and we obtain that our section is coordinate-independent.

We now proceed to show that YMx is H-invariant. This amounts to checking, for
gAH

/ðz
1
N
p ;fÞ;YMxðg � izp

ðAÞÞ � ðz
1
N
p ; vÞS ¼ g �/ðz

1
N
p ;fÞ;YMxðizp

ðAÞÞ � ðz
1
N
p ; vÞS

where the action on the right is by pullback of functions. The right-hand side is

/f;Y M
hp
p ðA; z

1
N
p 3g

�1Þ � vS: On the left, we have

g � izp
ðAÞ ¼ izp3g�1ðg � AÞ

ðz
1
N
p ;fÞDðz

1
N
p 3g

�1;f3S�1
g;p;gðpÞÞAM�

x

ðz
1
N
p ; vÞDðz

1
N
p 3g

�1;Sg;p;gðpÞ � vÞAMx
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Thus we get

/ðz
1
N
p ;fÞ;YMxðg � izp

ðAÞ � ðz
1
N
p ; vÞS

¼ /ðz
1
N
p 3g

�1;f3S�1
g;p;gðpÞÞ;YMxðizp3g�1ðg � AÞÞ; ðz

1
N
p 3g

�1;Sg;p;gðpÞ � vÞS

¼ /f;S�1
g;p;gðpÞY

M
hgðpÞ
gðpÞ ðg � A; z

1
N
p 3g

�1ÞSg;p;gðpÞ � vS

¼ /f;Y M
hp
p ðA; z

1
N
p 3g

�1Þ � vS

¼ g �/ðz
1
N
p ;fÞ;YMxðizp

ðAÞÞ � ðz
1
N
p ; vÞS &

Remark 3. In view of the comments at the beginning of Section 5.5, YMx is the

pullback under n of a unique section of VH;�
X
3 on D	

x : We will abuse notation by

denoting the latter by YMx as well.

In the case of twisted primary fields, (4.3) implies the following analogue of
Proposition 5.3.8 of [FB]:

Proposition 5.1. Let xAX ; and Mx a V-module along n�1ðxÞ: For each pAn�1ðxÞ;

choose a hp-special coordinate z
1
N
p at p: Define an EndðMxÞ-valued D-differential $ on‘

pAn�1ðxÞ D
	
p by the formula

/ðz
1
N
p ;fÞ; $ � ðz

1
N
p ; vÞS ¼/f;Y M

hp
p ðA; z

1
N
p Þ � vSðdzpÞD

¼NDz
D
ðN�1Þ

N
p /f;Y M

hp
p ðA; z

1
N
p Þ � vSðdz

1
N
p ÞD

Then $ is independent of the choice of z
1
N
p ’s.

Recall from Section 5.4.9 of [FB] that a primary vector AAV determines a line

subbundle jA :O�D
C +VC ; and by dualizing a surjection j�A : V�

C7OD
C : The section$

of OD

C
3 j‘

pAn�1ðxÞ D
	
p
appearing in Proposition 5.1 is just the image of the section YMx

under j�A:

5.6. Dual version

Let xAX ; and Mx a V -module along n�1ðxÞ: As in the case of ordinary vertex
operators (see Section 5.4.8 of [FB]), dualizing the construction we obtain a linear

ARTICLE IN PRESS
E. Frenkel, M. Szczesny / Advances in Mathematics 187 (2004) 195–227210



map

YMx;3: GðD	
x ;V

H

X
3 #O

X
3 Þ-EndMx:

Given by

s-Resx/YMx ; sS ð5:6Þ

Moreover, this map factors through the quotient

UðVH
x Þ ¼def GðD	

x ;V
H

X
3 #O

X
3 Þ=ImrH ;

which has a natural Lie algebra structure. The corresponding map UðVH
x Þ-EndMx

is a homomorphism of Lie algebras. Note that x does not have to lie in X
3

; but can be

any point of X :

5.7. A sheaf of Lie algebras

Following Section 8.2.5 of [FB], let us consider the following complex of sheaves

(in Zariski topology) on X
3

:

0-VH

X
3 !r VH

X
3 #O

X
3 -0;

where VH

X
3 #O

X
3 is placed in cohomological degree 0 and VH

X
3 is placed in

cohomological degree �1 (shifted de Rham complex). Let hðVH

X
3 Þ denote the sheaf

of the 0th cohomology, assigning to every Zariski open subset SCX
3

the vector

space

USðVH

X
3 Þ ¼def GðS;VH

X
3 #O

X
3 Þ=ImrH

One can show as in Chapter 18 of [FB] that this is a sheaf of Lie algebras.

