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ABSTRACT

Plasmalogens are a unique class of membrane glycerophospholipids containing a fatty alcohol with a vinyl-
ether bond at the sn-1 position, and enriched in polyunsaturated fatty acids at the sn-2 position of the
glycerol backbone. These two features provide novel properties to these compounds. Although plasmalogens
represent up to 20% of the total phospholipid mass in humans their physiological roles have been challenging
to identify, and are likely to be particular to different tissues, metabolic processes and developmental stages.
Their biosynthesis starts in peroxisomes, and defects at these steps cause the malformation syndrome,
Rhizomelic Chondrodysplasia Punctata (RCDP). The RCDP phenotype predicts developmental roles for
plasmalogens in bone, brain, lens, lung, kidney and heart. Recent studies have revealed secondary plasmalogen
deficiencies associated with more common disorders and allow us to tease out additional pathways dependent
on plasmalogen functions. In this review, we present current knowledge of plasmalogen biology in health and
disease. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health
and Disease.
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1. Introduction

In 1924, Feulgen and Voigt [2] coined the term plasmalogen to de-
scribe an unknown compound that produced a plasma aldehyde after
acid treatment. By 1957, Marinetti and Erbland [3] had characterized
the parent compound as a glycerophospholipid (GP) containing an acid
labile vinyl ether group at the sn-1 position. The chemical nature of the
vinyl ether group was referred to as a ‘masked’ aldehyde by Ford [4].
Plasmalogens are widely found in anaerobic bacteria, invertebrate and
vertebrate animal species. Their absence in aerobic and facultative aero-
bic bacteria, and most fungi and plants, suggests an appearance, disap-
pearance and reappearance of plasmalogens in evolution, supported by
major differences in their biosynthesis between anaerobic bacteria and
animals. This interrupted evolution might be explained by the lability
of the vinyl-ether bond to oxidation and the ability of higher organisms

Abbreviations: Pl, phospholipid; GPA, glycerophosphaditic acid; PIsEtn,
plasmenylethanolamine; PlsCho, plasmenylcholine; GP, glycerophospholipids; GPCho,
glycerophosphocholine; GPEtn, glycerophosphoethanloamine; DHA, docosahexaenoic
acid; AA, arachidonic acid; ROS, reactive oxidant species; PLA2, phospholipase A2;
APP, amyloid precursor protein; GPA, glycerophosphaditic acid; CHO cells, Chinese
Hamster Ovary cells; RCDP, Rhizomelic Chondrodysplasia Punctata; CDP, cho-
ndrodysplasia punctata; ZSD, Zellweger spectrum disorders; AD, Alzheimer disease;
NFT, neurofibrillary tangles; Z, cis double bonds; 1-0-(1Z-alkenyl), vinyl ether bond [1]
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to utilize this in an advantageous manner, as well as to enable other
unique functions that emerged in multicellular animals [5].

1.1. General structure

GP species are distinguished by their polar head group at the sn-3 po-
sition of the glycerol backbone, mainly being choline or ethanolamine,
and to a lesser extent, inositol, serine or rarely, threonine. Further diver-
sity is introduced by the components at the sn-1 and sn-2 positions, com-
posing subclasses of diacyl and ether GP. Ether GP species differ from the
more common diacyl subclass in having a fatty alcohol, rather than a fatty
acid, at the sn-1 position. The fatty alcohols utilized are mainly restricted
to saturated C16 (C16:0), or saturated and mono-unsaturated C18
(C18:0, C18:1) carbon chains and are linked by an unmodified 1-0-alkyl
ether bond, also termed a plasmanyl GP, or modified to contain a vinyl
ether, or 1-0-(1Z-alkenyl) bond, termed a plasmenyl GP or plasmalogen
(Fig. 1) [1]. The majority of ether GP species are plasmalogens. At the
sn-2 position, plasmalogens are enriched in polyunsaturated fatty acids,
specifically docosahexaenoic, C22:6 w—3 (DHA), or arachidonic acid,
C20:4 ®—6 (AA). In general, 1-0-alkyl groups are more prominent in
choline GP (GPCho) and typified by platelet activating factor, a potent in-
flammatory mediator having the structure 1-0-alkyl-2-acetyl-sn-GPCho.
1-0-(1Z-alkenyl) groups are found primarily in ethanolamine GP (GPEtn).

