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A square matrix over the complex field with non-negative integral trace is called
a quasi-permutation matrix. For a finite group G the minimal degree of a faithful
permutation representation of G is denoted by p(G). The minimal degree of a
faithful representation of G by quasi-permutation matrices over the rationals and
the complex numbers are denoted by ¢(G) and ¢(G) respectively. Finally r(G)
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denotes the minimal degree of a faithful rational valued complex character of G.
In this paper p(G), g(G), c(G), and r(G) are calculated for the group G = GL,(g).
© 2001 Academic Press
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1. INTRODUCTION

In [11] Wong defined a quasi-permutation group of degree n to be a
finite group G of automorphisms of an n-dimensional complex vector
space such that every element of G has non-negative integral trace. Also
Wong studied the extent to which some facts about permutation groups
generalize to the quasi-permutation group situation. In [4] the authors
investigated further the analogy between permutation groups and quasi-
permutation groups. They also worked over the rational field and found
some interesting results.

By a quasi-permutation matrix we mean a square matrix over the
complex field C with non-negative integral trace. For a given finite group
G, let p(G) denote the minimal degree of a faithful permutation represen-
tation of G, let g(G) denote the minimal degree of a faithful representa-
tion of G by quasi-permutation matrices over the rational field Q, and let
¢(G) be the minimal degree of a faithful representation of G by complex
quasi-permutation matrices. By a rational valued character we mean a
character y corresponding to a complex representation of G such that
x(g) € Q for all g € G. Let r(G) denote the minimal degree of a faithful
rational valued character of G. It is easy to see that for a finite group G
the following inequalities hold:

r(G) <¢(G) <4(G) <p(G).

In [4] the case of equality has been investigated for abelian groups. In [2]
above quantities have been found for the groups SL,(g) and PSL,(q). In
this paper we will calculate r(G), ¢(G), ¢(G), and p(G) where G is
GL,(g). All characters concerned are over the complex field C unless
otherwise stated.

Using the definition of p(G) it is proved in [1] that

p(G) =min{ ) [G:H,]:H, <G,
i=1

n
fori=1,2,...,nand (| (| H =1}.
i=1xeG

Let G be finite group and let y be an irreducible complex character of G.
Let mg( x) denote the Schur index of y over @ and let I'( x) be the
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Galois group of Q( y) over Q. It is known that

Y, mg(x)x®
aeTl(y)

is a character of an irreducible Q(G)-module [9, Corollary 10.2(b)]. So by
knowing the character table of a group and the Schur indices of each of
the irreducible characters of G, we can find the irreducible rational
characters of G. If y& C is an algebraic number over Q, then by
(Q(y): Q) we mean the Galois group of @(y) over @ and always it is
denoted by T

2. BACKGROUND

Assume that E is a splitting field for G and that F is a subfield of E. If
X, ¥ € Irr;(G) we say that y and ¢ are Galois conjugate over F if
F(x) = F(yy) and there exists o € Gal(F(x)/F) such that x7 = i,
where F( y) denotes the field obtained by adding the values x(g), for all
g€ G, to F. It is clear that this defines an equivalence relation on
Irr(G).

Let n; for 0 <i < r be Galois conjugacy classes of irreducible complex
characters of the G. For 0 <i <r let ¢; be a representative of the class
n,, with @, =15. Write W, =X _, x;, m; = mg(g,), and K, = ker ¢,.
We know that K, = ker ¥,. For I c{0,1,2,...,r} put K, = N,c; K,
By definition of r(G), ¢(G), and ¢(G) and using above notations we have

r(G) = min{§(1):§= zr:ni‘lf,-, n; =0,
i=1
K,=1forI={i,i+0, ni>0}}
c(G) = min{g(l) (€= Xr:ni‘lfi, n; >0,
i=0
K;,=1forI={i,i+0, ni>0}}
q(G) = min{g(l) 1E= inimi‘l'i, n; >0, K,=1
i=0

forI ={i,i#0, n,> 0}},

where n, = —min{£(g)| g € G} in the case of ¢(G) and ¢g(G).
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We know that if G is a finite group and if the Schur index of each
non-principal irreducible character of G is equal to m, then g(G) = mc(G)
[1, Corollary 3.15].

In [1] we defined d( x), m( x), and c¢( x) (see Definition 3.4). Here we
can redefine it as follows:

Let x be a complex character of G, such that ker y = 1. Then x = x;
+ -+ 4+ x, for some y; € Irr(G).

DEerFINITION 2.1.  Let y be a complex character of G, such that ker y =
1. Then define

d(x) = TN, )
i-1
0 if y=1¢,,
m(x) = mm{ Y)Y x*(g):g< G} otherwise, (2)
i=1 ael(x)
(=L T x+m0le. 3
i=1 aeTl(y,)
So
r(G) = min{d( x) :ker y = 1}
and

c(G) = q(G) = min{c( x)(1) :ker xy = 1}.

Now we begin with a summary of facts relevant to the irreducible
complex characters of GL,(g). It is proved in [6] that the Schur index over
Q of each of irreducible characters of the group G = GL,(gq), n < 4, is
one. Therefore for these groups, by [1] we obtain ¢(G) = q(G). It is
obvious that if G = GL,(q), n < 4,and x € Irr(G), then £, ., X “ is a
character of an irreducible Q(G)-module for every y € Irr(G). Also by [1],
if x € Irr(G), then ker y = ker X, < r(, x “- Moreover y is faithful if and
only if X, c ¢, x* is faithful.

The group GL,(q) is of order q(¢ — 1)*(¢ + 1) and representatives of
its conjugacy classes are of the four types [10]

(e 0 _[e” 0 _(e* 0
Al‘(o ) AZ‘(l s“)’ A3‘(o e")a#h’
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TABLE 1
Irreducible Characters of GL,(q)

(n) (m,n) )

X{n) Xq Xq+l qul
A, p2na quna (g + 1)p(m+n)a (q — 1)8lata+
A2 2na 0 p(m +n)a 61a(q+1)
143 pn(a+h) pn(a+h) pma+nb + pna+mb 0
B1 pnc _pnc 0 _(816 + alcq)

where ¢ and 7 are primitive elements of GF(g) and GF(g?) respectively
and g + 1 + c¢. The complex character table of GL,(g) is given in [10] as
Table I, in which m,n = 1,2,...,9 — I, m # n,(m,n) = (n,m), p?~ ! =1,
8T =1, I=1,2,....,¢°=2,g+ 1+, c=12,...,4*—2,g+1+c,
and a,b =0,1,...,9 — 2, a # b.

