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In this Letter, we try to apply the unified first law to the “cosmic triad” vector field scenario both in
the minimal coupling case and in the non-minimal coupling case. After transferring the non-minimally
coupling action in the Jordan frame to the Einstein frame, the correct dynamical equation (Friedmann
equation) is gotten in a thermal equilibrium process by using the already existing entropy while the
entropy in the non-minimal coupled “cosmic triad” scenario has not been derived. And after transferring
the variables back to the Jordan frame, the corresponding Friedmann equation is demonstrated to be
correct. For complete arguments, we also calculate the related Misner–Sharp energy in the Jordan and
Einstein frames.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

The profound connections between gravity and thermodynam-
ics are suggested by many phenomena, such as the discovery of
Hawking radiation and the four laws of classical black hole me-
chanics [1–4]. Based on the geometric feature of thermodynamic
quantities of black holes [5], a remarkable connection for cosmol-
ogy is found by Jacobson who pointed out it is possible to de-
rive the Einstein equations of gravitational fields from a view of
thermodynamics. The keys to derive the Einstein equation are the
fundamental relation (Clausius relation) δQ = T dS and the form
of the entropy which is proportional to the horizon area. Further
studies between thermodynamics and gravity have been extended
to various cosmological settings [6–11], such as the Lovelock grav-
ity [12–16], the brane-world scenario [17–19], the scalar–tensor
theory [20–23], the loop quantum gravity [24–28], the Horava–
Lifshitz gravity [29], the logarithm correction scenario [30–35],
the trace anomaly correction scenario [36], and the f (R) gravity
[37–48,51,52].

In cosmology, the scalar field could be assumed to be isotropic
and homogeneous to correspond with the FRW (Friedmann–
Robertson–Walker) background. It is the most popular candidate
of dynamical sources for the accelerations in our universe [53–
56]. However, the fundamental scalar field [57,58] has not to be
probed yet. On the other hand, the vector field is common in our

* Corresponding author at: College of Mathematics and Physics, Chongqing Uni-
versity of Posts and Telecommunications, Chongqing 400065, China.

E-mail addresses: zhangyia@cqupt.edu.cn (Y. Zhang), gongyg@cqupt.edu.cn
(Y. Gong), zhuzh@bnu.edu.cn (Z.-H. Zhu).
0370-2693 © 2011 Elsevier B.V.
doi:10.1016/j.physletb.2011.05.005

Open access under CC BY license.
realistic world. The inflationary scenario with vector fields was
proposed by Refs. [59,60]. Despite the later discovered instability
problems [61] in perturbations [62–64], this vector field scenario
was even extended to higher spin fields in cosmology [65–67].
The “cosmic triad” scenario is one of those models that coincide
with the observable isotropic and homogeneous FRW background
[68–73] (see also “N-inflation” vector field scenario proposed by
Refs. [74–76] which is similar to “N-flation” in scalar field [77], the
time-like vector filed scenario proposed by Refs. [78–86], and the
exact isotropic solutions of the Einstein–Yang–Mills system pro-
posed by Refs. [87–90]). The “cosmic triad” scenario of vector field
has three spatial components equal and orthogonal to each other
where A1 = (0, A,0,0), A2 = (0,0, A,0) and A3 = (0,0,0, A). In
this Letter, we will use view to study the relation between gravity
and thermodynamics.

In a special kind of spherically symmetric black hole spacetimes,
Padmanabhan showed that the Einstein equations on the black
hole could be written into the first law of thermodynamics [6]. Cai
and Kim [10] derived the Friedmann equation by assuming that
the apparent horizon has temperature and entropy and applying
the fundamental relation δQ = T δS to the apparent horizon of
FRW universe. The Clausius relation requires the equilibrium ther-
modynamics. In the Einstein gravity, the Clausius relation for the
equilibrium thermodynamics could always hold. However, there
are some arguments on the existence of thermal equilibrium pro-
cess for the non-Einstein gravity, such as the scalar–tensor theory
(the f (R) theory as well). The field equation for scalar–tensor grav-
ity needs the non-equilibrium thermodynamics arguments in Refs.
[91,92]. To get the Friedmann equation, the related thermal dy-
namical discussion has used the bulk viscosity entropy production
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term [37–40]. Therefore, it is proposed to add the entropy produc-
tion term to get the Friedmann equation in Ref. [38]. Meanwhile,
it was noticed that the entropy of static horizon is well defined by
Wald’s definition in Refs. [41,49,50], which is a Noether charge as-
sociated with the horizon killing vector and the correct Friedmann
equation could be gotten in the non-minimally coupled gravity
with equilibrium thermodynamics.