1.2. Plasmalogen distribution in tissues

Plasmalogens constitute ~15-20% of total phospholipids in cell mem-
branes, with >50% of the GPEtn fraction in brain, heart, neutrophils and
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Fig. 1. Structures of Diacyl GP, Plasmanyl GP and Plasmenyl GP, or Plasmalogen. X denotes the polar head group, which is typically ethanolamine or choline. R1 denotes the carbon

chain at the sn-1 position, and R2 at the sn-2 position.

eosinophils; in regions of the brain they may constitute up to almost
90% of the GPEtn fraction [6]. They are also enriched in kidney, lung,
and skeletal muscle (Table 1). Cardiac and skeletal muscle, as well as ma-
ture spermatozoa contains a high proportion of both PIsEtn and PlsCho
species. Plasmalogens are also significant components of subcellular
membranes including the nucleus, ER, post-Golgi network and mito-
chondria; however, they have not been detected in peroxisome mem-
branes [7]. They are also concentrated in specialized membranes, such
as sarcolemma and myelin, and secreted membranes such as synaptic
vesicles, secretory granules, and surfactant. The lowest amounts of
plasmalogen are found in liver. This could be explained by their synthesis
in liver, and subsequent transport by lipoproteins to other tissues [8]. Tis-
sue plasmalogen levels also relate to organism age. Healthy neonates
have significantly lower erythrocyte plasmalogen content than older

children [9]. The total amount of brain plasmalogens increases dramati-
cally during the developmental phase of myelination and reaches maxi-
mum levels by around age 30 years [10]. Finally, plasmalogen content of
tissues generally decreases in aged mammals [11,12].

1.3. Methodology to assay plasmalogens

The methodology to measure tissue plasmalogens has undergone
considerable refinement over the past few decades. In the past, GP
species were separated by thin layer, paper or column chromatogra-
phy methods after cleavage of the 1-0-(1Z-alkenyl) groups by iodine
addition, exposure to HCL fumes, or other preparations of the alde-
hyde derivative. These methods were cumbersome and subject to
differences in plasmalogen recoveries [13]. Currently, plasmalogens

Table 1
Plasmalogen content in different mammalian tissues.
Species Tissue PIsEtn (%GPEtn ) PlsCho (%GPCho) PIsEtn (%total PL)? PlsCho (%total PL)* Plasmalogen (% total PL)? Reference®
Human Brain 58 1 20,224 0.8,0.9 22 [111], [112]
Heart 53 26 15,17 11,16
Kidney 46 5 14 4.7
Skeletal muscle 48 19 14 6.5
Liver 8 4.7 34
Gray matter [6], [113]
Frontal cortex 57 54
Parietal cortex 58 51
Temporal cortex 56
Cerebellum 63
White matter
Frontal cortex 84 76
Parietal cortex 81 100
Temporal cortex 83
Cerebellum 78
Mouse Cortex 46
Cerebellum 53
Rat Cerebellum 26.2 [114]
Cortex 21.8
Hippocampus 234
Brainstem 319
Midbrain 23.8
Kidney 20 2.3 12 [113],[115]
Liver 33 0.4 34
Lung 42 1.6 16
Human Neutrophils 68 3.6 [116]
Eosinophils 72 4 [117]
Erythrocytes 20 [105]
Lens 70 14 [118]
Rat Plasma 36 [8]
LDL 322 19
HDL 46.3 24
VLDL 14 1.6
Mouse Surfactant 38 1.5 [73]
Rat Brain synaptic vesicles 16 [119]
Dog Heart sarcolemma 73 57 53 [120]
Rat Mature spermatozoa 42 52 38 [121]
Hamster CHO cells 35 0 11 0 11 [7], [65]