The proof of the following facts may be found in [3]. Let & be a
primitive nth root of unity in C. Then & + &' is rational if and only if
n=1,2,3,4,6. The values of & + &' in these cases are 2, —2, —1,0, 1
respectively.

Also &/ + &7, 1 <j<n, is rational if and only if n =j,2j,3j,
4j, 6], 3js 31, $- : -

In this case if i € Z and d; = (i, n), and n > 2d,, then [Q(&' + &77): Q]
= 1o(n/d,), and if n + d;,2d,, then

. L« n
Y (el +&7) =M(—),
a€el; di

where T, = (Q(&’ + &' : @) and u is the Mdbius function.
With the above assumption if we set I' = (Q(e + £ !'): Q), then

g Jepli)

Let G = GL,(q), where g = p" for some prime p, d = (n,q — 1), and
py = p® Let d, = (£1,i), where 1 <i < 2 — 1. Then we have

"5 )
AG) = T ()" = g a(d).
@)

acel
ddi
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3. ALGORITHM FOR p(G)

We mentioned that

p(G) =min{ Y [G:H,]:H, <G, N (| H =1

i=1 i=1xeG
and therefore in order to obtain p(G) we should study those subgroups of
G such that the intersection of their cores is the identity. In this section
generally G denotes the group GL,(g), but there are some results which
are true for the group GL,(g) and therefore they are stated in general
form. First we state the following trivial fact whose proof may be found in
5, 8l.

Let ¢ be a non-negative integer with t|g — 1 and let ¢,: GL,(q) —
GF(g)* be given by ¢,(A) = (det A)' for all A € GL,(gq). Then ¢, is a
homomorphism and its image is isomorphic to a cyclic group of order <.
Also let G(¢) = ker ¢, and let ¢,, ¢, be non-negative divisors of ¢ — 1 and
t, I't,. Then G(t,)< G(t,), and G(¢,)/G(t,) is isomorphic to a cyclic group
of order t,/t,.

And if (¢,,¢,) = 1, then G(¢,) N G(t,) = SL,(q) = G(1).

LEMMA 3.1.  For any subgroup H of GL,(q) we have [H : H N SL,(q)]
<q-—1

Proof. As HSL,(q) < GL,(q), we have |H|SL,(¢)|/|H N SL,(q)| <
|GL,(g)|. Therefore

|H| oLl _ -
IHASL(q)l = ISL(q) 1

LEmMMA 3.2.  Let H be a subgroup of GL,(q) such that coreg; ., (H) N
SL,(q) = 1. Then

[G:H] = (q—1)q + 1),
where (q — 1), denotes the 2-part of ¢ — 1.

Proof.  Since coreg; (H N SL,(q)) = coreg; (H) N SLy(q) =1,
hence H N SL,(q) is a core-free subgroup of SL,(q). By [2, Theorems 3.6
and 3.8]

P(SLy(q)) = (g — 1)2(q + 1).

Thus for any core-free subgroup K of SL,(q) we have

[SLy(q):K] = (g — 1)2(q + 1).
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Therefore
[SLy(q): H N SLy(q)] = (¢ — Da(g + 1),
Then as H N SL,(g) < H < GL,(q) we get

[GLz(Q)zHﬁSLz(‘I)] S IGL,(q)l
[H:HNSLy(q)] ~ (q— DIHNSLy(q)|

[SLo(q): H N SLy(q)] = (g = 1)a(q + 1).

[G:H] =

LemmAa 3.3. IfSL,(q) < H < GL,(q), then H = G(¢) for some t|q — 1.

Proof. We have [Gl(q):SL,(¢)]=I[GL,(q): HIH:SL,(q)] Let
[H:SL,(q)] =t Then t|g — 1. Hence (ASL,(q))' = A'SL,(q) = SL,(q)
for all A € H, and this implies A' € SL,(q). Thus (det A)' =1 and
therefore H € G(¢). Also since [GL,(q): G(t)] = <=+ and |H| = ¢|SL,(q)|
and |G(¢)| = t|SL,(¢)l we have H = G(¢). |

Let G =GL,(q), g+ 2,3, and H < G. Since coreG(H)ﬁG, SO
core;(H) 2 SL,(gq) or core;(H) C Z(G). We consider two cases

(a) core;(H) 2 SL,(¢) if and only if H 2 SL,(q) or H = G(¢) for
some t|g — 1. In this case core;G(¢) = G(¢) and [G : G(¢)] = a1

(b) If core;(H) C Z(G), then core;(H) = (a’), a? ' = 1. Also

p(G) = min Z[G H]:H <G, m N H =1
i=1 xeG

and if t,,1,/g — 1 and (¢, ¢,) = 1 we have G(¢,) N G(¢,) = SL,(q); hence
we must study subgroups of GL,(q), say H, such that cores; ., (H) N
SL,(q) = 1. In this case we choose t,,f,,...,¢, such t,ty,....t:1qg — 1
and (¢,,...,%,) = 1 and X¥_,(q — 1)/¢; minimal.

THEOREM 3.4. Ifq # 2,3, then

k —

p(GL,(q)) > mln{ } +p(SLy(q)).

Proof. By the above remark, if H < GL,(q) and coreg; (H) N
SL,(q) = 1, then coreg; ,(H) N SL,(q) = 1 and by Lemma 3.2

[G:H] = (q—1)(q+1).
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Therefore

. qg—1
ot ma £

=

| ison

LEMMA 3.5. Let G = GL,(q), q odd, g #3 and q — 1 =2'm and m
odd. We define

L ={a € GF(q)*: a = B* for some B € GF(q)*}

and
0= {[g 5]:aeL, vy € GF(q)*, B € GF(q) ;.

Then Q < GL,(q) and core; Q N SL,(q) = 1.