The non-minimally coupled vector fields bring us a new physi-
cal background [74–76]. The non-minimally coupled “cosmic triad”
vector field scenario is quite similar to the scalar–tensor theories
of gravity. Therefore, it is rather natural to ask whether the cor-
responding physical process is thermal equilibrium or not. Even
worse, we have no idea of the entropy definition in the non-
minimally coupled “cosmic triad” vector field scenario. Fortunately,
the Einstein frame could be used as a bridge. The exact form of the
entropy of “cosmic triad” scenario in the Jordan frame is not pre-
requisite. Based on the conformal transformations and the entropy
form of the Einstein gravity, we can still derive the Friedmann
equation.

Our derivations of the Friedmann equation will also be affected
by the definition of energy. To make our arguments complete and
consistent, we try to discuss general Misner–Sharp energies [93,94]
in a spherically symmetric spacetime by integral method. The gen-
eralized Misner–Sharp energy is argued to be related to the Ein-
stein equation whose definition is clear in the Einstein gravity, but
not in the non-Einstein gravity [93,94]. The thermal equilibrium
process in scalar–tensor gravity has been presented in Refs. [37–
40] with the effective geometric part included in the total energy
density. However, our results will not include the obvious effec-
tive geometric part. We use units of kB = c = h̄ = 1 and denote the
gravitational constant 8πG by κ2 = 8πm−2

Pl where mPl = G−1/2 is
the Planck mass.

We arrange our Letter as follows. In Section 2, we introduce
basic notions in thermodynamics, the temperature, the appar-
ent horizon, the unified first law and the Clausius relation. After
that, we present the minimally coupled “cosmic triad” vector field
model and deduce its dynamical equation in Section 3. Then, in
the non-minimal coupling case, considering the similarity between
scalar–tensor theories and the discussed vector fields theory, we
manage to get the Friedmann equation with the help of Einstein
frame in Section 4. For consistency, the results of the general
Misner–Sharp energy are presented by integral method in Sec-
tion 5. The Letter is concluded in Section 6.

2. The unified first law

The FRW metric is one kind of spherically symmetric spacetime.
If the closure of a hypersurface was foliated by future or past,
outer or inner marginal sphere, it is the so-called trapping horizon.
However, in the FRW universe, the “outer trapping horizon” does
not exist, instead there are a kind of cosmological horizons called
“inner trapping horizon” which is the apparent horizon in the con-
text of the FRW cosmology. In this Letter, we will not distinguish
the two horizons. And, the associated thermodynamics will be dis-
cussed. The (3 + 1)-dimensional FRW universe has the metric

ds2 = −dt2 + a2γi j dxi dx j, (1)

where a is the scale factor, the metric γi j is given by γi j =
dρ2/(1 − kρ2) + ρ2dΩ2

n−1 and the three-dimensional spatial cur-
vature of the hypersurface is parameterized as negative, zero or
positive, respectively. The FRW metric could be rewritten in the
double null form as well

ds2 = hab dxa dxb + r2 dΩ2
n−1, (2)
where r = a(t)ρ , x0 = t , x1 = ρ and the two-dimensional metric is
hab = diag(−1,1/(1 − kρ2)).