@ Total phospholipid content includes cardiolipin, GPEtn, PIsEtn, GPCho, PIsCho, GPIns, GPser, and sphingomyelin.
b Methods to measure plasmalogens include thin layer chromatography, gas chromatography, NMR, and mass spectroscopy.
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are measured after trans methylation of the tissue phospholipid frac-
tion, which converts 1-0-(1Z-alkenyl) groups to dimethylacetals and
fatty acids to methyl esters, followed by gas chromatography to iden-
tify these derivatives [14]. The relative plasmalogen amount is calcu-
lated as a ratio of dimethylacetals to methyl esters. However, the full
diversity of plasmalogen species cannot be appreciated by this meth-
od, and it is being replaced by liquid chromatography tandem mass
spectrometry (LC-MS/MS) methods. LC-MS/MS can accurately iden-
tify low levels of lipids in complex mixtures and provide characteris-
tic fragment ions for the head group class and fatty acids/alcohols
esterified to the glycerol backbone. This facilitates the identification
of different plasmalogen subspecies, as well as novel plasmalogens
that may have tissue specific functions. Quantification is performed
on a relative or absolute basis, with the use of labeled internal stan-
dards [15,16].

2. Plasmalogen biosynthesis, regulation, transport and turnover
2.1. Biosynthesis

Ether lipids are synthesized in a common pathway that begins with
the association of the peroxisomal matrix enzymes, glyceronephosphate
O-acyltransferase (GNPAT) and alkylglycerone phosphate synthase
(AGPS), on the luminal side of the peroxisome membrane (Fig. 2) (for re-
view, see [17]. The initial reaction step is the acylation of dihydroxyace-
tone phosphate (DHAP) at the sn-1 position by GNPAT, transfer of acyl-
DHAP across the enzyme active sites, followed by the exchange of the
acyl group (fatty acid) for an alkyl group (fatty alcohol) by AGPS [18].

Evidence that GNPAT and AGPS physically interact is supported by
crosslinking experiments in human fibroblast homogenates that
showed high molecular weight complexes of sizes consistent with a
stoichiometry of two AGPS and one GNPAT molecule [19]. Although

AR1

1-0-alkyl-DHAP

Peroxisome

4

1-0-alkyl-2-hydroxy-sn-GPA
5

1-0-alkyl-2-acyl-sn-GPA

6
1-0-alkyl-2-acyl- sn-glycerol

7

Endoplasmic reticulum

the monomeric enzymes retain activity in whole cell lysates, com-
plexing may be required for substrate channeling inside the peroxi-
some to increase reaction efficiency [20]. In AGPS null fibroblasts,
there is a reduction in GNPAT levels and activity consistent with a re-
quirement for AGPS protein to maintain complex stability. Recently,
Itzkovitz et al. [21] using fibroblasts from patients with different
AGPS missense alleles, showed that only a catalytically active AGPS
could promote GNPAT enzyme activity, thus further defining the re-
quirement for substrate channeling in this reaction.

The AGPS reaction follows a ‘ping-pong’ mechanism at the active site,
where the fatty acid is removed from DHAP before the binding of the
fatty alcohol [22]. The recently solved crystal structure of AGPS [23] is
consistent with this mechanism, and shows a hydrophobic tunnel able
to contain a 16 carbon chain, a gating helix that functions in substrate
binding and product release, and a catalytic center that forms a flavin
linked intermediate with DHAP to form the ether bond. The 1-alkyl-
DHAP formed is reduced to 1-0-alkyl-2-hydroxy-sn-glycerophosphate
(GPA) by an acyl/alkyl-DHAP reductase located in both peroxisomal
and ER membranes [24]. Further modifications to form mature
plasmalogens take place in the ER and are similar to those utilized for
diacyl GP. First, an acyl group is placed at the sn-2 position by an alkyl/
acyl-GPA acyltransferase and the phosphate group is removed by phos-
phatidic acid phosphatase, to form the corresponding 1-0-alkyl-2-acyl-
sn-glycerol. Ethanolamine phosphotransferase, in the presence of CDP-
ethanolamine, results in the formation of 1-0-alkyl-2-acyl-sn-GPEtn.
This compound is dehydrogenated at the 1- and 2-positions of the
alkyl group by a cytochrome b5-dependent microsomal electron trans-
port system and plasmenylethanolamine desaturase, to form the vinyl
ether bond of plasmalogens. Plasmanylcholine is similarly formed from
1-0-alkyl-2-acyl-sn-glycerol using choline phosphotransferase. Howev-
er, since there is no plasmenylcholine desaturase, choline plasmalogens
are formed only after hydrolysis of ethanolamine plasmalogens, forming