Proof. Tt is clear that L < GF(q)*. By consideration of the epimor-
phism ¢: GF(q)* — L with ¢(x) =x> we have |[L|=(qg — 1)/ 4 =m
= (g — 1)/2". Now it is clear that Q is a subgroup of G and |Q| = ((g —
1)/2)(q — 1)q and therefore [G: Q] =2(g + 1) = (g — D,(g + 1). We
know core;(Q)< G and Q 2 core;(Q) and therefore core;(Q) 2 Z(G) or
core(Q) 2 SL,(Q). If core (Q) 2 SL,(¢) then Q > SL,(¢g). But |Q] =
(g(q — D?) /2" and |SL,(q)| = q(q — 1)Xg + 1), implying (g — 1)/2')q
— 1)g = q(q* — 1). Therefore (¢ — 1)/2' =q + 1 or m = g + 1 and this
implies that m is even, and this is a contradiction. So core;(Q) 2 SL,(q)
and hence core;(Q) € Z(G). This implies core;(Q) is cyclic and core;(Q)

<{[¢%):a € L}. Since {[¢ °]: @ € L} C Q, we have for all x € G, {[¢]: «
€ L}* € Q% therefore {[¢°]:a € L} C N, .5 OF = core;(Q).
Hence core;(Q) = {[¢°]: @ € L} and [core;(Q)l = m. Now if A =

[40] € coreg(Q) N SLy(q), then A €L and A’ =1; ie, A" =1 and
A% = 1. But as (2, m) = 1, A must be 1. Therefore core;(Q) N SL,(q) = 1.
|

THEOREM 3.6. Let G = GL,(q) and qodd, q #+ 3,q — 1 = t,t,,...,1;,
(t,....t) = 1; then

qg-—1
1 L

™M=

p(G) < min{' } + (g —1):(g +1).

k
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Proof. By Lemma 3.5 we have SL,(q) N core;(Q) =1 and by the
above remark and definition of p(G) we have

minzq

G
r(G) in L

IA

+[G: 0]

=min{2q_1}+(q—l)2(q+l).

ko \iz1 L
|

The following concept is defined in [7].

Let G be a finite abelian group; then G is isomorphic to the direct
product of its Sylow p-subgroups. Suppose G = EBikzl Z,«; then we let
T(G) == XF_ pf. If G = 1, the trivial group, then we let T(G) = 0.

THEOREM 3.7. Let G = GL,(q) and q odd, q #+ 3,q — 1 = t,t,,.
(t,....t,) = 1; then p(G) = T(Z,_)) + (g — Dy(q + D).

Proof. See Theorems 3.4 and 3.6. |

b

Note 1. We will determine p(GL,(3)) after finding g(GL,(3)).
THEOREM 3.8. Let G = GL,(q) where q is even, q # 2; then

p(G) = T(Zq_l) +qg+1= T(Zq_l) + p(SL,(q)).

Proof. If g —1=pf - pi, let ¢ = l_ljl;l,j#ip/“f, i=12,...,k
therefore (¢ — 1)/t, = p. In Theorem 3.4 we showed that p(G) >
Y5 pfi+ (g + 1). Now we should show that p(G) < XF_, p&i + (g + D).
When g is even, then GL,(q) = Z,_, X SL,(q), so we choose subgroups
H, of G such that H, =K, XN,, I =1,....,k,k+1and K, =Z,, N, =
SLy(q) for I =1,...,k and

a
Keiv =24 1Ny = {[0 aﬁl}l a € GF(q)*, B € GF(q) .
As SL,(q), g =2",n+# 1 is simple group; then N, , is a core-free
subgroup of SL,(¢) with [SL,(¢): N,.,] = ¢ + 1. Consequently
core(H) = H;, I =1,...,k and core;(H,,,) = Z,_; X {1} and
N+ coreg(H,)) = 1. Thus p(G) < XX | p2 + g + 1. By the last notation
G =TZ,_)+q+1. 1

COROLLARY 3.9. Let g — 1 be a prime and let q # 3. Then p(G) = 2q.

Proof. When g — 1 is a prime, then ¢ must be even and therefore
p(SL)(q)) =q + 1and T(Z,_,) = q — 1, and the corollary is proved. [
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COROLLARY 3.10. Let G = GL,(2); then p(G) = 3.
It follows from the fact that GL,(2) = S;. |

Proof.
Let G # 1 and G = K X H. Then
p(K) if H=1
p(G) = { p(H) if K =1

p(H) + p(K) otherwise.

Since in the case g is even we have GL,(q) = GF(q)* X SL,(q), so
P(GL,(g)) = T(GF(g)*) + p(SL,(q)).

4. ALGORITHMS FOR r(G), ¢(G), AND ¢(G)
Let G = GL,(g); then G has four type of conjugacy classes, 4, 4,,
Aj, and B, and four type of irreducible characters, x{", x\", x\1+"”, and

X (Table D).
LEMMA 4.1. (a) Letd = (n,q — 1); then the kernel of x\" consists of

precisely the elements

et 0 et 0 _ e’ 0
Rl I ST e A L
n° 0
Bl=[0 ncq},
where
qg—1 qg-—1 qg—1
— "+ b=k’ A
(2d)’“ (d)""(d)’
d(2g —5)

1<k” <d(q+1) and g+1+te.

(b) Letd=(n,qg— 1), then

ker Xt;n) = <A1 = [ O 8“
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() Letd =(m+n,q— 1) then

. @0 q-1 :
kerX(;+’1’=<A1=[% Ea}:a=k(7),lsksd>.
(d Letd” =(l,q — 1) then

a —1
kerx(” = <A1 = [% fa]:a =k(q7), 1 sksd”>.

Proof. (a) A, € ker x{" if and only if p?"* =1 if and only if q-
12na; hence -|*2¢. Since (£1,%) = 1, 9‘—1|2a Thus a = k(4;;"), for
some k, 1 < k < 2d. Similarly 4, € ker X(") if and only if a = k( -1,
Also A, € ker x\™ if and only if p"("”’) = lifand only if ¢ — 1|n(a + b).
Since (45+,%) = 1, therefore “+a + b and a + b = k'(4+) for some
kK',1<k'< J;",—l and B, € ker x{™ if and only if p"¢ = 1 if and only
if ¢ — 1lnc and hence ¢ = k"4, 1 <k” <d(qg+ 1),and g + 1 ¢ c. (b),
(¢), and (d) are proved similarly. |

LEMMA 4.2. Letd = (n,q — 1). Then |[T( x| = o(+) and IT'( )(("))I
= (15 ).

Proof.
IT(d™)l = [@(xi7): @] = [@(p*", p"**, p"): @

- [aCn el = o[ 1)

where p” is a primitive "th root of unity in C. The proof of the next
statement is similar. ]

LEmMMA 4.3. (a) Let d=(m +n,q— 1); then [Q(p™*m9):Q] =
(L), p?7! = 1.
(b) Letd = (l,q — 1); then [Q(8'“*V): Q] = (g — 1)/d"), 84’1
= 1.

