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Abstract

An unambiguous and slice-independent formula for the two-loop superstring measure on moduli space for even spin structure
is constructed from first principles. The construction uses the super-period matrix as moduli invariant under worldsheet
supersymmetry. This produces new subtle contributions to the gauge-fixing process, which eliminate all the ambiguities
plaguing earlier gauge-fixed formulas.

The superstring measure can be computed explicitly and a simple expression in terms of modular forms is obtained. For fixed
spin structure, the measure exhibits the expected behavior under degenerations of the surface. The measure allows for a unique
modular covariant GSO projection. Under this GSO projection, the cosmological constant, the 1-, 2- and 3-point functions of
massless supergravitons all vanish pointwise on moduli space without the appearance of boundary terms. A certain disconnected
part of the 4-point function is shown to be given by a convergent, finite integral on moduli space. A general slice-independent
formula is given for the two-loop cosmological constant in compactifications with central charge c= 15 and N = 1 worldsheet
supersymmetry in terms of the data of the compactification conformal field theory.

In this Letter, a summary of the above results is presented with detailed constructions, derivations and proofs to be provided
in a series of subsequent publications.

1. Introduction

Despite great advances in superstring theory, multi-loop amplitudes are still unavailable, almost twenty years
after the derivation of the one-loop amplitudes by Green and Schwarz for type II strings [1] and by Gross et al. for
heterotic strings [2]. The main obstacle is the presence of supermoduli for worldsheets of non-trivial topology [3,4].
Considerable efforts had been made by many authors in order to overcome this obstacle, and a chaotic situation
ensued, with many competing prescriptions proposed in the literature. These prescriptions drew from a variety of
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fundamental principles such as BRST invariance and the picture-changing formalism [3,5], descent equations and
Cech cohomology [6], modular invariance [7], the light-cone gauge [8], the global geometry of the Teichmueller
curve [9], the unitary gauge [10], the operator formalism [11], group theoretic methods [12], factorization [13],
and algebraic supergeometry [14]. However, the basic problem was that gauge-fixing required a local gauge slice,
and the prescriptions ended up depending on the choice of such slices, violating gauge invariance. At the most
pessimistic end, this raised the undesirable possibility that superstring amplitudes could be ambiguous [15], and
that it may be necessary to consider other options, such as the Fischler–Susskind mechanism [16].

In [17] and [18], we had suggested that the difficulties encountered in the earlier prescriptions could be the
result of improper gauge-fixing procedures which did not respect worldsheet local supersymmetry. To address
this difficulty, we had outlined a new gauge-fixing procedure based on projecting supergeometries to their super
period matrices instead of their underlying bosonic geometries. Unlike the projection to the bosonic geometries,
the projection to the super period matrix descends to a projection of superconformal structures, since the super
period matrix is invariant under local worldsheet supersymmetry. It is well defined for any genus h.

In this Letter, we implement this new gauge-fixing procedure for genus h = 2. This is the lowest loop order
where supermoduli must be confronted in all scattering amplitudes. We shall concentrate on the case of even spin
structures since odd spin structure contributions are absent for the cosmological constant and scattering amplitudes
with 4 or fewer states.

• We obtain a gauge-fixed formula dµ[δ](Ω) for the contribution to the superstring measure of each even spin
structure δ, which is independent of the choice of gauge slice. In particular, the ambiguities plaguing the earlier
prescriptions have now disappeared.

• For each δ, dµ[δ](Ω) transforms covariantly under modular transformations. There is a unique assignment of
relative phases ηδ so that

∑
δ ηδ dµ[δ](Ω) is a modular form, and hence a unique way of implementing the

Gliozzi–Scherk–Olive (GSO) projection.
• The superstring measure, when summed over all δ, vanishes point by point on moduli space, and not just

up to a total derivative, as in earlier prescriptions. In particular, the cosmological constant vanishes. This is
the 2-loop generalization of the Jacobi identity. Remarkably, it is not a consequence of genus 2 Riemann
identities. Instead, it is equivalent to the identity, special to genus 2, that any modular form of weight 8 must
be proportional to the square of the unique modular form of weight 4.

• Similarly, the 1-, 2-, 3-point functions for the scattering of the supergraviton multiplet vanish by a variety of
novel identities.

• The 4-point function may be evaluated explicitly in terms of modular forms. For a certain disconnected part
of the 4-point function, explicit formulas are presented here; they are manifestly finite, in the regime of purely
imaginary Mandelstam variables. (As is well known [19], the other regimes are only accessible by analytic
continuation.)

• Finally, we provide a simple slice independent formula for the even spin structure superstring measure and
cosmological constant for general compactifications with matter central charge c = 15 and N = 1 worldsheet
supersymmetry.

Since the derivation of all of these results is quite lengthy, we provide here the main formulas, leaving the
detailed treatment to a forthcoming series of papers.

2. The supermoduli space measure

In the Ramond–Neveu–Schwarz (RNS) formulation [20], the worldsheet for superstring propagation in
10-dimensional Minkowski space–time at loop order h is a compact surface Σ of genus h, equipped with a
supergeometry EMA, ΩM obeying the Wess–Zumino torsion constraints [17,21,22]. The non-chiral vacuum-to-
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vacuum functional integral for fixed even spin structure δ (before the GSO projection) is

(2.1)A[δ] =
∫
DEM

ADΩM δ(T )

∫
DXµ e−Im ,

where

(2.2)Im = 1
4π

∫
d2|2zED+XµD−Xµ, E ≡ sdetEMA.