According to formula (5.6), for any xAS0; where S0CX is such that S0-X
3

¼ S;

restriction induces a Lie algebra homomorphism USðVH

X
3 Þ-UðVH

x Þ: We denote the

image by USðVH
x Þ:
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5.8. Interpretation in terms of chiral algebras

A. Beilinson and V. Drinfeld have introduced in [BD] the notion of chiral algebra
(see also [G]). A chiral algebra on a smooth curve X is a right D-module A on X

together with homomorphisms of D-modules O-A and

j�j�ðA2AÞ-D!ðAÞ;

where D : X-X 2 is the diagonal embedding, and j : ðX 2
\DÞ-X 2 is the complement

of the diagonal. These homomorphisms must satisfy certain axioms.
As shown in Chapter 18 of [FB], for any conformal vertex algebra V and any

smooth curve X ; the right D-module VX#OX is naturally a chiral algebra.
Recall that a module over a chiral algebra A on X is a right D-module R on X

together with a homomorphism of D-modules

a : j�j
�ðA2RÞ-D!ðRÞ:

This homomorphism should satisfy the axioms of [BD].
Suppose that R is supported at a point xAX and denote its fiber at x by Rx: Then

R ¼ ix!ðRxÞ; where ix is the embedding x-X : Applying the de Rham functor along
the second factor to the map a we obtain a map

ax: jx�j
�
xðAÞ#Rx-R;

where jx: ðX \xÞ-X : The chiral module axioms may be reformulated in terms of this
map. Note that it is not necessary for A to be defined at x in order for this definition
to make sense. If A is defined on X \x; we simply replace jx�j�xðAÞ by jx�ðAÞ:

If M is a module over a conformal vertex algebra V ; we associate to it the space
Mx as in Section 5.1. Then the right D-module ix!ðMxÞ is a module over the chiral

algebra V#OX supported at x and the corresponding map aM
x is defined as follows.

Choose a formal coordinate z at x and use it to trivialize VjDx
and Mx and to

identify

ix!ðMxÞ ¼ MððzÞÞdz=M½½z��dz:

Then

aM
x ðizðAÞ#f ðzÞdz;BÞ ¼ Y MðA; zÞB#f ðzÞdz mod M½½z��dz:

The independence of aM
x on z is proved in the same way as the independence of YM

x :

Note that applying to aM
x the de Rham cohomology functor we obtain the map

YM;3
x (see Section 5.1).

Now let VH

X
3 be the vector bundle on X

3

with connection defined by formula (5.3).

Then VH

X
3 #OX is a right D-module on X

3

: Suppose that H ¼ Z=NZ ¼ /sS: Given
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a full ramification point pAC and a twisted V -module Ms; we define a map

aMs

p : jx�ðVH

X
3 #OX Þ#Ms

p-ip!ðMs
pÞ;

where x ¼ nðpÞAX \X
3

; as follows. Observe that sections ofVH

X
3 #OX jD	

x
are the same

as s-invariant sections of n�ðVX Þ#OC jD	
p
: Choose a special coordinate z

1
N at p and

use it to trivialize n�ðVÞ#OC jD	
p
and Mp and to identify

ip!ðMs
pÞ ¼ Mððz

1
NÞÞdz

1
N=M½½z

1
N ��dz

1
N :

Then

aMs

p ðizðAÞ#f ðz
1
NÞdz

1
N ;BÞ ¼def Y MsðA; z

1
NÞB#f ðz

1
NÞdz

1
N mod M½½z

1
N ��dz

1
N :

The independence of aMs

p on z
1
N may be proved in the same way as the independence

of YMs

p was proved. Applying to aMs

p the de Rham cohomology functor we obtain

the map YMs;3
p from Section 5.6.

Now let H be an arbitrary finite group acting (generically with trivial stabilizers)

on a smooth curve C: Then as before we have an H-torsor C
3

over X
3

CX ¼ C=H:

Let A be a chiral algebra on X
3

equipped with an action of H by automorphisms.

Then the C
3

-twist of A;

A
C



¼ C
3

	
H
A;

inherits the chiral algebra structure from A: So we can consider A
C



-modules
supported at arbitrary points xAX : IfA ¼ VX#OX ; where V is a conformal vertex
algebra on which H acts by automorphisms, then such modules may be constructed

from twisted V -modules. Namely, to each V -module along n�1ðxÞ (see Definition

5.1) we can attach to it in the same way as above a A
C



-module supported at x:

6. Conformal blocks

We use the notation of Section 5.2. Let fxigi¼1?m be a collection of distinct points

of X ; which contains all of the branch points of n: Let fMxi
gi¼1?m be a collection of

V -modules, such that Mxi
is a module along n�1ðxiÞ: Let

F ¼#
m

i¼1
Mxi

:
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Given fAF�; AiAMxi
;