Fatty acid

atty alcohol

1-0-(1Z-Alkenyl}-2-acyl-sn-GPCho

10
1-0-(1Z-Alkenyl)-2-acyl-sn-glycerol

9

1-0-alkyl-2-acyl-sn-GPEtn(Cho) -» 1-0-(1Z-Alkenyl)-2-acyl-sn-GPEtn

Fig. 2. Metabolic pathway for plasmalogen synthesis. Species indicated by (Cho) represent the choline equivalent of the corresponding GPEtn species. Enzymes are: (1) fatty alcohol
reductase 1, (2) glycerone phosphate O-acyltransferase, (3) alkylglycerone phosphate synthase, (4) alkyl/acyl DHAP reductase, (5) alkyl/acyl glycerophosphate acyltransferase,
(6) phosphatidic acid phosphatase, (7) ethanolamine (choline) phosphotransferase (8) plasmenylethanolamine desaturase, (9) phospholipase C, (10) choline phosphotransferase.
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1-0-(1Z-alkenyl)-2-acyl-sn-glycerol, which can then be modified by cho-
line phosphotransferase and CDP-choline [25].

2.2. Regulation

The proposed rate-limiting step of ether lipid synthesis is the gen-
eration of the fatty alcohol by FARI1, a fatty alcohol reductase that
preferentially reduces C16 and C18 fatty acyl-CoAs. Although FAR1
does not have a peroxisome matrix targeting signal nor a classic
trans membrane domain, it is found tightly bound to the peroxisome
membrane on the cytosolic face [26]. A similar enzyme, FAR2, is less
broadly distributed in murine tissues than FAR1, and may have
more specialized functions. FAR1 is subject to feedback regulation
by cellular plasmalogen levels, which induce FAR1 protein degrada-
tion [27]. The mechanism of this feedback regulation, which would
include transmission of the cellular signal for plasmalogen levels
from the ER to the peroxisome, remains to be determined. The fatty
alcohol substrate for AGPS could also be derived directly from dietary
intake. Although it can be synthesized within the peroxisome from
acetyl-CoA supplied by 3-oxidation [28], this pathway is not likely
to be significant given that plasmalogen levels are normal in patients
with single enzyme defects in peroxisomal 3-oxidation.

2.3. Transport

Membrane lipids produced in the ER are transported to organelle
and plasma membranes through vesicular pathways involving Golgi
and endosomal compartments, or non-vesicular pathways using
lipid transporter proteins. A recent study in CHO cells demonstrated
that PIsEtn was transported to cell membranes via a non-vesicular
pathway dependent on cellular ATP levels [7]. Nascent lipids are
asymmetrically distributed to the inner or outer plasma membrane
leaflet, with GPEtn species concentrated on the inner, and GPCho on
the external leaflet.

2.4. Turnover

Membrane plasmalogen composition is tightly controlled by syn-
thesis, remodeling, signaling induced hydrolysis and degradation. Sig-
naling induced hydrolysis at sn-2 occurs through receptor mediated
stimulation of a phospholipase A2 (PLA2) that is calcium independent,
plasmalogen selective and tissue specific [29]. In plasmalogen remodel-
ing the sn-2 acyl group removed by PLA2 is replaced with a different
acyl group via lysophospholipid acyltransferases. Phospholipase C hy-
drolyzes the bond between phosphate and the glycerol backbone, and
phospholipase D hydrolyzes the bond between phosphate and the
head group (Fig. 3). These reactions produce a series of lipid messengers
parallel to that of diacyl GP: 1-0-(1Z-alkenyl)-2-lyso-sn-GPEtn and 1-0-
(1Z-alkenyl)-2-lyso-sn-GPCho, 1-0-(1Z-alkenyl)-2-lyso-sn-GPA, and 1-
0-(1Z-alkenyl)-2-lyso-sn-glycerol. Lysoplasmalogenase is specific for
the sn-2-deacylated (lyso) form of plasmalogen and catalyzes hydrolyt-
ic cleavage of the vinyl ether bond, forming fatty aldehyde and GPEtn or
GPCho. The latter can be re-acylated to form the corresponding diacyl
GP, and the fatty aldehyde can be oxidized to a fatty acid or reduced
to a fatty alcohol. Lysoplasmalogenase activity in tissues inversely cor-
relates to plasmalogen levels, being lowest in brain and heart, and
highest in liver and small intestinal mucosa and may also be important
in regulating tissue plasmalogen levels [30]. The ether bond in
alkylglycerols can be oxidized by glycerol-ether monooxygenase,
which releases the fatty aldehyde, and results in a free hydroxyl group
at the sn-1 position [31].