Proof. (a) Since p?~! =1, therefore (p™*")a~D/d = (pa=1)m+m/d
= 1. If s is an integer such that (p”*")* =1, then ¢ — 1{(m + n)s and
therefore 4-1|”*"s; thus <--|s. It follows that p”*" is a primitive <'th
root of unity. (b) is proved similarly. |

LEMMA 4.4. (a) Letd = (m + n,q — 1); then |T( X(’fl”))l = Kp(Lh),
WheV'EK [@( p(m+n)a’ pna+mb + pma+nb) @( p(m+n)a)]

() Letd =(l,q —1); then IT(x\" )l = K'o((q — 1)/d") where K'
= [@(8"* D, 8" + §'): Q8" V).
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Proof.

(a) IT(xyy™)l
— [@( p(m+n)a’ pma+nb + pna+mb):@]

— [@( p(m+n)a’ pma+nb + pna+mb):@( p(m+n)a)] [@( p(m+n)a):@]

s

[by Lemma 4.3(a)].

(b) Since 0 <a<g-—2, 1<c<gqg?—1, an easy computation
shows that [Q(&§'+D, gl 4 §lca). Q] = [Q(8"*D, §' + §'7): Q] and
hence |[D( x| = [Q(8"@*D, 5% + §'4): Q] = [Q(8"“* D, §' + 6'7): Q]
= [@(8'*D 8" + §'): Q(§' @ NQ(8"7*D): Q] = K'o((qg — 1)/d") [by
Lemma 4.3(b)]. 1

LEMMA 4.5. Letq = 1(mod 4); then there is somel € N,0 <[ < q* — 1,
g + 1+ [ such that 8' + 8'7 is rational and consequently K', mentioned in
Lemma 4.4(b), is one and |T'( Xq’,l)l = o((g — 1 /d’) whered’ = (I,q — 1).

Proof. Since 897! =1,

2 ) 2
6= cos— + isin—;
q- — q- —
and
5l + 8
2l - 2wl 2wlg 27lg
= COS— + isin—; + cos— + isin—;
27l 2l 2@l 2wlg
COS— + cos— + i|sin— sin—
q-—1 - qg-—1 qg°—1
If
- 2wl . 2mlg
sin— + sin—; =0,
qg-—1 -1

then 8’ + 67 € Q, and in this case we obtain [ = G+ or /(g — 1),
t"tqg+ 1.

Now for these I’s we have |I'( X(5131)| = o((g — D/d").

LEMMA 4.6. Let q be odd, and let m =q — 1, n = 45>, then the

character x\""" is rational. In this case x"\"(g) = (=1*(q + 1) for all
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gEA, Xq'fl”)(g) =(=D* forallg € A,, Xq’fl”)(g) =(—D*+ (=1 for
all g € A3, and x{""(g) = 0 for all g € B, where b,a =0,1,...,q — 2,
and a # b.

Proof. If m=¢q— 1, n =23 then p"*mMe = (pla~D/2)3a = (—1)%
— (_1)a and pma+nb + pna+mb — p((qfl)/2)(a+2b) + p((q+1)/2)(2a+b) —
(=D**2° + (= 1D**" = (=1)* + (= 1)’. Therefore the proof is complete.
1

LEMMA 4.7.  The character x{", is real if and only if ¢ — 1|I. In this case
xP(g)=q—1 forallg EAl, D(g) =1 forall g € Ay, x\"(g) =0
for allg € A,, and xV (g) = _(5l/(q D+ §714=D) forall g € B,, where

J=12 050

Proof. 1f q — 1]l, then 8@+ D = gkta=Daa+1) — §(@’~Dka — {; there-
fore )(q(l,)l(g) €R for all g€ A4, A,, A, and X;’,)l(g) = —(8Ka=De 4
§a-Deéqy — _(gkea=1 4 §=kea=D) = 2 Re(z)(8<4~D) & R for all g €
B,. Conversely if x{”, is real then §““*V eR, 8+ 8 “eR, c=
1,2,...,9> =2, q + B! t ¢; therefore sin_ ™ = 0. Hence [} € Z, in par-
t1cular fora = 1, =5 € Z. Thus g — 121. If g is even, then g — 1|I. But if
q is odd, then [ = (9’—1)k,k € 7. Also, since 8’ + 8’7 should be real, we
conclude that k is even; therefore [ = (45-+)2¢, which implies g — 1|/, and
the proof is complete. [

As r(G), ¢(G), and ¢(G) for G = GLy(q) depend on ¢, we must
consider different cases for ¢, say g = 2* (¢ = 1 (mod3) or ¢ = 2 (mod 3))
and ¢ odd (¢ =3 (mod4) or g =1 (mod4)), which in the last case we
have to consider the two cases ¢ = 1 (mod8) and ¢ = 5 (mod?8).

LEMMA 4.8. Let g = 2.

(@ If(g—1,n)=1,then1 +# A, & ker xy{"

() Ifd=(q—1,n) #1, then for a = 5(45"), where 0 < k < 2d,
A, € ker x{".

Proof.  This follows from Lemma 4.1. 1

LEMMA 49. Letq=2',d;,=(n,q— 1 # 1, and (d,,d,,...,d,) =1,
for some s, 1 <s <q — 1; then A, N (N{_, ker x{")) = 1.

Proof. We prove the lemma for s = 2 and then by induction for any s
the result follows. If d,,d,lqg — 1 and (d;,d,) = 1 and A, € ker x{" then
a=(k,/2(qg — 1)/d,) for some k, € N. Also A, € ker x{"? implies
a = (k,/2)X(qg — 1)/d,) for some k,; therefore k,/d, = k,/d, and k,d,
= d,k,. Thus d,|k, and d,|k, imply k, = t,d,, k, = t,d,; hence t,d,d, =
t,d,d,, so t; =t,. By Lemma 4.8(b) we must have ¢, = ¢, = 1. Then a
= 221 and this is a contradiction. Thus A4, N ker y{" N ker (" = 1. |
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COROLLARY 4.10. Let g =2' and let d; = (n;,,q — 1) # 1,(d,,...,d,)
=1 for somes, 1 <s <q — 1; then
(@ (N, ker x{")) N (ker x\"7) = 1.
® (N, ker x{"”) N (ker x\") = 1.
(© (N, ker x{"”) N (ker y?,) = 1.