Here, Xµ = xµ + θψ
µ
+ + θ̄ψ

µ
− + iθ θ̄Fµ, µ = 0,1, . . . ,9 are scalar superfields, and δ(T ) indicates the torsion

constraints.1 The theory is invariant under sDiff(M), super-Weyl, and sU(1) local gauge transformations. The space
of supergeometries EMA, ΩM , modulo these symmetries is supermoduli space. In genus h� 2, it has dimension
(3h − 3|2h − 2). Let mA = (ma|ζ α), a = 1, . . . ,3h − 3, α = 1, . . . ,2h − 2, be parameters for a local slice S
transversal to the orbits of the gauge group. The starting point for our considerations is the gauge-fixed expression
for A[δ], which is given by [17, p. 967],

(2.3)A[δ] =
∫ ∣∣∣∣∣∏

A

dmA

∣∣∣∣∣
2 ∫

D
(
B
BC
CXµ)∣∣∣∣∣∏

A

δ
(〈HA|B〉)∣∣∣∣∣

2

e−Im−Igh .

The ghost superfields B = β + θb, C = c+ θγ have U(1) weights 3/2 and −1, respectively, with action

(2.4)Igh = 1
2π

∫
d2|2zE(BD−C + 
BD+
C)

and HA ≡ (HA)−z are the Beltrami superdifferentials tangent to the gauge slice

(2.5)(HA)−z ≡ (−)A(M+1)E−M
∂EM

z

∂mA
.

The vertex operators for NSNS states do not involve superghost fields, and it suffices to consider the gauge-fixed
measure in (2.3) for the scattering of these states. However, we would like to stress that (2.3) is only a preliminary
first step in the construction of the desired superstring measure, since it is a non-chiral measure on supermoduli
space.

3. Chiral splitting

A first step in the construction of the superstring measure is to extract from (2.3) a chiral contribution. In Wess–
Zumino gauge, the supergeometryEma = em

a + θγ aχm − i
2θ θ̄em

aA decomposes into a zweibein ema , a gravitino
field χmα and an auxiliary field A. The expression (2.3) as well as vertex operators Vi(ki, εi ) mix fields of opposite
chiralities such as χz̄+ and χz−, as can be seen in the components expression of Im,

(3.1)

Im = 1
4π

∫
d2z

(
∂zx

µ∂z̄x
µ −ψ

µ
+∂z̄ψ

µ
+ −ψ

µ
−∂zψ

µ
− + χz̄

+ψµ+∂zxµ + χz
−ψµ−∂z̄xµ − 1

2
χz̄

+χz−ψµ+ψ
µ
−
)
.

They also involve the scalar fields xµ(z) whose oscillator modes are split, but whose momentum zero modes are
not split since left and right momenta coincide. As shown in [18], to obtain the chiral amplitudes, we have to
introduce internal loop momenta pµI , I = 1, . . . , h, µ= 0,1, . . . ,9, and require the following effective prescription

1 Here as well as in the superghost fields B, C below, we shall henceforth omit auxiliary fields such as Fµ , since they can be conveniently
integrated out and do not play a significant role [17,18].
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Table 1
Effective rules for chiral splitting

Original Effective chiral

Bosons xµ(z) x
µ
+(z)

Fermions ψ
µ
+(z) ψ

µ
+(z)

Internal loop momenta None exp
(
p
µ
I

∮
BI
dz ∂zx

µ
+
)

x-propagator
〈
xµ(z)xν(w)

〉 −δµν lnE(z,w)

ψ+-propagator
〈
ψ
µ
+(z)ψν+(w)

〉 −δµνSδ(z,w)
Covariant derivatives D+ ∂θ + θ∂z

for the scalar superfield correlation functions,

(3.2)

〈
N∏
i=1

Vi(ki, εi )

〉
Xµ

=
∫
dp

µ
I

∣∣∣∣∣
〈
N∏
i=1

V chi
i

(
ki, εi;pµI

)〉
+

∣∣∣∣∣
2

.

Here, 〈· · ·〉+ denotes the fact that the effective rules for the contractions of the vertex operators V chi
i (ki, εi;pµI )

are used, as given in Table 1. In this table, we have chosen a canonical homology AI , BI , I = 1, . . . , h with
canonical intersections #(AI ∩BJ )= δIJ , E(z,w) is the prime form, and Sδ(z,w) is the Szegö kernel. The point
of the effective rules is that they only involve meromorphic notions, unlike the x-propagator 〈xµ(z)xν(w)〉 which
is given by the scalar Green’s function δµνG(z,w). The superghost correlation functions are manifestly split. For
the superstring measure alone, we obtain the following formula,

(3.3)A[δ] =
∫ ∣∣∣∣∣∏

A

dmA

∣∣∣∣∣
2 ∫

dp
µ
I

∣∣eiπpµI Ω̂IJ pµJ A[δ]∣∣2 =
∫ |∏A dm

AA[δ]|2
(det Im Ω̂)5

,

where A[δ] is the following effective chiral correlator

(3.4)A[δ] =
〈∏
A

δ
(〈HA|B〉) exp

{∫
d2z

2π
χz̄

+S(z)
}〉

+
.

S(z) is the total supercurrent

(3.5)S(z)= −1
2
ψ
µ
+∂zx

µ
+ + 1

2
bγ − 3

2
β∂zc− (∂zβ)c,

and Ω̂IJ is the super period matrix, defined by [17,18]

(3.6)Ω̂IJ =ΩIJ − i

8π

∫
d2z

∫
d2wωI (z)χz̄

+Ŝδ(z,w)χw̄+ωJ (w).