Data generated from a 5 minute intravenous infusion of labeled
C16:0 fatty alcohol, hexadecanol, into adult rats, showed 90% incorpora-
tion into plasmalogens in brain gray matter, with less than 10% in mye-
lin. Furthermore, the half-life of plasmalogens in brain gray matter was
10-30 min, and 10-30 days in myelin [32]. This is consistent with a

metabolically active role for gray matter plasmalogens, and a relatively
inactive, or structural role for myelin plasmalogens. In concordance,
plasmalogen species with a high degree of unsaturation at the sn-2 po-
sition are enriched in gray matter, where they are thought to facilitate
membrane fusion events, cell-cell communication and provide a
reservoir for bioactive signaling lipids. Saturated or monounsaturated
species predominate in myelin, enabling a more compact and stable
structure [6].

3. Biological roles attributed to plasmalogens

The majority of plasma membrane lipids are GP. Structurally, they
help maintain membrane physical bilayer properties such as phase
transition temperature from gel to fluid state, area per molecule,
packing of acyl chains and lateral domains [33]. They are also required
for the proper function of integral membrane proteins and for the
generation of lipid second messengers. Plasmalogen species add sev-
eral unique functions that are a direct property of the sn-1 vinyl ether
bond and the enrichment of polyunsaturated fatty acids at the sn-2
position.

3.1. Structural attributes

Although the sn-1 acyl chain is always oriented perpendicular to
the membrane surface, in diacyl GP the sn-2 acyl chain contains a
bend that increases the molecular cross sectional area. In PIsEtn and
PlsCho, NMR analysis predicts the absence of this bend, thus bringing
the proximal portions of the sn-1 and sn-2 chains closer together and
nearly parallel [34,35]. The resulting, effectively longer, aliphatic
chain decreases fluidity, increases order and promotes the formation
of non-bilayer phases at lower temperatures; the latter are necessary
for fusion and fission events. In addition, the lack of the carbonyl ox-
ygen at sn-1 reduces hydrophilicity of plasmalogens. This is an exclu-
sive attribute of the vinyl ether bond, as these properties are not
observed in plasmanyl GP.

Lipid raft microdomains are lateral membrane domains, enriched
in cholesterol and sphingomyelin, and form a ‘liquid ordered phase’
combining the higher order and melting temperatures of a solid
with the higher translational mobility of a liquid. These domains con-
tain proteins required for cell signaling, cell-cell interactions, and en-
docytosis. Pike et al. [36] show that lipid rafts, isolated from human
epidermal carcinoma cells contain a 30% increase in total PIsEtn as
compared to whole plasma membrane fractions, which is further
enriched in AA. Honsho et al. [7] found 1.7 fold enrichment of
plasmalogens in lipid raft domains of CHO cells. The enrichment of
plasmalogens in lipid rafts, if universal, might facilitate membrane
phase and signal transduction processes.