In particular, when Xq(”'), X", Xq(l,) | are rational, the above results hold.

Proof. Tt is obvious (by Lemmas 4.1 and 4.9). |

Among the characters of type x.", there is the rational character x(~"
which is called the Steinberg character. Now want to choose those irre-
ducible characters such that they are faithful and rational and are of
minimal degree. So we must consider the characters of type )(;”) or X;QI'

LEMMA 4.11. Let g = 2'.

(a) If q = 2 (mod3), then there is at least a rational character of type
0
(b) If g =1 (mod3), then x\", is not rational.

Proof. (a) By Lemma 4.7, !, is rational if and only if §/¢~ " +
8774=1 s rational. Let & = 87" '; by [3, Corollary 3.2] ¢/ + ¢/ € Q if
and only if ¢ + 1 = 3j,3j,3/,%j, and 1<j<gq/2 Since g =2 (mod3),
3lg + 1 and there is j = “5+; thus x{/¢~" is rational.

(b) If g =1 (mod3), then ¢ + 1 =2 (mod3) and hence g + 1 #
3j,2j, 4j, ¢j, and this completes the proof. [

LEMMA 4.12. Let g =2" and q — 1 =p{ips? -+ p2k. Let t, =
l—ljl;u*,- p;; then
qg—1

t.

L

k
Yo
i=1

)SQD(C]—l).

Proof. By choosing s, there are x{"”’s such that t,=(n,,q —
D,(ty,...,t) = 1. Also (¢ — 1) /t; = p/*; therefore

Eo[ 1) - Setor) - £ (- arY

t.

1

< TI(p*—p& ") =o(pf - p*) = (g — 1).

i=1

LEMMA 4.13. Let d; = (n;,,q — V. If (d,,d,) # 1, then ker x{"” N
ker x{") # 1.
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If (d,,d)="h+ 1, then for a = 4, A, € ker y{"” N ker x{" be-
cause p2n,a — p2nl((qfl)/h) — (qul)Zn,/h =1 and also p2n2a —
p2na@=D/1) = (pa=1y2ma/h =

2" and g — 1 =pf - pi, d; = (g — 1,n);

COROLLARY 4.14. Let q
then

d; d;

L
i

: q—1 .
min{ Y o[ —— |: Nker x{"™ =1} = ) ¢(p™).
i=1

Proof. The result follows by Lemma 4.13. |i

THEOREM 4.15. Let q =2', g — 1 =p -+ p&; p/’s are prime and
(pip) =1 foralli,j,i#j. Then

k
.Z e(p™) +4q ifg=1 (mod3),

r(GLz(CI)) = 7(

1
o(p*) +(qg—1)  ifg=2 (mod3).
1

=

Proof.  This follows from Corollary 4.10, Lemmas 4.11 and 4.12, Corol-
lary 4.14, and the definition of +(G). |

LEMMA 4.16. Let q =2', q — 1 =pf{ -~ p&, t;=T1\_, j,.,pf T, =

1

(@QCp,): Q), where p, = p" is a primitive (q — 1) /1;th root of unity. Then

o -1 if a; =1,
Z (pti) = {0

wer, otherwise.

Proof. By [3, Lemma 3.8] we have

qg-—1 qg—1
ol —
Y (p)" =
aeri( tl) q_l
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But since (g — 1)/¢,,¢;) = 1, therefore

]

qg-—1
f.

L

q—1 -1 if o, =1,

= u(e) = |

e otherwise.

THEOREM 4.17. Let q = 2', q — 1 = [1X_, p®; then
4(GLy(q)) = ¢(GL,(q))

k

X oe(pf )+q+1+( Z(—l))

i=1 jEJ
ifg=1 (mod3),

To(n) +(g=1+2+ (- L (-1

i=1 jEJ

>~

ifg=2 (mod3),

where J € {1,2,...,k}, a; = 1.

Proof. Suppose ¢ = 1 (mod 3). Then by Lemmas 4.10(a) and 4.11(b) we
may choose the Steinberg character x(?~" and x{"”’s. The minimum
values of these characters appear on classes of type B;, and are —1 and
(X, < ;(— D), respectively, where J < {1,2,..., k}, for which «; = 1 (Lemma
4.16).

Therefore

m(x) =1+ (- Z (1)

JjEJ

and this y is the desired character. So the minimal degree of quasi-permu-
tation characters is

k
Y o(p) +q+1+ (=X (1),
i=1 jeJ
where J c{1,2,...,k}, a; =1
Now assume ¢ = 2 (mod 3). In this case by Corollary 4.10(c) and Lemma

4.11(a) we choose the characters x{"’s and x\“;"/. Also the minimum
values of these characters appear on the classes of type B, and are
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Zjej(—l), Jc{1,2,..., k}, a; =1, and —2 respectively and

m(x) =2+ (= X (-1),
jeJ
where J C{1,2,...,k}, a; =1, and y is the desired character.
So the minimal degree of a quasi-permutation character is obtained
from these characters and the proof is complete. ||

LEMMA 4.18. Let g = 3 (mod4), g # 3, and d = (n,q — 1). Then
ker y{” Nker ;7 =1  ifd=1or2

ker x(" Nker x4 10 # 1 ifd+1,2.

Proof. Let 1# A, € ker x{" N ker {47~ D/?. By Lemma 4.1(c),
a=k((g—1/(q— 1 + 4 g—1) = 2k and also by Lemma 4.1(a),
a = k(“;'). Hence whenever a = k(%) is even, then ker x{™ N
ker X(q 1(q D/2) £ 1.

Let d = 1. Then by Lemma 4.1(a), 1 < k < 2. Therefore k =1 or 2;
thatis, ¢ = 5 or a =g — 1. But a = 45 is odd and when a = g — 1,
then A4, = 1. So the result follows when d = 1.

Let d = 2. Then by Lemma 4.1(a), 1 < k < 4. Therefore k =1, 2, 3, or
4; that is, a = 45+, 45, 34D or g — 1. The case a = 5 cannot
happen, as ¢ = 3 (mod4), and when a = 45 or 242 then a is odd. So
again in this case the result follows.

Now let d # 1,2. Then 1 < k < 2d, so let kK = 4. Hence in this case
a =2(“>') and a is even. Therefore the result follows.

LEMMA 4.19. Let ¢ =3 (mod4) and (n,q — 1) = 2; then |[T( x{)| =
olg — 1.