/f;A1#?#YMxi � Ai#?#AmS ð6:1Þ

is a section of VH;�
X
3 on D	

xi
:

We can now define the generalized space of conformal blocks, extending
Definition 9.1.1 of [FB]:

Definition 6.1. The space of conformal blocks

CV ðX ; fxig;Mxi
Þi¼1?m

is by definition the vector space of all linear functionals fAF� such that for any

AiAMxi
; sections (6.1) can be extended to the same section of VH;�

X
3 ; regular over

X \fxig:

Remark. Observe that in this definition all branch points of n are required to carry

module insertions, so that X \fxigCX
3

: &

We can pull back sections (6.1) by n to sections of V�
C
3 on

‘
pAn�1ðxiÞ D

	
p :

Equivalently, Definition 6.1 can be rephrased as follows:

Definition 6.2. The space of conformal blocks

CV ðX ; fxig;Mxi
Þi¼1?m

is by definition the vector space of all linear functionals fAF� such that for any
AiAMxi

; the pullbacks of sections (6.1) can be extended to the same H-invariant

section of V�
C
3 ; regular over C\fn�1ðxiÞg:

6.1. Alternative definition

Composing map (5.6) with the map

UX \fxigðVH

X
3 Þ-

Mm
i¼1

UðVH
xi
Þ

we obtain an action of the Lie algebra UX \fxigðVHÞ onF:We will employ the Strong

Residue Theorem (see [T]):
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Theorem 6.1. Let E be a vector bundle on a smooth projective curve Z: Let

t1;y; tnAZ be a set of distinct points. Then a section

tA
Mn

i¼1

G D	
ti
;E�

� �
has the property thatXn

i¼1

Resti
/m; tS ¼ 0; 8mAGðZ � ft1;?; tng;E#OZÞ

if and only if t can be extended to a regular section of E over Z � ft1;y; tng (i.e.,
tAGðZ � ft1;y; tng;E�Þ

Applying Theorem 6.1 to Definition 6.1, we obtain that fAF� is a conformal

block if and only if it vanishes on all elements of the form s � v; sAUX \fxigðVH

X
3 Þ; vAF:

This leads to the following equivalent definition, extending Definition 9.1.2 of [FB]:

Definition 6.3. The space of coinvariants is the vector space

HV ðX ; fxig;Mxi
Þi¼1?¼F=UX \fxigðVH

X
3 Þ �F:

The space of conformal blocks is its dual: the vector space of UX \fxigðVH

X
3 Þ-invariant

functionals on F

CV ðX ; fxig;Mxi
Þi¼1?m ¼ HomUX \fxig

ðVH

X
3 ÞðF;CÞ:

7. Example: Heisenberg vertex algebra

The definition of conformal blocks given in Section 6 is quite abstract, and
involves a priori all of the fields of the vertex algebra V : When vertex algebras are
generated by a finite number of fields the definition of conformal block can be
simplified to involve only those generating fields. In this section we illustrate this in
the case of the Heisenberg vertex algebra with an order 2 automorphism.

7.1. The vertex algebra p and its Z=2Z-twisted sector

Let H (resp. Hs) denote the Lie algebra with generators fb̃n; K̃gnAZ (resp.

fbn;Kg
nA1

2
þZ

), and commutation relations

½b̃n; b̃m� ¼ ndn;�mK̃
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(resp. same but with bn’s) where K̃ (resp. K) is central. Let Hþ (resp. Hs
þ) be the

subalgebras generated by fb̃ngnX0 (resp. fbngn40). For lAC; let eCCl denote the

1-dimensional representation ofHþ"C � K̃ on which b̃n; n40 acts by 0, b̃0 acts by l;
and K̃ acts by the identity. Let

pl ¼ IndH
Hþ"C�K̃

f
ClCl:

It is well known that p ¼ p0 has the structure of a vertex algebra (see for instance
Chapter 2 of [FB]), generated by the field assignment

Y pðb̃�1j0S; zÞ ¼ b̃ðzÞ ¼
X
nAZ

b̃nz�n�1:

Let us take o ¼ 1
2
b̃2
�1 to be the conformal vector of p: With this conformal structure,

p has a conformal automorphism s of order 2, induced from the automorphism of

H which acts by b̃n-� b̃n: All pl have the structure of conformal p-modules. If

l ¼
ffiffiffiffiffiffi
M

p
; M even, then pl is admissible. We write

Yplðb̃�1j0S; zÞ ¼ b̃lðzÞ ¼
X
nAZ

b̃nz�n�1:

Now let C denote the 1-dimensional representation of Hs
þ"C � K on which K

acts by the identity. The Hs-module

ps ¼ IndH
s

Hs
þ"C�KC

has the structure of an admissible conformal s-twisted p-module, generated (in the
sense of [Li]) by the field assignment

Ypsðb̃�1j0S; zÞ ¼ bðz
1
2Þ ¼

X
nA1

2
þZ

bnz�n�1:

The twisted vertex operator assigned to an arbitrary vector vAp is given as follows
(see [FLM,KP,D]). Let

Wpsðb̃n1yb̃nk
j0S; zÞ ¼ 1

ð�n1 � 1Þ!y
1

ð�nk � 1Þ! : @
�n1�1
z bðzÞy@�nk�1

z bðzÞ :

and set

Dz ¼
X

m;nX0

cmnb̃mb̃nz�m�n
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where the constants cmn are determined by the formula

X
m;nX0

cmnxmyn ¼ �log
ð1þ xÞ1=2 þ ð1þ yÞ1=2

2

 !

Then for any vAp we have

Y psðv; zÞ ¼ WpsðexpDz � v; zÞ: ð7:1Þ

7.2. The Lie algebra Hout

Using the notation of earlier sections, we now restrict to the case where V ¼ p;
HD/sCS; where sC has order 2, and n : C-X has degree 2. This is for example the

case when C is hyperelliptic, sC is the hyperelliptic involution, and X ¼ CP1: The

vector bundles V
C
3 ;VH

X
3 will be denoted P

C
3 ;Ps

X
3 respectively.

For xAX we can construct p-modules along n�1ðxÞ by applying the construction

in Section 5.4. If p�1ðxÞ consists of one point, we obtain a module psx along n�1ðxÞ
starting with ps: If p�1ðxÞ consists of two points, we obtain a module pl;px along

n�1ðxÞ starting with a point p in the fiber and a pl; lA
ffiffiffiffiffiffi
2Z

p
:

Let fxigi¼1?m be a collection of points of X containing all of the branch points of

n; and fpxi
g a collection of p-modules along n�1ðxiÞ; where pxi

Dpsxi
or pxi

Dpli ;pi
xi

depending on whether n�1ðxiÞ consists of one or two points. The vector b̃�1j0SAp is
primary and has conformal weight 1. Applying Proposition 5.1, for each xi; we
obtain an Endðpxi

Þ-valued 1-form $ i on
‘

pAn�1ðxiÞ D
	
p : Let

F ¼#
m

i¼1
pxi

and let HoutðCaffÞ be the abelian Lie algebra C½C\fn�1ðxiÞg� of regular functions on
C\fn�1ðxiÞg: If AiApxi

; then fAHoutðCaffÞ acts on F by

f � ðA1#?#AmÞ ¼
Xm

i¼1

X
pAn�1ðxiÞ

A1#?#ðRespf$ iÞAi#?#Am: ð7:2Þ

We will say that a meromorphic function f on C is even if s�Cð f Þ ¼ f and odd if

s�Cð f Þ ¼ �f : If f is even, then
P

pAn�1ðxiÞRespf$ i ¼ 0; so only odd functions act non-

trivially. Let HoutðCaffÞo denote the space of odd elements in C½C\fn�1ðxiÞg�:

7.3. Coinvariants and conformal blocks

Now we give a simpler, alternative definition of the spaces of coinvariants and
conformal blocks for (twisted) p-modules, extending Definition 8.1.7 in [FB].
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Definition 7.1. The space of coinvariants associated to ðX ; fxig; fpxi
gÞ is the vector

space

*HpðX ; fxig; pxi
Þi¼1?m ¼ F=HoutðCaffÞo �F

The space of conformal blocks associated to ðX ; fxig; fpxi
gÞ is the vector space

eCCpðX ; fxig; pxi
Þi¼1?m ¼ HomHout

ðCaffÞoðF;CÞ

of HoutðCaffÞo-invariant functionals on F:

Remark. The discussion at the end of Section 7.2 implies that these definitions

remain the same if we replace HoutðCaffÞo by HoutðCaffÞ:

We can ask how the space of conformal blocks changes under the addition of
points. Suppose then that to our collection of points fxigi¼1?m we add xmþ1: Since

fxigi¼1?m contains all the branch points of n; n�1ðxmþ1Þ consists of two points. Set

pxmþ1
¼ p0;pxmþ1

; pAn�1ðxmþ1Þ: Observe that in the case of the vacuum representation,

p0;pxmþ1
¼ p0;sCðpÞ

xmþ1 ; so there is no choice of point in the fiber. There exists a natural map:

eCCpðX ; fxig; pxi
Þi¼1?mþ1-

eCCpðX ; fxig; pxi
Þi¼1?m ð7:3Þ

given by

f-fj#m
i¼1

pxi
#j0S; ð7:4Þ

i.e., we restrict the functional f to the vacuum vector in pxmþ1
: The following lemma,

analogous to Proposition 8.3.2 in [FB], will be proved in Section 7.5.