3.2. Oxidative potential

In addition to altering membrane properties, the hydrogen atoms
adjacent to the vinyl ether bond have relatively low disassociation en-
ergies and are preferentially oxidized over diacyl GP when exposed to
various free radicals and singlet oxygen [37]. Plasmalogens are con-
sumed in this reaction. This was proposed to spare the oxidation of
polyunsaturated fatty acids and other vulnerable membrane lipids,
suggesting a role for plasmalogens as sacrificial oxidants. Sindelar et
al. [38] showed that the oxidative products of plasmalogens are un-
able to further propagate lipid peroxidation; thus plasmalogens may
terminate lipid oxidation. However, it remains to be determined
whether the oxidative products themselves might be harmful, and
these include free aldehydes, 1-hydroxy (or lyso)-2-acyl-sn-GP, 1-
formyl-2-acyl-sn-GP, allelic hydroperoxides, epoxides and hemiace-
tals [39] (Fig. 3).
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Fig. 3. Pathways involved in turnover, remodeling and degradation of plasmalogens. X denotes the polar head group, which is typically ethanolamine or choline. R1 denotes the
carbon chain at the sn-1 position, and R2 at the sn-2 position. Species indicated by (Cho) represent the choline equivalent of the corresponding GPEtn species. See text for

discussion.

3.3. Reservoirs for second messengers

Since plasmalogens are enriched in AA and DHA, they may func-
tion as reservoirs for these biologically active lipid mediators, re-
leased by PLA2 hydrolysis. AA is a substrate for the synthesis of
prostaglandins, thromboxanes and leukotrienes; DHA derived media-
tors are resolvins, docosatrienes and neuroprotectins, all of which
regulate inflammatory responses [40]. Finally, high levels of
lysoplasmalogen, in addition to membrane perturbing effects, are as-
sociated with electrophysiological disturbances in myocytes, inhibi-
tion of Na®-K"-ATPase in renal cells and activation of cAMP-
dependent protein kinase A [30].

4. Plasmalogen deficiency in disease states
4.1. Inherited disorders of plasmalogen synthesis

The only known inherited causes of plasmalogen deficiency are
the peroxisomal disorders, RCDP and Zellweger spectrum. Whereas
plasmalogen deficiency contributes to pathology in Zellweger spec-
trum, it is the direct and primary cause of pathology in RCDP. The
overall incidence of RCDP is ~1/100,000. The majority of RCDP cases
are due to mutations in the gene encoding the peroxisomal protein
transporter, PEX7 (RCDP type 1) and the remainder are caused by de-
fects in the genes encoding the two peroxisomal enzymes required to
initiate plasmalogen synthesis. These are GNPAT in which defects
cause RCDP type 2 and AGPS in which defects cause RCDP type 3. Al-
though the PEX7 transporter is required for peroxisome localization
of AGPS, PhyH and thiolase, only AGPS deficiency determines the
RCDP phenotype. This is supported by indistinguishable phenotypes
amongst all RCDP types and a direct correlation between phenotype
severity and amounts of residual plasmalogens. Milder patients, al-
though representing only 10% of RCDP, have ~1/3 of normal erythro-
cyte plasmalogens, which is a 10-40 fold increase over classical RCDP
[21,41]. Finally, patients with PEX7 defects and near-normal erythro-
cyte plasmalogen levels do not resemble RCDP at all, and instead

manifest a phenotype similar to adult Refsum disease (ARD), second-
ary to phytanic acid accumulation over time [41,42].

Patients with classical RCDP have a skeletal dysplasia characterized by
rhizomelia, chondrodysplasia punctata (CDP) or premature calcifications
in epiphyseal cartilage, delayed calcification of vertebral bodies and
metaphyseal abnormalities. Mineralization of cartilaginous structures
that normally do not ossify, like the larynx, trachea and intervertebral
discs, is also observed. Thus, there are components of abnormal, prema-
ture and delayed mineralization of cartilage. Rhizomelia and CDP can
be detected as early as 18 weeks of gestation by routine ultrasound
[43]. Postnatal X-rays document progressive epiphyseal changes, along
with metaphyseal splaying and irregularities involving multiple bones.
This results in profound growth retardation and limited joint mobility.
Growth plates show foci of degenerating resting zone chondrocytes,
and small and disorganized hypertrophic chondrocytes [44,45]. Few de-
velopmental milestones are obtained and most patients have seizures.
Central nervous system abnormalities are common, but nonspecific,
and include progressive cerebral atrophy with accompanying ventricular
enlargement, and decrease in white matter with gliosis [44]. Although
neuronal migration defects are not typically observed in RCDP, dysplastic
olivary bodies have been reported more than once, and a single patient
was reported with bifrontal pachygyria and polymicrogyria [46]. Spinal
stenosis and spinal cord tethering has also been reported [47]. Abnormal-
ities of myelination have been documented on MRI and MR spectroscopy
has shown increased levels of mobile lipids and myo-inositol, reduced
levels of choline, and the presence of acetate [48,49].