The thermodynamics will be established on the apparent hori-
zon where the future inner trapping horizon is the boundary of a
system. The dynamical apparent horizon is defined as

rA = hab∂ar∂br = 1√
H2 + k/a2

, (3)

where H = ȧ/a is the Hubble parameter. And, the surface gravity
of the trapping horizon κs is defined as

κs = 1

2
∇a∇ar = rA

(
1 − ṙ A

2HrA

)
, (4)

where the subscript “s” is used to note the variables for the ther-
modynamics specially. Then, the corresponding temperature is

T = κs

2π
= − rA

2

(
Ḣ + 2H2 + k

a2

)
. (5)

For dynamical black holes, Hayward [96,97] has proposed a re-
lation called “unified first law” to deal with the gravity and the
thermodynamics associated with trapping horizon of a dynami-
cal black hole in four-dimensional Einstein theory. For spherically
symmetrical spacetimes, the time–time component of the Einstein
equations could be rewritten in the “unified first law” form

dE = AsΨ + W dV , (6)

where As and V are the area and volume of the three-dimensional
space. The first term in the unified first law could be interpreted as
an energy-supply term, analogous to the heat-supply term in the
classical first law of thermodynamics. One has

Ψ = Ψt dt + Ψρdρ

= −1

2

(
ρ(m) + p(m)

)
Hr dt + 1

2

(
ρ(m) + p(m)

)
a dρ, (7)

where the superscript “(m)” notes the variables for the total matter
which includes not only the pressure matter, but also the matter
field part. In this Letter, we just neglect the radiation part which
could be added conveniently by rewriting the Lagrangian and it
would not affect our results. And, the second term in the unified
first law could be interpreted as a work term. Following Refs. [10,
94,96,97], the work density at the apparent horizon is

W = −1

2
T abhab = 1

2

(
ρ(m) − p(m)

)
, (8)

which should be regarded as the work done by a change of the
apparent horizon. Finally, on the left-hand side of the unified first
law, the energy on the apparent horizon is the generalized Misner–
Sharp energy

dE = AsΨ + As W drA

= −(
ρ(m) + p(m)

)
As HrA dt + Asρ

(m) drA = d
(
ρ(m)V

)
. (9)

On the other side, during the time interval dt , the Clausius re-
lation gives out an energy flux

δQ = T dS, (10)

where δQ and T are the variation of heat flow and the Unruh
temperature seen by an accelerated observer just inside the hori-
zon. Then, by matching the heat flux of energy and the amount of
energy crossing the apparent horizon, one has

δQ = T dS = AΨ. (11)
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In the Einstein gravity, the unified first law also implies the Clau-
sius relation δQ = T dS [95]. The Clausius relation holds for all
local Rindler causal horizons through each spacetime point in the
equilibrium thermodynamics. Therefore, in equilibrium thermody-
namics, by matching Eqs. (6) and (10), it obtains

T dS = dE − W dV . (12)

Combined with the temperature (5), the above equation could be
rewritten as

1

2πrA

(
1 − ṙ A

2HrA

)
dS

= 4πr3
A H

(
ρ(m) + p(m)

)
dt − 2πr2

A

(
ρ(m) + p(m)

)
drA (13)

where the equilibrium thermodynamics must hold. It has been
shown that the above equation is held in the Einstein gravity with
the pressureless matter. However, if the vector fields were added,
it is a question whether this situation will be changed or not.
However, given the exact form of entropy, Eq. (13) will give out
the Raychaudhuri equation which connects the geometry and the
matter. Furthermore, by considering the conserved equation of the
energy density, the Friedmann equation will be easily derived.

3. “Cosmic triad” vector field scenario

The “cosmic triad” vector field scenario [69] is composed of
three vector fields minimally coupled with gravity, which are a
set of three identical self-interacting vectors. This kind of vector
fields naturally arise from a gauge theory with SU(2) or SO(3)

gauge group. In this Letter, Latin indices are used to label the dif-
ferent fields (a,b, . . . = 1 . . . 3), and Greek indices are used to label
the different spacetime components (μ,ν, . . . = 0 . . . 3). In minimal
coupling case, the action of “cosmic triad” scenario is