Here ΩIJ is the period matrix corresponding to the complex structure of the metric gmn = em
aen

bδab in the
homology basis {AI ,BI , I = 1, . . . , h}; {ωI (z), I = 1, . . . , h}, is a basis of holomorphic Abelian differentials
dual to the AI -cycles; and Ŝδ(z,w) is a modified Dirac propagator defined by

(3.7)∂z̄Ŝδ(z,w)+ 1
8π
χz̄

+
∫
d2x ∂z∂x lnE(z, x)χx̄+Ŝδ(x,w)= 2πδ(z,w).

The chirally split expression (3.3) is our first significant departure from the proposals of other authors in the late
1980’s, in that it is the super period matrix Ω̂IJ which appears as covariance of the internal loop momenta pµI ,
and not the period matrix ΩIJ . More important, we observe that a correct chiral splitting points then to the super
period matrix Ω̂IJ as the proper locally supersymmetric moduli for gauge-fixing.
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4. Local supersymmetry and gauge-fixing

The expression for A[δ] in (2.3) and (3.3) is an integral over supermoduli space. The main problem in superstring
perturbation theory is how to integrate out the odd supermoduli ζ α in (2.3) and (3.3) to reduce A[δ] to a measure
dµ[δ] over moduli space

(4.1)dµ[δ] =
3h−3∏
a=1

dma
∫ 2h−2∏

α=1

dζ αA[δ].

Let S be a gauge slice for supermoduli, obtained by choosing a (3h−3)-dimensional gauge slice of zweibeins ema ,
a (2h− 2)-dimensional slice of gravitino sections χα , and setting χ =∑2h−2

α=1 ζ αχα . Naively, it may seem that the
natural way of descending from supermoduli space to moduli space is to use the projection

(4.2)EM
A → em

a.

This has been the method followed in the literature on superstring perturbation theory, but it has resulted in
amplitudes which depend on the gauge slice S chosen. The origin of this apparent ambiguity is the fact that the
projection (4.2) is not invariant under local worldsheet supersymmetry. The remedy, originally proposed in [17]
and carried out in the present Letter, is to use instead the projection

(4.3)EM
A → Ω̂IJ ,

where Ω̂IJ is the super period matrix defined by (3.6). The correct moduli measure is obtained from the
supermoduli measure by integrating along the fibers of (4.3). For genus 2, this is implemented by choosing
{mA}A=1,2,3 = {Ω̂IJ }1�I�J�2 (instead of {ΩIJ }1�I�J�2), and integrating in ζ α , α = 1,2. We describe next
some important steps in this process.

5. The moduli space measure

The change of projection from (4.2) to (4.3) leads to three modifications which require particular care. First,
the Beltrami superdifferentials get modified to superdifferentials HA = θ̄ (µA − θνA) (in Wess–Zumino gauge)
with both components µA and νA usually non-zero. Second, the correlation functions in (2.3) and (3.3) were
originally given in the metric gmn corresponding to ΩIJ . They have now to be re-expressed in a new metric ĝmn
corresponding to Ω̂IJ . This deformation of metrics requires an insertion of the stress tensor integrated against a
Beltrami differential µ̂ that represents this change of metrics. Third, we note that for given Ω̂IJ , the metric ĝmn is
not unique. Thus the choice of ĝmn, or equivalently µ̂, should be viewed as an additional gauge choice, of which
the final amplitude has also to be shown to be independent.

Due to the complicated nature of the Beltrami superdifferentials HA, the superghost correlation functions in
the presence of δ(〈HA|B〉) are not convenient meromorphic objects. To circumvent this problem, we change
basis to super-Beltrami differentials H ∗

a (z, θ) = θ̄ δ(z,pa) and H ∗
α (z, θ) = θ̄ θδ(z, qα) which are δ-functions

at points pa and qα , respectively. Assuming that correlation functions are considered with superghost field
B-independent vertex operators only (as is always the case for NS states [23]), HA is effectively integrated versus
superholomorphic B’s. A change of basis for HA is then carried out and produces an associated Jacobian,

(5.1)
∏
A

δ
(〈HA|B〉)= sdet〈HA|ΦC〉

sdet〈H ∗
A|ΦC〉

∏
a

b(pa)
∏
α

δ
(
β(qα)

)
for an arbitrary basis of superholomorphic 3/2 formsΦC . By construction, all dependence on pa and qα cancels out
in the full measure and amplitude. Upon choosingΦC to satisfy 〈HA|ΦC〉 = δAC , we find the following expression
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for the chiral measure,

(5.2)

A[δ] = 〈∏a b(pa)
∏
α δ(β(qα))〉

detΦIJ+(pa)det〈Hα|Φ∗
β〉
{

1 − 1
8π2

∫
d2zχz̄

+
∫
d2wχw̄

+〈S(z)S(w)〉+ 1
2π

∫
d2z µ̂z̄

z
〈
T (z)

〉}
.

Here, ΦIJ are the odd superholomorphic 3/2 differentials corresponding to the covectors dΩ̂IJ on supermoduli
space, ΦIJ+ is the θ component of ΦIJ = θΦIJ+ + ΦIJ0, and Φ∗

β = θΦ∗
β+ + Φ∗

β0 is the basis for the even
superholomorphic 3/2 differentials normalized by Φ∗

β0(qα)= δαβ and Φ∗
β+(pa)= 0.