Proof. Since g =3 (mod4), ¢ — 1 =2Q2s + 1) for some s € N; thus
@(251) = ¢(q — 1). Therefore, by Lemma 4.2, [T(x{")| = ¢(q — 1. 1}

LEMMA 4.20. Let )(([) be rational. Then ker xy{"™ N ker X(Q # 1.

Proof. By Lemma 4.7, A, € ker X ), for all A,. Also some classes of
type A4, belong to ker x{"; therefore Ker XN ker xPr =101

By Lemma 4.1(a),(b) ker x{” C ker x{” and therefore ker x{" N
ker " # 1. Also by Lemmas 4. %6 and 4.7 if x{2, and x{7y" are rational
then ker y{7," N ker x\" # 1.

THEOREM 4.21. Letq = 3(mod4), g # 3;thenr(G) = q + 1 + ¢(45).

Proof. This result follows from the definition of r(G) and Lemmas
4.18, 4.19, and 4.20. 1
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LEMMA 4.22. Let g =3 (mod4), g # 3. Then x4~ /2(g) = —(q
+ 1) for g € A, if a odd. Conversely if x4,V (g) = —(q+1) for
g EA, then ais odd.

Proof.  x{47M@=V/2(g) = (g + Dp®/Pa=De = (g + 1) pla=1/2)% =
(g+ 1D(—1)% = —(qg+ 1) for g € A, because 3a is odd. Conversely if
x4 b/ (g) = —(g + 1) for g €A, then we should have (g +
Dp@/Ma-Da — _(g + 1). Thus p@/2@=De = —1 and then (pd~1/2)3
=(—1)* = —1, so a must be odd. |

LEMMA 4.23. Let ¢ =3 (mod4), g + 3. Then for a =2k + 1,a =
0,1,....,g — 2 and (n,q — 1) = 1 or 2 we have

« ¢(g — 1) q-1
2na —
10 e
« qg—1 2 T,Za
e\ Tg=1 7\
2[5 2d]
2

Proof. By [3] and Lemma 4.19 we have

Y (p) = T ((p"))

acl acsl
(¢g—1) qg-—1
R . 2
- — —3
CE
2 2
Pl 7Ta-1
e
2
e(q—1) qg-—1
- M —
g—1 2(q—,2a)
© q—l 2
2(—,2a)
2

LEMMA 424. Let g =3 (mod4), g #3,a=2k+1,a=0,1,...,q —
2, and d = (451, 2a). Then there is d such that u(5;*) = —1.
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Proof. g=3 (mod 4) implies ¢ — 1 = 22k’ + 1) for some k' € N, so
q —1=2.p52p5s - p, where all p;’s are odd primes. Let a = p52~ Ipgs

-+ pk; it is clear that a satisfies the condition of our lemma. Thus
(-";—1,261) = a; therefore w(5) = w(py) = —1. |

THEOREM 4.25. Let g = 3 (mod4), g # 3; then

q-1 e(g—1) (g—1
G)=c(G)=2(q+ 1)+ | ——| +|mi
1(6) = (6) = 2q+ 1) + o 5= |+ min T T |
“\ 24
where d = (5%,2a),a =2k + 1,0 <a <q — 2.
Proof. Tt follows from Definition 2.1 and Lemmas 4.22, 4.23, and 4.24.

THEOREM 4.26. Let G = GL,(3); then r(G) = 4 and ¢(G) = ¢(G) = 8.

Proof. By the irreducible character table of G, we have that y{"? and

Yo cr( xS are irreducible faithful rational characters of degree 4 and
this degree is minimal among the degrees of faithful rational characters, so
r(G) = 4. Also min,_{x{"?(g)} = =4 and min,{Z, (x{)*} =
—4; therefore g(G) =4 + (—(—4)) =8 and ¢(G) =8. 1

THEOREM 4.27. Let G = GL,(3); then p(G) = 8.

Proof. 1t is clear that Q = {[j £]: B € GF(q), y € GF(gq)*} is a sub-
group of GL,(3) of order 6 and [G:Q]=8. Also Q is a core-free
subgroup of GL,(3), so p(G) <[G:Q] = 8. But by Theorem 4.26 and
inequality ¢(G) < ¢(G) < p(G), we have 8 = ¢(G) = ¢(G) < p(G) < §;
hence p(G) =8. 1

LEmMMA 4.28. Let g = p".

(@ (m+n,q—1 =1ifand only if """ is faithful.
() (g — 1 =1ifand only if x°, is faithful.
Proof. (a) By Lemma 4.1(c), A, € ker """ if and only if a =

kg — for some k. Since as 1 <a <q —1, A, =1 if and only if
(m+nqg—1=1.

(b) By Lemma 4.1(d), 4, € ker x{”, if and only if a = k%~ for
some k. Since ] <a <q — 1, ker)(“) = lifandonlyif (,g — D =1. 1

LEMMA 4.29. Letg=1(mod4) andqg — 1 =2',¢t > 1. Then Nker y #
1 where xy € Irt(G) and x is not faithful.
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Proof. By Lemma 4.1, in this case the element A, = —1I, for a = 45,
and it is in the kernel of y, for every irreducible non-faithful character y
of G = GL,(¢). 1

The minimal degree of rational and rational-valued faithful characters
can be found among the irreducible faithful characters.

THEOREM 4.30. Let g =1 (mod4) and g — 1 =2',¢t > 1. Then

@ r(G)=(@—-De(g -1
b)) g(G) =c(G) =2r(G) =2g — De(qg — 1)

Proof. (a) Since in this case x{" and x\" are not faithful for all
n we consider x{”, or xmm. Also as g — 1 = degree(x\")) <
degree( x\"y") =g + 1 by Lemmas 4.5 and 4.22(b), we consider the
irreducible character X(l)l such that |T'( X(l) ) = ¢(g — 1. Thus r(G) =
o(g — Dy, (D =(g — De(g — D.

(b) As the minimal value of the rational faithful character

Toer(x2 D% is olg — D(—(g — 1), 50 ¢(G) = q(G) = o(g — 1)(g — 1)
+le(qg — I(—(g — DI =2q — Delqg — 1D =2r(G). 1

THEOREM 4.31. Let G = GL,(2); then r(G) = 2 and c¢(G) = q(G) = 3.