I =
∫

d4x
√−g

×
[

R

16πG
−

3∑
a=1

(
1

4
F a
μν F aμν + V

(
Aa2)) + Lm

]
, (14)

where F a
μν = ∂μ Aa

ν − ∂ν Aa
μ , Aa2 = gμν Aa

μ Aa
ν , Aa

ν is the vector
field and Lm is the Lagrangian of pressureless matter. The term
F a
μν F aμν/4 could be considered as the Maxwell type kinetic en-

ergy term, and the term V (A2) as the potential of the vector field.
We assume the energy density of pressureless matter conservation

ρ̇m + 3H(ρm + pm) = 0, (15)

where the dot means a derivative with respect to time t .
In “cosmic triad” vector field scenario, the ansatz that the three

vectors are equal and orthogonal to each other could be expressed
as

Ab
μ = δb

μB(t) · a. (16)

Following Ref. [69], we could define a new variable called “physi-
cal” vector field which is Bi = Ai/a, where Ai is called “comoving”
vector field. The related equation B2 = Bi Bi = Aμ Aμ = A2 could
be conveniently obtained in the FRW background. Then we could
express most of our equations in term of Bi and B2 in the follow-
ing discussions. The corresponding energy density and pressure are
given by

ρv = 3

2
(Ḃ + H B)2 + 3V

(
B2), (17)

pv = 1
(Ḃ + H B)2 − 3V

(
B2) + 2B2 V ′, (18)
2

where the subscription “v” means the variable corresponding to
the vector fields, and the prime denotes a derivative with re-
spect to the square of vector field B , for example V ′ = dV /dB2 =
dV /dA2. In the minimal coupling case, the energy density of the
vector field is conserved as well

ρ̇v + 3H(ρv + pv) = 0. (19)

And the equation of motion of vector field is

B̈ + 3H Ḃ + V ′ + (
2H2 + Ḣ

)
B = 0. (20)

Obviously, compared with scalar fields, the term (2H2 + Ḣ)B is
an additional term and therefore the dynamics of vector field is
different.

In thermodynamics, there are different definitions of entropy.
Hayward [96,97] has studied black hole’s entropy in generalized
theories of gravity and proposed that the correct dynamical en-
tropy of stationary black hole’s solution with bifurcate Killing hori-
zon is the Noether charge entropy. In the Einstein gravity, the two
definitions seem to be consistent, the entropy has such a form

S = As

4πG
. (21)

Putting the variables (17), (18) and (21) into Eq. (13), we could
get the Raychaudhuri equation in the “cosmic triad” vector field
scenario

Ḣ − k

a2
= −4πG

(
2(Ḃ + H B)2 + 2B2 V ′ + ρm + pm

)
. (22)

By using the conserved equations (15) and (19), the Friedmann
equation is obtained

H2 + k

a2
= 8πG

3

(
3

2
(Ḃ + H B)2 + 3V

(
B2) + ρm

)
. (23)

During the process, an integral constant has emerged which could
be regarded as a cosmological constant and could be incorporated
into the energy density as a special component. Here, the two en-
ergy components are conserved separately, but in the non-minimal
coupling case, the situation is more complicated.

4. Non-minimally coupled “cosmic triad” vector field case

In the vector field scenario, the non-minimal coupling term is
used to satisfy the slow-roll conditions [71]. Without the non-
minimal coupling term, the vector field could only be used as
curvaton [67,62–64]. Let us start with the action of non-minimal
coupled “cosmic triad” vector field

In =
∫

d4x
√−g

×
[

f (A2)R

16πG
+ 3

(
1

4
Fμν F μν − V

(
A2)) + Lm(gμν)

]
, (24)

where the subscript “n” denotes the non-minimal coupling case,
the function f (A2) shows the non-minimal coupling effect and it
will go back to the minimal coupling case when f (A2) = 1. Some
gauge-dependent second order derivatives of the vector field Aμ

come from the f (A2)R term which breaks the gauge invariance of
the vector’s kinetic term.