Lemma 7.1. Map (7.4) is an isomorphism.

7.4. Equivalence of Definitions 6.1 and 7.1

We now have two seemingly different definitions of the space of conformal blocks:
the general Definitions 6.1 and 7.1, which is specific to the case V ¼ p: We will show
that these two definitions agree. Applying the Strong Residue Theorem 6.1 to our
collection of EndðFÞ-valued one-forms, we obtain

Corollary 7.1. A functional f is a conformal block if and only if 8AiApxi
; the

one-forms

/f;A1#?#ð$ i � AiÞ#?#AmSAG
a

pAn�1ðxiÞ
D	

p ;OC
3

0@ 1A ð7:5Þ

can be extended to a single one-form $f on C\fn�1ðxiÞg:
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Remark. sC acts on the space of holomorphic one-forms. It is clear that $f is odd

under this action.

We are now ready to prove the equivalence of the two definitions of conformal
blocks. The proof is a generalization of the proof of Theorem 8.3.3 of [FB].

Theorem 7.1. Let f be a linear functional on F such that 8AiApxi
; the one-forms (7.5)

can be extended to a single, odd, regular one-form $f on C\fn�1ðxiÞg: Then the

sections

/f;A1#?#ðYpxi � AiÞ#?#AmSAG
a

pAn�1ðxiÞ
D	

p ;P
�
C

0@ 1A ð7:6Þ

can be extended to a single, invariant, regular section of P�
C on C\fn�1ðxiÞg; and vice

versa.

Proof. From the discussion following Theorem 5.1, there exists a map

P�
C
3 -O

C
3

such that the one-forms (7.5) are the projections of sections (6.1) on
‘

pAn�1ðxiÞ D
	
p :

Thus if (6.1) extend to C\fn�1ðxiÞg; so will (7.5). Denote C\fn�1ðxiÞg by Caff :

Let Ĉ2 denote C2
aff \X; where X is the divisor in C2

aff consisting of pairs ðx; yÞAC2
aff

satisfying sk
CðxÞ ¼ sl

CðyÞ for some integers k; l: Let r1 : Ĉ2-Caff denote the

projection on the first factor, whose fiber over qACaff is

Caff \Oq

where Oq denotes the H-orbit of q: Let

*O ¼ ðr1Þ�OĈ2 :

This is a quasi-coherent sheaf on Caff whose fiber at qACaff is C½Caff \Oq�: Let G

denote the sheaf F#PC jCaff
on Caff ; where we treat F as a constant sheaf. For

qACaff ; the fiber Gq is F#ðPCÞqDF#pnðqÞ; where by pnðqÞ we mean the module

along n�1ðnðqÞÞ constructed out of the vacuum p: The sheaf *O acts on G in such a
way that fiberwise we obtain the action (7.2) of C½Caff \Oq� on

F#PnðqÞ ¼#
m

i¼1
pxi

#pnðqÞ

Introduce the sheaf of homomorphisms

eCC ¼ Hom *OðG;OCaff
Þ
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whose fiber at qACaff is the space of conformal blocks

eCCpðX ; fxi; nðqÞg; pxi
; pnðqÞÞi¼1?m:

Lemma 7.1 identifies the fibers of eCC with eCCpðX ; fxig; pxi
Þi¼1?r; thus providing a

canonical trivialization of eCC: Thus, given
fAeCCpðX ; fxig; pxi

Þi¼1?m

we obtain a section *f of eCC on Caff : Let *fq denote the value of this section at qAC:

Let AiApxi
and

v ¼#
m

i¼1
AiAF

Contracting *f with vAF; we obtain a section *fv ofP�
C : By construction, the value of

*fv on BAðPCÞq ¼ pnðqÞ is *fqðv#BÞ: We wish to show that the section *fv is the

analytic continuation of sections (6.1). We begin with the following lemma. &

Lemma 7.2. There exists a regular one-form on Caff \Oq whose restriction to the union‘
pAn�1ðxiÞ D

	
p is equal to

/ *fq;A1#?#$ i � Ai#?#Am#BS;

and its restriction to
‘

pAn�1ðnðqÞÞ D
	
p is

/ *fq;A1#?#Am#$q � BS

Proof. Since *fq is a conformal block, we obtain, using the definition of the action of

C½Caff \Oq� on F#pnðqÞ;

0 ¼ / *fq; f � ðv#BÞS ¼
X

i¼1?m

X
pAn�1ðxiÞ

Resp/ *fq;A1#?#ð f$ iÞ � Ai#?#BS

þ
X

p¼ðq;sCðqÞÞ
Resp/ *fq;A1#?#Am#?#ð f$qÞ � BS:

Thus, the strong residue theorem implies that there exists a regular one-form on
Caff \Oq having the desired properties. &

Remark 4. If xAX ; pAn�1ðxÞ; n�1ðxÞ consists of 2
N

points, and z
1
N is a formal

coordinate at p; then the endomorphism-valued one-form $ on D	
p has the

expression

$ ¼ Nz
N�1

N bðz
1
NÞdz

1
N
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where

bðz
1
NÞ ¼

X
nA 1

N
þZ

bnz�n�1

Now we prove Theorem 7.1. Suppose that q is near pAn�1ðxiÞ: Choose a small

analytic neighborhood U of p with special coordinate z
1
N
i centered on p; such that

qAUi: If n is unramified, N ¼ 1; and z
1
N
i is any coordinate centered at p; otherwise

N ¼ 2 and z
1
2
i is a sC-special coordinate. Since qap; w ¼ zi � ziðqÞ is a coordinate

centered at q; in some neighborhood W of q: Near q; we can trivialize

p	 WDPC jW

via

ðB; qÞ-ðB; zi � ziðqÞÞ:

It remains to prove the following:

Lemma 7.3. 8BAp;

/ *fq; v#BS ¼/ *fq;A1#?#Y pxi ðB; qÞ � Ai#?#Am#j0SS

¼/f;A1#?#Ypxi ðB; qÞ � Ai#?#AmS:

Proof. The second equality follows from Lemma 7.1. The first equality is proved by

induction. It obviously holds for B ¼ j0S: Now, denote by pðrÞ the subspace of p

spanned by all monomials of the formfbi1bi1?b̃ik j0S; where kpr: Suppose that we have

proved Lemma 7.3 for all BApðrÞ: The inductive step is to prove the equality for

elements of the form B0 ¼ ebnbn � B: By our inductive hypothesis, we know that if

BApðrÞ; then

/ *fq;A1#?#ðNz
N�1

N
i bðz

1
N
i ÞÞ � Ai#?#BSdz

1
N
i

¼ /f;A1#?#NY pxi ðB; qÞz
N�1

N
i bðz

1
N
i Þ � Ai#?#AmSdz

1
N
i :

According to Lemma 7.2 above, we also have

/ *fq;A1#?#ðNz
N�1

N
i bðz

1
N
i ÞÞ � Ai#?#Am#BSdz

1
N
i ¼ / *fq;A1#?#Am#b̃ðwÞ � BSdw:
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Using locality and associativity, we obtain

/f;A1#?#Ypxi ðC; qÞbðz
1
N
i Þ � Ai#?#AmSNz

N�1
N

i dz
1
N
i

¼ /f;A1#?#bðz
1
N
i ÞYpxi ðC; qÞ � Ai#?#AmSNz

N�1
N

I dz
1
N
i

¼ /f;A1#?#Ypxi ðb̃ðzi � ziðqÞÞ � B; qÞ � Ai#?#AmSNz
N�1

N
i dz

1
N
i

¼ /f;A1#?#Ypxi ðb̃ðwÞ � B; qÞ � Ai#?#AmSNz
N�1

N
i dz

1
N
i

¼ /f;A1#?#Ypxi ðb̃ðwÞ � B; qÞ � Ai#?#AmSdw;

where the last step holds because Nz
N�1

N
i dz

1
N
i ¼ dw: Combining these relations, we

obtain

/ *fq;A1#?#Am#b̃ðwÞ � BSdw ¼ /f;A1#?#Y pxi ðb̃ðwÞ � B; qÞ � Ai#?#AmSdw:

Multiplying both sides by wn and taking residues, we find that

/ *fq;A1#?#Am#b̃n � BS ¼ /f;A1#?#Ypxi ðb̃n � B; qÞ � Ai#?#AmS:

Equivariance of sections (7.6) follows from the fact that they are invariant on all D	
p

where p is a fixed point of sC : This completes the proof of Theorem 7.1. &

7.5. Proof of Lemma 7.1

We start with the following fact.