Taking all this into account, and expanding the finite-dimensional determinants in powers of χ , we arrive at the
following formula

(5.3)A[δ] = i
〈∏a b(pa)

∏
α δ(β(qα))〉

det(ωIωJ (pa)) · det〈χα|ψ∗
β 〉

{1 +X1 +X2 +X3 +X4 +X5 +X6},

where all correlation functions are now written with respect to the Ω̂IJ complex structure.2 The various terms
{Xi}6

i=1 in (5.3) have the following origins. The term X1 is the familiar contribution arising from two supercurrent
insertions. All the other terms are more subtle and incorporate the effect of using Ω̂IJ as supermoduli invariant.
The term X2 arises from the stress tensor insertion; the term X3 arises when passing from the metric gmn to the
metric ĝmn in detΦIJ+(pa) and det〈Hα|Φ∗

β〉; the terms X4 and X5 arise from the remaining χ -dependence of
detΦIJ+(pa); and the term X6 arises from the remaining χ -dependence of det〈Hα|Φ∗

β〉. The term X2 + X3 thus
contains all the effects of passing from the metric gmn to the metric ĝmn via the Beltrami differential µ̂. Using its
expression below in terms of the holomorphic differential T IJωI (z)ωJ (w), it will be manifest that the measure
depends only on the moduli of ĝmn and not on the slice chosen.

More specifically, the quantities ψ∗
β are the holomorphic 3/2 differentials normalized at the points qα by

ψ∗
β(qα) = δβ

α , and the Green’s functions G2(z,w) and G3/2(z,w) are of tensor type (2,−1) and (3/2,−1/2),
respectively, in z and w, and normalized so that G2(pa,w) = 0 and G3/2(qα,w)= 0. The terms Xi , i = 1, . . . ,6
are then defined as follows,

X1 = − 1
8π2

∫
d2zχz̄

+
∫
d2wχw̄

+〈S(z)S(w)〉,
X2 +X3 = + 1

16π2

∫
d2z

∫
d2wχz̄

+χw̄+T IJ ωI (z)Sδ(z,w)ωJ (w),

X4 = + 1
8π2

∫
d2w∂pa ∂w lnE(pa,w)χw̄+

∫
d2uSδ(w,u)χū

+9 ∗
a (u),

X5 = + 1
16π2

∫
d2u

∫
d2v Sδ(pa,u)χū

+∂paSδ(pa, v)χv̄+9a(u, v),

(5.4)X6 = + 1
16π2

∫
d2zχ∗

α(z)

∫
d2wG3/2(z,w)χw̄

+
∫
d2v χv̄

+Λα(w,v).

The sections χ∗
β (z) are the linear combinations of the χα(z) normalized by 〈χ∗

β |ψ∗
α〉 = δβα and T IJωI (w)ωJ (w)

is the holomorphic quadratic differential defined by

T IJ ωIωJ (w)=
〈
T (w)

3∏
a=1

b(pa)

2∏
α=1

δ
(
β(qα)

)〉〈 3∏
a=1

b(pa)

2∏
α=1

δ
(
β(qα)

)〉−1

2 Henceforth, the original ΩIJ will no longer enter, and to simplify notations we denote Ω̂IJ by ΩIJ .
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− 2
3∑
a=1

∂pa∂w lnE(pa,w)9 ∗
a (w)

(5.5)

+
∫
d2zχ∗

α(z)

(
−3

2
∂wG3/2(z,w)ψ

∗
α(w)−

1
2
G3/2(z,w)(∂ψ

∗
α)(w)

+G2(w, z)∂zψ
∗
α(z)+

3
2
∂zG2(w, z)ψ

∗
α(z)

)
.

Here, T (z) is the total stress tensor

(5.6)T (z)= −1
2
∂zx

µ∂zx
µ + 1

2
ψ
µ
+∂zψ

µ
+ + c∂zb− (∂zc)b− 2β∂zγ − 3

2
γ ∂zβ + 3

2
(∂zc)b

and Λα is defined by

(5.7)Λα(w,v)= 2G2(w,v)∂vψ
∗
α + 3∂vG2(w,v)ψ

∗
α(v).

Finally, 9 ∗
a and 9a are holomorphic 1-forms in u and v defined by 9 ∗

a (u)=9a(u,pa) and the determinants of
3 × 3 matrices

9a(u, v)= det{ωIωJ (pb[u,v;a])}
det{ωIωJ (pb)} ,

(5.8)ωIωJ
(
pb[u,v;a]

)=
{
ωIωJ (pb), b �= a,
1
2
(
ωI (u)ωJ (v)+ωI (v)ωJ (u)

)
, b = a.

The above gauge-fixed amplitude (5.3) is independent of the points pa and qα . Furthermore, it satisfies the
crucial requirement of invariance under infinitesimal deformations of the gauge slice S , produced by δξ (χα)z̄+ =
−2∂z̄ξ+

α ,

(5.9)δξ

(∫ 2∏
α=1

dζ αA[δ]
)

= 0

with ξ+
α two arbitrary spinor fields, generators of local supersymmetry transformations.

6. Slice independence and absence of ambiguities

We specialize now to gauge slices S given by δ functions

(6.1)χz̄
+ = ζ 1δ(z, x1)+ ζ 2δ(z, x2),

where xα , α = 1,2 are two arbitrary fixed points on Σ . It may be shown explicitly that for each ΩIJ , (5.3) is a
holomorphic scalar in all points pa , qα and xα , and thus independent thereof. As a result, the gauge-fixed chiral
measure (5.3) is not just invariant under infinitesimal deformations of gauge slices, but more globally, independent
of the gauge slices S themselves, at least when they are δ-functions.

It is natural to let qα coincide with xα . In this limit, the positions of the supercurrent insertions S(xα) tend to
those of the superghost insertion δ(β(qα)). In the early literature on superstring perturbation theory [5], the picture
changing operator Y (z) had been naively identified with Y (z)= δ(β(z))S(z), but the difficulties inherent to taking
this product at coincident points had been obscure. Thanks to the expression (5.3) and (5.4), we see now that these
difficulties cannot be ignored. Indeed, the corresponding term X1 fails to admit a limit as xα → qα , and the correct
limit is more subtle: it requires the contribution of the finite-dimensional determinant det〈Hα|Φ∗

β〉 in X6, and it is
only the sum X1 +X6 which admits a finite limit.
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With the subtleties taken into account, the gauge-fixed amplitude A[δ] can be expressed in the form (5.3), with
the following simpler expressions for the terms Xi , i = 1, . . . ,6,

X1 +X6 = ζ 1ζ 2

16π2

[−10Sδ(q1, q2)∂q1∂q2 lnE(q1, q2)− ∂q1G2(q1, q2)∂ψ
∗
1 (q2)+ ∂q2G2(q2, q1)∂ψ

∗
2 (q1)

+ 2G2(q1, q2)∂ψ
∗
1 (q2)f

(1)
3/2(q2)− 2G2(q2, q1)∂ψ

∗
2 (q1)f

(2)
3/2(q1)

]
,

X2 = ζ 1ζ 2

16π2ωI (q1)ωJ (q2)Sδ(q1, q2)

[
∂I ∂J ln

ϑ[δ](0)5
ϑ[δ](Dβ) + ∂I ∂J lnϑ(Db)

]
,

X3 = ζ 1ζ 2

8π2 Sδ(q1, q2)
∑
a

9a(q1, q2)
[
B2(pa)+B3/2(pa)

]
,

X4 = ζ 1ζ 2

8π2 Sδ(q1, q2)
∑
a

[
∂pa∂q1 lnE(pa, q1)9

∗
a (q2)+ ∂pa ∂q2 lnE(pa, q2)9

∗
a (q1)

]
,

(6.2)X5 = ζ 1ζ 2

16π2

∑
a

[
Sδ(pa, q1)∂paSδ(pa, q2)− Sδ(pa, q2)∂paSδ(pa, q1)

]
9a(q1, q2).

Here Db =∑3
a=1 pa − 3∆, Dβ =∑2

α=1 qα − 2∆; the terms B3/2 and B2 are given by

B2(w)= −27T1(w)+ 1
2
f2(w)

2 − 3
2
∂wf2(w)− 2

∑
a

∂pa∂w lnE(pa,w)9 ∗
a (w),

(6.3)

B3/2(w)= 12T1(w)− 1
2
f3/2(w)

2 + ∂wf3/2(w)

+
∫
d2zχ∗

α(z)

(
−3

2
∂wG3/2(z,w)ψ

∗
α(w)−

1
2
G3/2(z,w)∂wψ

∗
α(w)

+G2(w, z)∂zψ
∗
α(z)+

3
2
∂zG2(w, z)ψ

∗
α(z)

)
,

the expression −T1(z) is the vev of the chiral scalar boson stress tensor defined by E(z,w) = (z − w) +
(z−w)3T1(w)+O(z−w)4. The expressions f3/2(w), f2(w) are given by

(6.4)fn(w)= ωI (w)∂I lnϑ[δ](Dn)+ ∂w ln

(
σ(w)2n−1

2n−1∏
i=1

E(w,zi)

)
with {zi} = {pa} for n= 2, and {zi} = {qα} for n= 3/2, and

f
(1)
3/2(q2)= ωI (q1)∂I lnϑ[δ](q2 − q1 +Dβ)+ ∂q1 ln

(
E(q1, q2)

2σ(q1)
2),

(6.5)f
(2)
3/2(q1)= ωI (q2)∂I lnϑ[δ](q1 − q2 +Dβ)+ ∂q2 ln

(
E(q2, q1)

2σ(q2)
2).

The corresponding chiral measure dµ[δ](Ω) is independent of pa and qα . This is of course a consequence of
the independence of the earlier formulas from pa , qα and xα . But it can also be verified directly from (6.2). This
provides a direct proof of the absence of ambiguities in the gauge-fixed expression measure dµ[δ](Ω).

7. The measure as a modular form

It remains to express the moduli measure in terms of modular forms. In genus h = 2, there are 10 even
spin structures, denoted δ, and 6 odd spin structures, denoted ν. Each even spin structure δ can be written as
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δ = ν1 + ν2 + ν3, where the νi ’s are odd and pairwise distinct. The mapping {ν1, ν2, ν3} → δ is 2 to 1, with
{ν1, ν2, ν3} and {ν1, . . . , ν6} \ {ν1, ν2, ν3} corresponding to the same even spin structure. In the hyperelliptic
representation, the surface Σ is given by s2 =∏6

k=1(x − uk) with 6 branch points uk . Each odd spin structure ν
corresponds to a unique branch point uν . Each even spin structure δ = ν1 + ν2 + ν3 corresponds then to a partition
of the 6 branch points into two sets of 3 branch points each, namely {uν1, uν2, uν3} and {uk}6

k=1 \ {uν1, uν2, uν3}.
Define Ξ6[δ](Ω) by the following combination of ϑ-constants, ϑ[δ](Ω)≡ ϑ[δ](0,Ω),

(7.1)Ξ6[δ](Ω)≡
∑

1�i<j�3

〈νi |νj 〉
∏

k=4,5,6

ϑ[νi + νj + νk]4(Ω)

which depends only on δ = ν1 + ν2 + ν3. Here 〈νi |νj 〉 = exp 4πi(ν′
iν

′′
j − ν′

j ν
′′
i ) is the relative signature of the spin

structures νi = (ν′
i |ν′′

i ), νj = (ν′
j |ν′′

j ). We shall also need the well-known modular form of weight 10, defined by
Ψ10(Ω)≡∏