Conformal (or Weyl) transformations are widely used in scalar–
tensor theories of gravity, the theory of scalar fields coupled non-
minimally to the Ricci curvature R . Due to the similarities between
the scalar–tensor theory and the non-minimal coupling ”vector
filed” scenario, we could perform the conformal transformation
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from the Jordan frame to the Einstein frame. One could introduce
auxiliary fields, or even simply redefine fields for one’s conve-
nience. There is no unique prescription of redefining the fields of
a theory. Acting on the metric by a suitable conformal transforma-
tion, the action (24) could be recast into the one in the Einstein
frame with the new metric,

ḡμν = f
(

A2)gμν, (25)

where the bar represents variables in the Einstein frame. And this
frame is expected to excite the generic helicity-0 ghost of the non-
invariant vector theories. The corresponding action in the Einstein
frame is changed to [98]

Īn =
∫

d4x
√

ḡ

[
R̄

2κ
− 3

4κ
Z 2(∂μ Ā2)2 − 1

4
F̄ μν F̄μν − W

(
Ā2)]

+
∫

d4x Lm(ḡμν), (26)

where the kinetic terms of the vector Aμ and the tensor gμν are
now diagonalized in a covariant way, and

F̄μν = Fμν = ∂μ Aν − ∂ν Aμ,

F̄ μν = ḡμρ ḡνσ Fρσ = ∂μ Aν − ∂ν Aμ, (27)

U = V

f 2
, Ā2 = A2

f
, Z = −d ln(1/ f )

dĀ2
= f f ′

f − A2 f ′ . (28)

The energy densities of pressureless matter and vector fields
are being rescaled as

ρ̄m = ρm

f 2
, (29)

ρ̄v = 3

2 f 2
(Ḃ + H B)2 + 3

V

f 2
+ ḟ 2

f 2
. (30)

The energy densities of two components are not conserved sepa-
rately any more. However, the total energy of matter is still con-
served which includes the rescaled pressureless matter and the
rescaled vector fields

˙̄ρ(m) + 3H
(
ρ̄(m) + p̄(m)

) = 0, (31)

where ρ̄(m) = ρ̄m + ρ̄v and p̄(m) = p̄m + p̄v .
In the Einstein frame, the entropy could be written as

S̄ = Ās

4πG
. (32)

In order to get the heat δQ in the Clausius relation, we have to
consider the contribution from matter fields. In the Einstein frame,
by using the unified first law, one could get the Raychaudhuri
equation

˙̄H − k

ā2
= −4πG(ρ̄v + p̄v + ρ̄m + p̄m). (33)

Combining the above equation with the conserved equations (31),
the Friedmann equation is obtained

H̄2 + k

ā2
= 8πG

3
(ρ̄v + ρ̄m). (34)

In the Einstein frame, the energy density has been rescaled and
even the energy density of matter is no more conserved.

It should be noted that the energy measured by an observer
is the one in the Jordan frame. Based on the rescaled metric, the
relations of the scalar factor and the Hubble parameter between
the two frames hold as
ā = √
f a, H̄ = dā

ā dt
= H + ḟ

2 f
. (35)

Then the Friedmann equation (34) in the Einstein frame could be
transferred to the one in the Jordan frame

H2 + k

a2

= 8πG

3

(
3

2

(
Ḃ2 + H B

)2 + 3V + 6H( ḟ + H f ) + ρm

)
. (36)

It is just the correct Friedmann equation in the non-minimally cou-
pled “cosmic triad” vector field scenario.

In a short summary, the form of the entropy in the non-
minimally coupled “cosmic triad” scenario is needed to directly
get the Friedmann equation. Unfortunately, such entropy is un-
known. Therefore, we transfer the Jordan frame to the Einstein
frame where the definition of the entropy is clear. In the Einstein
frame, we have obtained the dynamical equation with the rescaled
variables. At last, by transferring these variables back to the Jordan
frame, one has the correct Friedmann equation.

The equilibrium thermodynamics could be held in the Einstein
frame. As the exact physics in the Jordan frame is unknown, there
are clearly at least two possibilities for this theory. If the ther-
modynamics in the Jordan frame is in equilibrium, the thermal
process is equilibrious both before and after the conformal trans-
formation. But, if it is a non-thermal equilibrium process in the
Jordan frame which is contrast to the Einstein frame case, the de-
rived Friedmann equation is just a coincidence. This problem could
be left to quantum gravity.

5. The generalized Misner–Sharp energy

Due to the strong equivalence principle, the energy–momentum
pseudo-tensor of gravitational field will vanish at any point of
spacetime in a locally flat coordinate. Therefore, a local energy
density of gravitational field does not make any sense [99]. How-
ever, there exist two well-known definitions of total energy: the
Bondi–Sachs (BS) energy [100] and the Arnowitt–Deser–Misner
(ADM) energy [101]. And, considering a boundary of a given re-
gion in spacetime, it is possible to define quasi-local energy, for
instance, Brown–York energy [102], Misner–Sharp energy [93], etc.
In particularly, at null and spatial infinity, the Misner–Sharp mass
reduces to the BS and ADM energies [96,97]. When the notion of
generalized Misner–Sharp energy (or mass) is introduced, it seems
clear to write and interpret the unified first law [96,97].

Based on the method developed in Ref. [95] where the Einstein
equations are used, we will calculate the corresponding Misner–
Sharp energy E M which is defined in a spherically symmetric
spacetime of the “cosmic triad” vector field model. The integral
method which is introduced in Ref. [95] shows that the definition
of the generalized Misner–Sharp energy depends on a constraint
condition. For convenience, another form of double-null metric is
considered in Ref. [95],

ds2 = −dt2 + e2ψ(t,ρ) dρ2 + r2(t,ρ)
(
dθ2 + sin2 θ dφ2), (37)

where r(t,ρ) ≡ a(t)ρ and eψ(t,ρ) = a(t)/
√

1 − kρ2. Following the
integral method, we try to list the generalized Misner–Sharp
masses.

5.1. Minimal coupling case

Under the double-null metric (37), the generalized Misner–
Sharp energy acts as the boundary of a finite region under con-
sideration in the Einstein gravity. Here, we choose the method
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developed in Ref. [95] to calculate the generalized Misner–Sharp
mass which could be used both for the minimal and for the
non-minimal coupling cases. Based on the definition, the general
Misner–Sharp mass is

EM = r

2G

(
1 − hab∂ar∂br

) = r3

2G

(
H2 + k

a2

)
. (38)

In the small-sphere limit, the leading term of EM is the production
of the volume and the energy density of matter [96],

EM = ρ(m)V = 4πr3

3

(
3

2
(Ḃ + H B)2 + 3V

(
B2) + ρm

)
. (39)

Matching the above Eqs. (38) and (39), the Friedman equation
could be gotten. However, the Einstein equation is used in the
derivation of Eq. (39). Therefore, it is not a surprise to get
the Friedmann equation. This calculation demonstrates that the
Misner–Sharp is a consistent variable in the Einstein equation.
Therefore, for the unified first law, the Misner–Sharp energy is also
a consistent quantity.

5.2. Non-minimal coupling case in the Jordan frame

The generalized Misner–Sharp mass is related to the Einstein
equation closely. And, the integral method could be used both in
the Jordan and in Einstein frames. Therefore, even in the non-
minimal coupling case, we could get the generalized Misner–Sharp
mass. For metric (37), by using the action (24), the component of
the matter part of the stress–energy tensor is

8πGT (m)
tt = 3 f

(
k

a2 + H2

)
+ 3H ḟ , 8πGT (m)

tρ = 0, (40)

8πGT (m)
ρρ = a2

1 − kρ2

(
− f

(
k

a2
+ H2 + 2ä

a

)
− f̈ − 2H ḟ

)
(41)

and based on the unified first law, the generalized Misner–Sharp
mass is

dEnM = AsΨ + W dV = C(t,ρ)dt + D(t,ρ)dρ, (42)

where

C(t,ρ) = 4πr2e−2ψ
(
T (m)

tρ r,ρ − T (m)
ρρ r,t

)
= 1

2
Hr3

[
f

(
k

a2
+ H2 + 2ä

a

)
+ f̈ + 2H ḟ

]
, (43)