Proof. As GL,(2) = S;, all of its characters are rational and the
minimal degree of its faithful character is 2, so r(G) = 2. Also the minimal
value of the above character over the classes of §; is —1; therefore

c(G)=q(G)=2+(-DI=3. 1

LEMMA 4.32. Let ¢ =5 (mod8) and | = (g> — 1)/8. Then for the
character x” | we have |T( x{" )| = 2.

Proof. We recall that §9°~1 = 1, so for [ = (g% — 1)/8 we have

(1)1(g) — (q _ 1)81a(¢]+1) _ (q _ 1)5((@2—1)/8)a(q+1)
= (q — 1)6(((12—1)/4)(((1+])/2)a — (q _ 1)(i)((q+1)/2)a

={x(¢g—1),ti(g - 1)

for all g€ A,, because ¢ =35 (mod8), therefore 4i'=2k + 1 for
some k; also 0 <a < q — 2. And for this reason X(l) (&) ={£1, + i} for
all g e 4,, ) (g) = 0 for all g € A5, and
XD (g) = — (8 + 51cq) — §U@P -1/ | §(@P-1/8ae Z (5@ -1/4)e/2 4

(8@ =1/4yac/2 = je/2 4 jac/2 — lc/Z(l + {¢@=-1/2)y for all g € B,.
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But 451 = 22k’ + 1) for some k' and hence we have

je@=1/2 — j2eQk'+1) (iz)c(Zk’H) _ (_1)0(2k’+1)

_ /-1 if ¢ is odd,
1 if ¢ is even.

Finally, for all g € B,, we have

if ¢ is odd
1(g) = 2,6/2 {£2, £2i} if ¢ is even

Now it follows that |T'( X(’)l)l =[QG):Ql=2. 1
LeEMMA 4.33. Let g = p" be odd. Then

(@) Fora=413', A, €kerx", foralln,n=1,2,...,q — 1.
(b) Let g=1 (mod4) and q =5 (mod8); then for a = 45 and
I=(q>—-1)/8, A, & ker x\" .

Proof. (a) X{n)(g) — p2na — p2n(q—1)/2 — (pq—l)n — 1 — X{n)(l) fOI'
g € Ay; therefore 4, € N9_! ker y{™.
® xP () =(q - 1)5la<q+1) —(q - )6 =1/8Xa=1D/2a+ D = (¢
—1)(8U —1>/2)(q2—1)/8 (g — (- 1)@’ =1/8 = —(g — 1) for g € A, be-
cause (g? — 1)/8 is odd. Therefore A4, & ker Xq(’ll. |

LEMMA 4.34. Let g =5 (mod8) and [ = (¢g> — 1)/8.

(@ If d=(n,q—1) is odd, then for a =, A, € ker x{" N

ker x\"; consequently ker x{" N ker X((q BTN |

® Ifd=(n,qg—1)=2Qk+ 1) for some k €N, then for a =
A7 Ay € ker x{ N ker x{"; consequently ker x{™ N ker x\" | # 1.

(c) If d=(n,q—1)=4Qk + 1) for some k € N, then for a =
MDA, € ker x{™ N ker x"; hence ker X1(n) N ker X(l) + 1.

Proof. (a) Let a =4, x{"(g) = p*"* = p*@=/d) = (pa=1)2n/d
= 1 for g € 4,. Therefore A, € ker x| and x2(g) = (g - 1)6’““’“)

(q _ 1)5((612—1)/8)((4 1)/d)(q+1) = (q — 1)( 861 —1)((61 1)/4d)(q+1)/2> = (q -1
for g € A;; thus A, € ker ", and ker x{" N ker )(q(’,) + 1.

(b) Let a =241 then x"(g) = p?"® = p2Aa-1/D =
(p1-HHa=D/d = 1 for g e A, so A, € ker x{". And
X(l)zl( ) =(q — 1)§la+h = (g — 1) *1)/8)(2(11 D/d)g+1) — =(q -1
(897~ H)a=D2da+ /D = (g — 1) for g € A;. Thus A, € ker ", and
ker x{" N ker x\" # 1.

for all g € B.

(c) Let a = *“-1; then x{"(g) = = pinta=b/d) =
(p1~1)¥n/d =1 for g€ A, s0 A, € ker y{" and x{, = (g — Dsl“arD

= (g — 1)@’ 1/8- D/ - g—1,s0 A4, € er X(l)l and there-
fore ker x{" N ker x\, # 1. 1
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LEMMA 4.35. Let g =1 (mod8) and | = (q*> — 1)/8. Then

@ If d=(m,q—1) =2, then ker (" ={A,:a=k'4", k' =
0,1,2,3} and ker x{" N x{", = 1.

) If d=(n,q—1) =4, then ker y" ={A,:a=k'9%5", k' =
0,2,4,6} and ker x{" N x{", = 1.

Proof. (a) By Lemma 4.1(a), x{"(g) = p*"* for g EAI; we have
ker)((”) ={A,:a=k'"", k' =0,1,2,3}. Let k" = k'(“;)(451). Then
451421 js odd, because g = 1 (m0d4) and g =5 (mod?8). Let k' # 0.
Then XD () = (g — 1§ = D/HE W=D/ = (g —
1)(3(42*1)/4)1{ ((q 1)/4)((q+1)/2) = (q _ 1)(t)k ={- (61 — 1) +l(q — 1)} for
g €A,. Hence A, & ker x\”, and therefore ker x{" N ker x\”, = 1.

(b) TItis clear that ker (" ={A4,:a = k'%, k' = 0,2,4}. But

Xél) (8)=(q- 1)5<(q2—1)/8)<k'(q—1>/8>(q+1)

=(q - 1)(6((]271)/4)k’(4*1)/8*(q+1)/2

={-(a-1), xi(qg - 1)}
for g € A,, because k'(451)43t is odd or k' /2 = 2 if k' = 4. Therefore
A, & ker x{”, and ker x| () N ker ", = 1 will be the identity. 1l

We see that if ¢ =35 (mod8) and if d =(n,q—1) is 2k + 1 or
22k + 1) or 42k + 1), for some k € N, then ker x{" N ker x”, # 1 for
[ = (g> — 1)/8 so for finding r(G), we do not consider those )((”)

Also, if d = (n,q — 1) = 2 or 4, then @(45') = o(4;') because g = 5
(mod 8) implies ¢ — 1 = 42k + 1) for some k € N and then ¢(4;}) =
P e(151) = e(2451) = ¢(451) and it is clear that ¢(451) < (g — 1).