δ ϑ[δ](Ω)2. The modular transformation properties of the spin structures are given by [24],

(7.2)
(
δ̃′
δ̃′′
)

=
(
D −C

−B A

)(
δ′
δ′′
)

+ 1
2

diag
(
CDT

ABT

)
,

(
A B

C D

)
∈ Sp(4,Z)

while the period matrix transforms as Ω̃ = (AΩ +B)(CΩ +D)−1, det Im Ω̃ = | det(CΩ +D)|−2(det ImΩ), and
the ϑ constants obey

ϑ[δ̃]4(Ω̃)= ε4 det(CΩ +D)2ϑ[δ]4(Ω),

Ξ6[δ̃](Ω̃)= ε4 det(CΩ +D)6Ξ6[δ](Ω),
(7.3)Ψ10(Ω̃)= det(CΩ +D)10Ψ10(Ω).

Here, ε depends on both δ and the modular transformation, and satisfies ε8 = 1.3
Recall that the gauge-fixed amplitude (5.3), (6.2) has been shown to be independent of the points pa and qα . We

may then choose the points pa to make up either one of the two sets of 3 branch points defining δ. It turns out that
the most convenient choice for qα is to constrain them by the following split gauge condition

(7.4)Sδ(q1, q2)= 0.

The latter choice implies Ω̂IJ =ΩIJ , although no direct use is made of this fact.
With (6.2), the above choice of pa and (7.4), the chiral amplitude (5.3) for the spin structure δ can be evaluated

explicitly. We obtain in this way one of the main results of this Letter, which gives the contribution of each even
spin structure δ to the superstring measure

(7.5)dµ[δ](Ω)=
∏
I�J

dΩIJ

∫ ∏
α

dζ αA[δ] = 1
16π6

∏
I�J

dΩIJ
Ξ6[δ](Ω)ϑ[δ]4(Ω)

Ψ10(Ω)
.

Using the modular transformation properties of the measure
∏
I�J dΩ̃IJ = det(CΩ +D)−3∏

I�J dΩIJ , and the
above modular transformation rules, we obtain as an immediate consequence that the measure dµ[δ] is modular
covariant, i.e.,

(7.6)dµ[δ̃](Ω̃)= det(CΩ +D)−5 dµ[δ](Ω),
without any multiplicative phase factors arising.

3 It is important to remark that Ξ6[δ](Ω) is not a modular form since it depends on δ and the sign factor ε4 arises in its transformation laws.
Ξ6[δ](Ω) is thus different from the modular form Ψ6(Ω) of weight 6, which is obtained by summing 60 (syzygous) products of three ϑ4 each,
see [24].
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8. The GSO projection and cosmological constant

To implement the GSO projection [26], we have to sum over spin structures. Given the above modular
transformation laws of the measure, there is a unique choice of relative phase factors (namely, all ηδ = 1) leading
to a modular form,

(8.1)dµ(Ω)≡
∑
δ

dµ[δ](Ω).

In genus 1, GSO phases were related to the sign factors arising in the unique genus 1 Riemann relation. In genus 2,
however, there is a different Riemann relation for each of the 6 odd spin structures ν,

(8.2)
∑
δ

〈ν|δ〉ϑ4[δ](Ω)= 0,

and there is neither a unique nor a natural choice that leads to modular invariance. Therefore, the uniqueness and
naturality of the relative phases in (8.1) (and hence of the GSO projection in the even spin structure sector) should
be viewed as a major advantage over any mechanism for modular invariance based on Riemann identities.

Since the right-hand side of (8.1) is now known to be a modular form, it can be shown to vanish identically
in Ω ,

(8.3)
∑
δ

Ξ6[δ](Ω)ϑ4[δ](Ω)= 0

by examining its behavior along the divisor of Riemann surfaces with nodes. This identity does not follow from
the Riemann identities. Rather, it is equivalent to the genus 2 identity that a modular form of weight 8 must be
proportional to the square of the unique modular form of weight 4. Altogether, we have obtained a proof from first
principles that the two-loop cosmological constant Λ is given by an integral over moduli space which vanishes
point by point, and hence Λ must also vanish. For the type II superstrings,

(8.4)Λ= 1
28π12

∫
(det ImΩ)−5

∣∣∣∣∣ ∏
I�J

dΩIJ

∑
δ Ξ6[δ](Ω)ϑ4[δ](Ω)

Ψ10(Ω)

∣∣∣∣∣
2

= 0.

We have an analogous expression for the heterotic strings which also vanishes using (8.3). Finally, the asymptotic
behavior of the measure as Ω approaches the boundary of moduli space for a separating degeneration (the non-
separating case is analogous) is obtained by decomposing the period matrix and the spin structure consistently with
the separation,

(8.5)Ω =
(
τ1 τ

τ τ2

)
, δ =

(
µ1
µ2

)
or δ =

(
ν0
ν0

)
.

Here, τ → 0 in the degeneration while the genus 1 moduli τ1,2 remain finite; µ1 and µ2 are one of the three even
and ν0 is the unique odd spin structures on each separated genus 1 surface. The separating degeneration limit of
the measure is then given by

dµ

[
µ1
µ2

]
(Ω)→ 1

210π8τ 2 〈µ1|ν0〉〈µ2|ν0〉ϑ1[µ1](τ1)
4ϑ1[µ2](τ2)

4

η(τ1)12η(τ2)12 dτ1 dτ2 dτ,

(8.6)dµ

[
ν0
ν0

]
(Ω)→ 3τ 2

26π4 dτ1 dτ2 dτ.

The first 9 spin structures (with even spin structures µ1 and µ2 on each genus 1 part) exhibit the tachyon pole on
each genus 1 part, and the tachyon and massless intermediate state divergences, as expected.4 The last spin structure

4 This behavior for fixed δ coincides with the one of the bosonic string [17,25], as expected.
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(with odd spin structure ν0 on each genus 1 part) has no tachyon and no massless intermediate state divergences,
as expected.

9. Scattering amplitudes

The vertex operators for the scattering of N massless bosons are given by

(9.1)
N∏
i=1

V (ki, εi )=
N∏
i=1

∫
d2|2zi E(zi)εµii ε̄

µ̄i
i D+XµiD−Xµ̄i eikiµi X

µi
(zi).

As in the case of the measure, the superstring scattering amplitudes require a GSO summation over spin structures
of the conformal blocks of 〈∏N

i=1 V (ki, εi )〉X in the Xµ superconformal field theory. The following formulas
together with (8.3) are the proper analogues in genus 2 of the Riemann identities in genus 1, and may be used to
carry out the required summations,∑

δ

Ξ6[δ](Ω)ϑ[δ](Ω)4Sδ(z1, z2)
2 = 0,

(9.2)
∑
δ

Ξ6[δ](Ω)ϑ[δ](Ω)4Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z1)= 0.

The 0-, 1-, 2- and 3-point functions in both the type II and the heterotic strings are then found to vanish pointwise
on moduli space and without the appearance of boundary terms.

The 4-point function receives contributions from two distinct parts. The first arises from the connected part of
the correlators

(9.3)

〈
S(z)S(w)

4∏
i=1

V (ki, εi)
chi

〉
and

〈
T (z)

4∏
i=1

V (ki, εi)
chi

〉
.

The second arises from the disconnected part

(9.4)
〈
S(z)S(w)

〉〈 4∏
i=1

V (ki, εi )
chi

〉
and

〈
T (z)

〉〈 4∏
i=1

V (ki, εi)
chi

〉
of these correlators and combines with the gauge fixing determinants into a contribution proportional to the measure
dµ[δ](Ω). The connected part is more complicated and requires an independent treatment to appear in a later
publication.

The disconnected part (for example for the type II superstrings) is given by

(9.5)

〈 4∏
i=1

V (εi, ki)

〉
= g2

s δ(k)

∫ |∏I�J dΩIJ |2
(det ImΩ)5

4∏
i=1

∫
Σ

d2zi |F |2 exp

(
−
∑
i<j

ki · kjG(zi, zj )
)
.

Here, gs is the string coupling, the scalar Green’s function is given by

(9.6)G(z,w)= − log
∣∣E(z,w)∣∣2 + 2π Im

w∫
z

ωI (ImΩ)−1
IJ Im

w∫
z

ωJ

while k is the total momentum, and F is a holomorphic 1-form in each zi , given by

(9.7)F = CSS(1234)+
∑

(i,j,k)=perm(2,3,4)

CT (1i|jk)T (1i|jk).
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The combinations CS and CT are kinematical factors, which depend only on the polarization vectors εi and the
external momenta ki through the gauge invariant combinations f µνi ≡ ε

µ
i k

ν
i − ενi k

µ
i and are given by

CS = f
µν
1 f

νµ
2 f

ρσ
3 f

σρ
4 + f

µν
1 f

ρσ
2 f

νµ
3 f

σρ
4 + f

µν
1 f

ρσ
2 f

σρ
3 f

νµ
4 − 4f µν1 f

νρ
2 f

ρσ
3 f

σµ
4

− 4f µν1 f
ρσ
2 f

νρ
3 f

σµ
4 − 4f µν1 f

νρ
2 f

σµ
3 f

ρσ
4 ,

(9.8)CT (ij |kl)= f
µν
i f

ρσ
j f

νµ
k f

σρ
l − f

µν
i f

ρσ
j f

σρ
k f

νµ
l + 2f µνi f νσj f

σρ
k f

ρµ
l − 2f µνi f νσj f

ρµ
k f

σρ
l .

The kinematical combination CS coincides with the unique kinematical invariant of the NS 4-point function
encountered at tree and 1-loop level, which is often expressed in terms of the rank 8 tensor t (see [1,27]),

(9.9)CS = −8tκ1λ1κ2λ2κ3λ3κ4λ4f
κ1λ1
1 f

κ2λ2
2 f

κ3λ3
3 f

κ4λ4
4 .

Finally, the forms S and T are given by

S(1234)= − 1
192π6Ψ10

ωI (z1)ωJ (z2)ωK(z3)ωL(z4)
∑
δ

Ξ6[δ]ϑ[δ]3∂I ∂J ∂K∂Lϑ[δ](Ω),

(9.10)T (ij |kl)= − 1
8π2 ω[1(zi)ω2](zj )ω[1(zk)ω2](zl).

The δ-sum for the T -term was carried out explicitly, and no Ψ10 appears in its contribution. S and CS are totally
symmetric, while T and CT are odd under the interchange of i ↔ j or k ↔ l. As a result, the T -term is novel at
2 loops and could not exist at 1 loop.

The disconnected part of the 4-point function for massless bosons, calculated above, is finite.5 Recall that the
modular form Ψ10(Ω) vanishes of second order along the divisor of separating nodes. This corresponds to the
propagation of a tachyon, and was responsible for divergence in the bosonic string [25]. Here however, the vector

(9.11)
∑
δ

Ξ6[δ](Ω)ϑ3[δ](Ω)∂I∂J ∂K∂Lϑ[δ](Ω),

also vanishes of second order along the divisor of separating nodes, rendering the superstring amplitude finite. The
A-term is manifestly finite.