D(t,ρ) = 4πr2(T (m)
tt rρ − T (m)

tρ r,t
)

= 1

2
ρ2a3

[
3 f

(
k

a2

)
+ 3H ḟ

]
. (44)

Then, the energy could be calculated as:

EnM =
∫

D(t,ρ)dρ +
∫ [

C(t,ρ) − ∂

∂t

∫
D(t,ρ)dρ

]
dt. (45)

If the parameters C and D satisfy the constraint condition

∂C(t,ρ)

∂ρ
− ∂ D(t,ρ)

∂t
= 0, (46)

the generalized Misner–Sharp mass will be gotten

EnM = r3

2G

(
f
(

B2)( k

a2
+ H2

)
+ H ḟ

(
B2)). (47)

And in the small-sphere limit of the non-minimal coupling case,
the leading term in EnM is the production of volume and the en-
ergy density of the matter
EnM = 4πr3

3
ρ(m) = 4πr3

3

(
ρm + 3

2
(Ḃ + H B)2 + 3V

)
. (48)

It is a consistent result that the Friedmann equation is given out
by combining Eqs. (47) and (48).

5.3. Non-minimal coupling case in the Einstein frame

In the Einstein frame, the definition of the Misner–Sharp energy
gives out the geometric representation

ĒnM = r

2G

(
1 − h̄ab∂ar∂br

) = r3

2G

(
k

a2
+ H̄2

)
. (49)

And, in the non-minimal coupling case, the total matter contains
the redefined vector field and the pressureless matter. In small-
sphere limit, by using the Einstein equation, the leading term of
ĒnM is the production of the volume and the energy density of
total matter

ĒnM = 4πr3

3
ρ̄(m) = 4πr3

3
(ρ̄m + ρ̄v). (50)

Then, combined with Eqs. (49) and (50), the Friedmann equa-
tion (36) is gotten in the Einstein frame. After another conformal
transformation, we could get the correct Friedmann equation (36)
in the Jordan frame. The correctness of Friedmann equation makes
sure that our arguments on the unified first law are consistent.

Compared with Eqs. (48) and (50), the generalized Misner–
Sharp energy is being rescaled. However, the Misner–Sharp energy
is corresponding to the production of the volume and the energy
density of the matter (ρ(m)V in the Jordan frame and ρ̄(m)V in the
Einstein frame). The conformal transformation extracts the free-
dom in the non-minimally coupled “cosmic triad” vector field the-
ory, and the energy density and the Misner–Sharp mass are both
rescaled.

6. Conclusion

Compared with scalar fields, the dynamics of vector fields are
more complicated. In this Letter, we try to find out the relations
between thermodynamics and “cosmic triad” vector field scenario.

In the minimal coupling case of “cosmic triad” scenario, con-
sidering the entropy is proportional to the area of horizon in
the Einstein gravity, dS = dA/4πG is used for the Clausius rela-
tion. Additionally, with the unified first law, we get the correct
Friedmann equation as expected. However, in the non-minimally
coupled “cosmic triad” system, there is no corresponding entropy.
Because of the similarity between “cosmic triad” scenario and
scalar–tensor theory, we transformed the non-minimally coupled
vector field in the Jordan frame to the Einstein frame. In the Ein-
stein frame, the form of entropy dS̄ = dĀ/4πG could be used.
The Friedmann equation was gotten successfully by using the uni-
fied first law of thermodynamics. By matching the variables in the
two frames, the Friedmann equation is demonstrated to be correct
even in the Jordan frame. Furthermore, we calculated the general-
ized Misner–Sharp energy as well which is a key variable for the
derivations of dynamical equations. The generalized Misner–Sharp
energy is the production of the volume and the energy density of
the matter and is demonstrated to be consistent with the unified
first law.

In conclusion, the unified first law which connects gravity and
thermodynamics is a useful way to get the Friedmann equation
in the “cosmic triad” vector field scenario. The correct Friedmann
equation is obtained by means of the Einstein frame and the gen-
eralized Misner–Sharp energy.
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