THEOREM 4.36. Let g = 5 (mod8). Then

qg-—1

r(G) =2(q—1) + @(T)

Proof. By Lemmas 4.32, 4.33, 4.34, and 4.35 and the fact that if / or

m +n is even or x\", and X(’” " are rational, ker x{" N ker x{", # 1

and ker x{" N ker x\y" # 1; we must consider the irrational characters

of types X(Z)] or X(’” 1. But by Lemma 4.32 there is / such that [T( x{",)|

=2 and by Lemma 4.35 there are n, such that ker y{™ N ker y\V, =1

(for the above 1). So by definition of r(G) we consider such y{", qu)1 and
therefore

r(G) = ¥ (x"(1)" + ZF(X;’)l)a = @(q—) +2(q - 1),

acl” 4
where T’ is the Galois group of x{" over Q. |
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LEMMA 4.37. Let g =5 (mod8) and | = (qg*> — 1)/8. Then X(I) (g)
—(g—1) forge A, ifand only ifa = 2Qk + 1) and k = 0,1,2,.
and conversely.

Proof. xa=D/8(g) = (g — 1)8Wa = D/920k+ D@+ — (4 —
(84 —1)/4)2&k+1)«q+1)/2) = (q - 1)(i2)(2k+1>((q+1>/2> = —(g—Dforge

Ay, because Qk + 1)9— is odd. Conversely if x.7 1)/S(g) —(g-1,
for g € A, then 3((4 71)/8)(a(q+1)) = —1; therefore 3((q 1)/2)(a/2)((q+1)/2)

= (- 1)(q“)/2)“/2 = (—1)*/? = —1. Hence % must be odd, so a = 22k
+D. 1

LEMMA 4.38. Let g =5 (mod8). Then for a =2Qk + 1), k =
0,1,2,...,% > andd = (n,q — 1) = 2 or 4 we have

Z (p2na)" _ Z (( p2n)“)a

acl acl
qg—1 qg-—1
(P— _—

: (q% 22k + 1))

Proof. This follows from Lemma 4.37. |

LEMMA 4.39. With the above assumptions let d' = (5, a). Then u((q
- 1/4q') = —1 for somed’.

Proof. By assumption q — 1 = 2%.p$2 - pf We let a =2ps>t -
pik so d' = (451 a) = Qk + 1) = p§~ 1p§“ . ; therefore u((g —
D/4d") = w(py) = —1. 1

THEOREM 4.40. Let g = 5 (mod?8). Then

¢(G) = q(G) = 4(g - 1) + o T——

where d = (452, a), a = 2Qk + 1), k = L2,

Proof. This follow from Definition 2.1 and Lemmas 4.37, 4.38, and 4.39.
|
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LEMMA 441. Let g =1 (mod8). If d = (m + n,q — 1) = 2k for some
keN and d' =(,q—1)=2k' €N for some k', then ker x\", N

ker x{" # 1 and ker x\"” N ker x{" # 1.

Proof. By assumption / and m + n must be even, so for a = 452,

(l) l(g) - (q 1)51((q D/2)g+1) — (L] _ 1)(5(q 1)/2)1 - (q — (- 1)1 -
q —1=x"), for g€, and x/7y(g) = (g + Dp M =(q +
D(p~ 1)/zq)””” (g + D(— 1)'"+" =q+ 1= )" (1), for g€ A,. So
the result follows. |

LEMMA 4.42. Letq = 1(mod8). Letd = (I,q — D) andd’ = (n,q — 1),
(d,d") = 1; then ker x\" | N ker y{" = 1.

Proof.  Suppose ker x\" | N ker x{" # 1; therefore by Lemma 4.1 there
is A, € ker x{" N ker x{",. Hence a=k'((g—1/2d"), a =k((q -
1)/d) k'((q — 1)/2d") = k(q — 1)/d, so k'd = 2d’k. Since d is odd and
(d,d') =1 it should follow that k = dt, k'd = 2d’dt and therefore k' =
2d't, but this is a contradiction, because 0 < k' < 2d’ [Lemma 4.1(a)]. 1

THEOREM 4.43. Let g =1 (mod8) andd =(,q — 1) =2k +1,d =
(n,q — 1),(d,d’") = 1; then

r(G) = mzn{so(qd;l)(q - 1)+ so(qd_, 1)}

Proof. This result follows from definition of r(G), Lemmas 4.2(a),
4.3(a), 4.5, and 4.41, the fact that if [ = (£31)? then 8' + 87 € Q and
therefore

(g —1) it (l,g—1) =1,

qg-—1

e = =) g

LEMMA 4.44. Let gq=1 (mod8), d =(,q — 1) =2k + 1 for some
k € N; then x" (g) = —(q — 1) forg € A, if and only if a = >4~
wheres < "—

Proof. Let g =&xD@-D, therefore xDy(g) =
(q — 1)§l@s+ g~ 1)/2d)(q+1) = (q — 1)(5(q2—1)/2)l((2s+1)/d) = (L] —1) X
(—D'@s+D/dD = —(g — 1) for g € A,, because both [ and d are odd.
Conversely if x{”,(g) = —(g — 1), for g € A, then 5"V = —1; there-
fore (q* — 1)/2|la(q + 1) and la(q + 1) is odd. Therefore 9"—'|la and
then 4 '[ta. Since (4%, %) =1, %47 should divide a and thus a =

Qs + D). 1
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LEMMA 445. Let g=1 (mod8), d=(U,q— 1), d =(n,q — 1), and
(d,d') = 1; then

01
s gy -]
'l
¢ (q;l’(2s+lzl(q—l))
g1
T
e (q;l,(2s+1zi(q—1))

where a = 0= g < 41
Proof. This follows from [3, Lemma 3.4], and properties of a,d,d’. |

With the above assumptions, let

")
o —— -
_ d’ d’
Als) = 71 MT=1 s+ D)(g-1)
o d’ d ’ d
-1 Giine-n
d’ > 74

THEOREM 4.46. Let g = 1 (mod38). Then

«(6) =a(6) = min{o T~ ta = 1) + o L7 ||+ i)

where

min{go(qd;l)(q —1) + qp(qd;,l)} +\msmA(s)\

d,d’
if A(s) <0, for some s,

i o = a0 o 1)) - minac

d,d’

m(x) =

otherwise.
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Proof. This result follows from Definition 2.1 and Lemmas 4.44 and

445. 1

2.
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