In the low energy limit, the exponential factor of the scalar Green’s function in (9.5) tends to 1. It is instructive to
identify the kinematical factors that emerge from the integration over the 4 vertex insertion points zi of |F |2 in (9.5)
in the type II superstrings (analogous expressions may be derived for the heterotic strings). The first contribution is
from the product CS 
CS , and yields the well-known t tR4 term of four Riemann tensors contracted with two copies
of the rank 8 tensor t of (9.9) as obtained in [27]. As argued in the preceding paragraph, this contribution is given
by a convergent integral. The second contribution is from the products CS 
CT ; it vanishes in view of the complete
symmetry in the points zi in S and the antisymmetry in two pairs of points in T . The third contribution is from the
product CT 
CT for which the zi integrals may be carried out using the Riemann bilinear relations. The resulting
kinematical factors is again a quadrilinear in the Riemann tensor and is proportional to

CT 
CT → +(RαβµνRαβµν)2 −RαβµνR
γ δµνRαβρσRγ δρσ + 4RαβµνRγ δµνRβγρσRδαρσ

− 4RαβµνRδαµνRβγρσRγ δρσ + 4RαβµνRβγ νρRγ δρσRδασµ
(9.12)− 4RαβµνRβγ νρRδαρσRγ δσµ.

While it is possible that this term, which arose from the disconnected contributions in (9.4), will be cancelled by
similar contributions arising from the connected contributions in (9.3), the above contribution to the low energy

5 This is the case at least when the Mandelstam variables ki · kj are purely imaginary. As is now well known [19], finiteness for general
ki · kj cannot be read off directly, but has to be established by analytic continuation.
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effective action has at least one remarkable property: the integral over moduli space becomes simply the volume
of moduli space with respect to the Sp(4,Z) invariant volume form

∏
I�J |dΩIJ |2(det ImΩ)−3. We note that

the problem of loop corrections in type II superstrings and their contribution to low energy effective actions has
witnessed a resurgence of interest recently (see, for example, [28]).

10. Compactification with worldsheet supersymmetry

Our methods extend easily to compactifications of some of the space–time directions to a manifoldC, under the
following basic assumptions

• the compactification only modifies the matter conformal field theory, leaving the superghost part unchanged;
• the compactification respects N = 1 local worldsheet supersymmetry, so that the super-Virasoro algebra with

matter central charge c= 15 is preserved.

Under these conditions, the superstring measure is independent of any choices of gauge slice, and a simple
prescription for its calculation can be given in terms of the OPE of two supercurrents. Denote by C, respectively,
M the fact that the corresponding object is considered on the space–time manifold C, respectively, Minkowski
space M . In particular, the chiral partition functions for the matter parts of C and M will be denoted by ZC and
ZM , respectively. Then we have the following result,

AC[δ] =AM [δ]ZC
ZM

{
1 − 1

8π2

∫
d2z

∫
d2wχz̄

+χw̄+[〈SC(z)SC(w)〉C − 〈
SM(z)SM(w)

〉
M

]
(10.1)+ 1

2π

∫
d2z µ̂z̄

z
[〈
TC(z)

〉
C

− 〈
TM(z)

〉
M

]}
.

Here, µ̂z̄z is a Beltrami differential shifting the complex structure from ΩIJ to Ω̂IJ . The terms SC(z), SM(z),
TC(z), TM(z) are the supercurrents and stress tensors. The expressions 〈SC(z)SC(w)〉 and 〈T (z)〉 are the chiral
correlation functions of S(z) and T (z), or more precisely, the superconformal blocks of the corresponding
correlation functions. They are related by the OPE,

SC(z)SC(w)= 1
4
TC(z)+ TC(w)

z−w
+ (z−w)OC(w)+O(z−w)2,

(10.2)SM(z)SM(w)= 1
4
TM(z)+ TM(w)

z−w
+ (z−w)OM(w)+O(z−w)2

for some non-universal operators OC and OM . The expression AC [δ] is independent of µ̂z̄z within its conformal
class since 〈TC(z)〉C − 〈TM(z)〉M is a holomorphic 2-form. The argument for the supercurrents is similar. Indeed,
since the ghost parts of SC(z) and SM(z) coincide, all the singularities in z and w with the insertion points pa and
qα are the same, and cancel between the C and the M contributions. Thus the only possible singularity in the SS
correlator is when z→w, and these contribute to the supersymmetry variation δξχz̄+ = −2∂z̄ξ+. Just as in the flat
Minkowski case, this singularity is cancelled precisely by the variation δξ µ̂z̄z = ξ+χz̄+, in view of the OPE. Thus
〈SC(z)SC(w)〉C − 〈SM(z)SM(w)〉M is singularity free, and AC[δ] is slice independent, just as A[δ] was.

It is then straightforward to evaluate AC[δ], for example, by collapsing all points pa to a single point, or by
going to the gauge (7.4). In particular, in the gauge (7.4), we find

(10.3)AC[δ] = ZC

ZM

{
Z + ζ 1ζ 2

16π6
Ξ6[δ]ϑ[δ](0)

Ψ10
− ζ 1ζ 2

4π2 Z
〈
SC(q1)SC(q2)

〉}
,
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where Z is the basic Minkowski space–time matter—ghost correlator

(10.4)Z =
〈∏
a

b(pa)
∏
α

δ
(
β(qα)

)〉/
det
(
ωIωJ (pa)

) · det〈χα|ψ∗
β 〉.

The model of [29] is given by compactification on an orbifold. The above formulas provide an explicit and
consistent framework for the calculation of the cosmological constant in this model and others.
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