Lemma 7.4. Let pAn�1ðxmþ1Þ: For every principal part f� at p; there exists an odd

function fAC½Caff \Op� whose principal part at p is f�:

Proof. Let D be an effective divisor symmetric under the action of sC (i.e., if D ¼
Scq � q; then cq ¼ csCðqÞ), supported on fn�1ðxiÞgi¼1?m: Denote the canonical divisor

of C by KC : For degðDÞ4degðKCÞ; the Riemann–Roch theorem implies that

dimLðDÞ ¼ degðDÞ þ 1� gC :

It follows that

Qnþ1 ¼ LðD þ ðn þ 1Þ � p þ ðn þ 1ÞsCðpÞÞ=LðD þ n � p þ n � sCðpÞÞ

for nX0 is two-dimensional. Furthermore, Qnþ1 carries an action of sC : Suppose
now that Qnþ1 is spanned by the images of two even functions f1; f2: Since fi are even,
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they have poles of the same order at both p and sCðpÞ; and so will any linear
combination. But this contradicts the fact that

LðD þ ðn þ 1Þp þ nsCðpÞÞ=LðD þ n � p þ n � sCðpÞÞ

is one-dimensional. It follows that for each nX0; Qnþ1 contains an odd
function. &

Now we prove the statement equivalent to Lemma 7.1 that the corresponding
spaces of coinvariants

*HpðX ; fxig; pxi
Þi¼1?m and *HpðX ; fxig; pxi

Þi¼1?mþ1

are isomorphic. Recall that pxmþ1
here is the vacuum module p0;pxmþ1

: Let C0
aff ¼

Caff \Op; and HoutðCaffÞp ¼ C½C0
aff �: The space

*HpðX ; fxig; pxi
Þi¼1?m ðresp: *HpðX ; fxig; pxi

Þi¼1?mþ1

is identified with the 0th homology of the Lie algebra HoutðCaffÞo (resp. HoutðC0
affÞ

o)

with coefficients in F (resp. F#pxmþ1
). Lemma 7.4 implies that the sequence

0-HoutðCaffÞo-HoutðC0
affÞ

o !m w�1
sþ1C½w�1

sþ1�-0 ð7:7Þ

is exact, where m is the map that attaches to a function its principal part at p: The

homology of HoutðC0
affÞ

o with coefficients in F#pxmþ1
is computed using the

Chevalley complex

C� ¼ F#pxmþ1
#

�̂
ðHoutðC0

affÞ
oÞ

with the differential d : Ci-Ci�1 given by the formula

d ¼
X

i

fi#c�
i

where f fig is a basis in HoutðC0
affÞ

o and fc�g is the dual basis of ðHoutðC0
affÞ

oÞ�
acting on

V�ðHoutðC0
affÞ

oÞ by contraction.

Choose pull-backs zn; no0; of wn
sþ1; no0; in HoutðC0

affÞ
o under m: Because of the

exactness of sequence (7.7), we can choose a basis f fig in HoutðC0
affÞ

o which is a

union of fzngno0; and a basis of HoutðCaffÞo: In this basis we may decompose

d ¼ dCaff
þ
X

zn#f�
n;

where dCaff is the differential forHoutðCaffÞo; and f�
n denotes the element of the dual

basis to f fig corresponding to zn:
We need to show that the homologies of this complex are isomorphic to the

homologies of the complex F#
V�ðHoutðCaffÞoÞ: Introduce an increasing filtration
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on pxmþ1
; letting pðrÞmþ1 be the span of all monomials of order less than or equal to m in

b̃n; no0: Now introduce a filtration fFig on the Chevalley complex C� by setting

Fi ¼ span v#B#DjvAF;BApðmÞ
xmþ1

;DA
î�m

ðHoutðC0
affÞ

oÞ
( )

:

Our differential preserves this filtration.
Consider now the spectral sequence associated to the filtered complex C�: The

zeroth term E0 is the associated graded space of the Chevalley complex, isomorphic
to

psþ1#
�̂
ðf�

nÞno0

� �
# F#

�̂
ðHoutðCaffÞoÞ

� �
:

The zeroth differential acts along the first factor of the above decomposition, and is
given by the formula

d0 ¼
X
no0

bn#f�
n;

because on the graded module the operator zn acts as bn; no0: But psþ1 is isomorphic
to the symmetric algebra with generators bn; no0; and our differential is simply the
Koszul differential for this symmetric algebra. It is well-known that the zeroth
homology of this complex is isomorphic to C; and all other homologies vanish.

Therefore all positive homologies of d0 vanish, while the zeroth homology is

F#
V�ðHoutðCaffÞÞ: Hence, the E1 term coincides as a vector space with the

Chevalley complex of the homology of HoutðCaffÞo with coefficients in F: Also, the

E1 differential coincides with dCaff
; which is the corresponding Chevalley differential.