Cortical cataracts appear in the neonatal period. Histological
studies of lens showed proliferation of large, swollen epithelial
cells not forming any true lens fibers [50]. There is also an increased
frequency of cleft palate, cardiac and renal malformations in RCDP
patients [51,52]. Survival is decreased; 50% are alive at 6 years of
age and most succumb by adolescence. Pulmonary hypoplasia may
underlie some neonatal deaths [53] and chronic respiratory compro-
mise is often the cause of death in older patients [52]. In summary,
these phenotypes demonstrate that plasmalogens are critical for
brain, lens and bone development and their deficiency predisposes
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to cleft palate, cardiac and renal malformations, and to pulmonary
disease. Finally, the progressive changes in RCDP highlight the
sustained roles of plasmalogens in life-long tissue maintenance.
The current availability of several RCDP mouse models should
facilitate a better understanding of their roles in affected tissues
(see accompanying review by Brites).

4.2. Plasmalogen deficient cell lines

Numerous studies have been performed in PEX7, AGPS or GNPAT
deficient cell lines and provide evidence for cell-based plasmalogen
functions discussed below.

4.3. Membrane alterations

Plasmalogen deficient cells have shown consistently lower fluo-
rescence anisotropies of membrane-bound fluorophores as compared
to controls, indicating higher membrane lipid mobility and decreased
order [54]. However, fluorescence anisotropies are similar in mem-
brane lipids extracted from plasmalogen deficient and control cells,
indicating that additional properties of intact cell membranes such
as lateral domain organization and lipid-protein interactions might
play a role in the results obtained from intact cells [54]. Structural al-
terations in membranes were directly observed in cultured fibroblasts
from patients with RCDP2 and RCDP3. Thai et al. [55] showed reduced
number of smaller caveolae, flattened clathrin coated pits, dilated ER
and Golgi cisternae with accumulation of proteins inside, cholesterol
accumulation in perinuclear structures and reduced rate of transfer-
rin receptor endocytosis in clathrin pits. Membrane signaling defects
have also been demonstrated. Perichon et al. [56], using fibroblasts
from RCDP1 and Zellweger patients, as well as AGPS deficient CHO
cells showed decreased muscarinic cholinergic signal transduction,
measured by carbachol induction of low-Km GTPase activity and re-
duced amyloid precursor protein (APP) secretion. All protein subunits
of the GTPase were intact and APP levels were otherwise normal, in-
dicating a specific membrane defect in these cell lines. Styger et al.
[57] demonstrated higher 3-adrenergic receptor numbers and isopro-
terenol stimulated cAMP responses in fibroblasts from Zellweger syn-
drome patients. This effect was reduced after plasmalogen recovery
by 1-0-hexadecyl-sn-glycerol (chimyl alcohol) supplementation. Tif-
fany et al. [58] showed that RCDP fibroblasts expressed 5-fold fewer
plasma membrane interleukin-1 (IL1) receptors than control cell
lines, higher basal prostaglandin E2 (PGE2) levels and exaggerated
IL1 stimulated PGE2 levels. Van der Hoek et al. [59] noted the absence
of plasma Lipoprotein a Lp[a] in severe ZS and RCDP patients
unrelated to Lp[a] size polymorphisms and in spite of normal protein
synthesis in liver. The authors proposed that plasmalogen deficiency
impaired the cellular secretion of Lp[a].

4.4. Cholesterol trafficking

Mandel et al. [60] demonstrated decreased HDL mediated choles-
terol efflux in RCDP2 fibroblasts and a murine GNPT deficient macro-
phage cell line (RAW 108). