EDITORIAL COMMENT

Early Identification and Monitoring Progression of Chagas’ Cardiomyopathy With SPECT Myocardial Perfusion Imaging*

Ronald G. Schwartz, MD, MS, FACC, FAHA, FASNC, Orren Wexler, BS
Rochester, New York

In this issue of iJACC, Hiss et al. (1) report correlations of single-photon emission computed tomography (SPECT) perfusion defects with subsequent left ventricular dysfunction by echocardiography in patients with chronic Chagas’ cardiomyopathy. In 36 patients with a 5.6-year follow-up period, the authors demonstrated a topographic association between SPECT perfusion defects at rest and subsequent development of regional left ventricular (LV) dysfunction. In the absence of demonstrable coronary artery disease by coronary angiography in these patients with Chagas’ disease, stress perfusion defects by SPECT myocardial perfusion imaging (MPI) progressed to rest defects; and this disease progression evidenced by SPECT MPI was associated with a reduction in left ventricular ejection fraction (LVEF) assessed by echocardiography.

Chagas’ disease is a model of microvascular dysfunction associated with perfusion abnormalities assessed as reversible perfusion defects in the absence of angiographic disease (2,3). Of the 36 patients in the study by Hiss et al. (1), all 20 patients with reversible perfusion defects had normal subsequent angiograms. The cardiomyopathy of Chagas’ disease is thought to result from parasitism of myocardial fibers by T. cruzi and inflammatory effects of an autoimmune reaction that sets the stage for endothelial dysfunction, myocytolysis, and myocardial fibrosis (4). Both human and experimental studies support the suggestion that derangements of the coronary microcirculation are associated with this process (2,4). Progression of Chagas’ disease is associated with more marked myocardial fibrosis, as demonstrated by cardiac magnetic resonance imaging (5), and likely accounts for the progression from vasodilator stress-induced defects to resting perfusion defects seen in the current observational study by Hiss et al. (1).

Camici and Crea (6) have provided an elegant review of the spectrum of coronary microvascular dysfunction in human diseases and suggest the potential for risk stratification and tracking treatment effectiveness by noninvasive assessment of coronary flow reserve. Coronary flow reserve, as well as its scintigraphic correlate myocardial perfusion reserve, is the ratio of maximal to resting coronary flow. Maximal flow is achieved with vasodilator stress interventions such as dipyridamole, adenosine, and the selective A2a agonists (6). Differences in coronary flow reserve in the absence of epicardial stenosis are likely due to endothelial dysfunction at the levels of the conduit arteries or the coronary arterioles (microvasculature). Diffuse arteriopathy and subtle reductions in luminal diameter associated with atherosclerosis, coronary inflammation, myocardial inflammation, or myocardial fibrosis as in Chagas’ disease might impact flow reserve as well. The regional nature of Chagas’ disease likely facilitated detection of disease with MPI on the basis of regional relative differences in myocardial perfusion reserve. Whether quantification of absolute flow by positron emission tomography will further identify disease progression and

*Editorials published in JACC: Cardiovascular Imaging reflect the views of the authors and do not necessarily represent the views of JACC: Cardiovascular Imaging or the American College of Cardiology.

From the University of Rochester Medical Center, Rochester, New York.
risk of events in Chagas’ disease remains open for future investigation.

The techniques and findings of this study provide remarkable insights regarding the role of SPECT MPI to identify both the early onset and the progression of Chagas’ cardiomyopathy. The slight, statistically significant decline in LVEF by echocardiography over 5 years from 55% to 50% was not influenced by technical measurement effects of subendocardial hypoperfusion on volume and EF calculations by electrocardiography (ECG)-gated radionuclide SPECT MPI. It can be expected that LV volume indexes likely increased as cardiomyopathy progressed, although these potent quantitative radionuclide prognostic indexes were not obtained in the current study, because ECG-gating of the SPECT images was not performed. Deterioration of LVEF over time and increases in LV volume indexes imply worse prognosis in cardiomyopathy, suggesting a potentially important role of ECG-gated SPECT MPI in providing greater risk stratification in Chagas’ cardiomyopathy. Thus, ECG-gated SPECT MPI seems well suited to track alterations of myocardial perfusion, regional function, global EF, and volume indexes as mechanistic markers that correlate with the pathogenesis of myocardial injury in the progression of Chagas’ cardiomyopathy. Despite not reporting ECG-gated LV volumes, this report by Hiss et al. (1) represents the first longitudinal study to demonstrate the correlation between myocardial perfusion disturbances and progression of regional and global LV systolic dysfunction in chronic Chagas’ cardiomyopathy.

With this report by Hiss et al. (1), Chagas’ disease joins a growing list of conditions as reviewed by Camici and Crea (6) that are associated with myocardial perfusion abnormalities in chronic Chagas’ cardiomyopathy. Despite not reporting ECG-gated LV volumes, this report by Hiss et al. (1) represents the first longitudinal study to demonstrate the correlation between myocardial perfusion disturbances and progression of regional and global LV systolic dysfunction in chronic Chagas’ cardiomyopathy.

In summary, this study is an important contribution to the published data that correlates serial progression of stress and rest perfusion defects by SPECT MPI and subsequent regional and global LV dysfunction with the suspected pathophysiological progression of Chagas’ cardiomyopathy from coronary microvascular dysfunction to fibrosis and frank chamber dilation and dysfunction. Beyond early detection of Chagas’ disease, SPECT MPI offers promise to track subclinical progression of Chagas’ cardiomyopathy. This study by Hiss et al. (1) offers real hope that we have in SPECT MPI a tool to identify early in Chagas’ disease the effectiveness of future therapies designed to prevent the insidious and inexorable progression of cardiomyopathy before onset of intense cardiac chamber dilation, heart failure, malignant ventricular arrhythmia, and thromboembolic phenomena that characterize its devastating clinical course and poorly understood pathogenesis.

Reprint requests and correspondence: Dr. Ronald G. Schwartz, University of Rochester Medical Center, Cardiology Unit, Box 679, 601 Elmwood Avenue, Rochester, New York 14642-8679. E-mail: ronald_schwartz@urmc.rochester.edu.

REFERENCES


Key Words: cardiomyopathy myocardial perfusion scintigraphy single-photon emission computed tomography Chagas’ disease.