We thus obtain the desired isomorphism

HiðHoutðC0
affÞ

o;F#pmþ1ÞDHiðHoutðCaffÞo;FÞ:

8. Affine vertex algebras

In Section 7.3 we have shown that in the case of the Heisenberg vertex algebra the
space of conformal blocks had a simple realization as the dual of a certain space of
twisted coinvariants. In this section we present a similar realization in the case of
vertex algebras attached to affine Kac–Moody algebras.

8.1. The vacuum module VkðgÞ

Let g denote a complex simple Lie algebra, Lg ¼ g#½t; t�1� its loop algebra, and #g

the corresponding affine Kac–Moody Lie algebra. For kAC; let Ck denote the
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one-dimensional representation of g½t�"C � K where g½t� acts by 0, and K acts by k:
It is well known that the vacuum module

VkðgÞ ¼ Ind
#g

g½t�þC�KCk

has the structure of a vertex algebra (see for instance Section 3.4.2 of [FB]).
Pick a basis fJaga¼1?d (where d ¼ dimðgÞ) of g; and let fJaga¼1?d be its dual basis

with respect to the normalized Killing form. Suppose that ka� h3 (where h3 is the
dual Coxeter number of g) and set

S ¼ 1

2ðk þ h3Þ
Xd

a¼1

ðJa#t�1ÞðJa#t�1Þj0S:

This is the Sugawara vector which determines a conformal structure on VkðgÞ when
ka� h3: In what follows, we will always use this conformal structure on VkðgÞ:

Let sg be an automorphism of g of finite order N: Then sg induces a conformal

automorphism of VkðgÞ; which we will denote by sVkðgÞ:

In particular, consider the case when sg is an outer automorphism (note that this is

not necessary for the results below). Thus, N ¼ 2 when g ¼ An;Dm;ma4;E6; and
N ¼ 3 when g ¼ D4: The following result is proved in [Li].

Lemma 8.1. The sVkðgÞ-twisted VkðgÞ-modules are precisely the #gs-modules from the

category O; where #gs is the twisted affine Kac–Moody algebra associated to the

automorphism sg:

8.2. The Lie algebra gsoutðCaffÞ

We keep the notation of Section 7. Let C be an algebraic curve with an
automorphism sC of order N (where N ¼ 2 or 3 depending on g), and let fxigi¼1?m

be a collection of points of X containing the branch points of n: Denote C\fn�1ðxiÞg
by Caff : Let us write g ¼ "N�1

l¼0 gl ; where gl denotes the eigenspace of sg

corresponding to the eigenvalue e
2pil
N : Then sC acts on C½Caff �-the ring of functions

on Caff ; and so we can write C½Caff � ¼ "C½Caff �l ; where C½Caff �l consists of those

functions f such that s�Cð f Þ ¼ e
2pil
N f : Let

gsoutðCaffÞ ¼
MN
l¼1

ðgl#C½Caff �lÞ:

8.3. Coinvariants and conformal blocks

For xAX ; V -modules along n�1ðxÞ can be constructed from ordinary or twisted
V -modules using the same technique that was used in the Heisenberg case in
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Section 7.2. More precisely, if x is a branch point of n;p ¼ n�1ðxÞ; and sC;p is the

monodromy around x; then any sC;p-twisted VkðgÞ-module gives rise to a VkðgÞ-
module along n�1ðxÞ: Similarly, if n�1ðxÞ consists of N points, then an ordinary

VkðgÞ-module and a choice of point pAn�1ðxÞ gives rise to a VkðgÞ-modules along

n�1ðxÞ:
Let fMxi

g be a collection of VkðgÞ-modules along fxig constructed in this manner.

Thus for each xi; we have a distinguished point piAn�1ðxiÞ: Pick special coordinates

z
1

Ni near pi; where Ni ¼ 1 if n is unramified at pi and Ni ¼ N otherwise. Set

F ¼#
r

i¼m
Mxi

:

Then gsoutðCaffÞ acts on F as follows:

h � ðA1#?#AmÞ ¼
X

i

A1#?#½h�pi
� Ai#?#Am;

where ½h�p denotes the Laurent series expansion of h around pAC in the special

coordinate that was selected.
We are now ready to give an alternative, simplified definition of twisted

coinvariants and conformal blocks for VkðgÞ; extending the definition of
Section 8.2.1 in [FB]:

Definition 8.1. The space of coinvariants is the vector space

*HVkðgÞðX ; fxig;Mxi
Þi¼1?m ¼ F=gsoutðCaffÞ �F

The space of conformal blocks is its dual:

eCCVkðgÞðX ; fxig;Mxi
Þi¼1?m ¼ HomgsoutðCaff ÞðF;CÞ

The following theorem is proved using the same methods as Theorem 7.1.

Theorem 8.1. In the case of the vertex algebra VkðgÞ; Definition 6.1 is equivalent to

Definition 8.1.
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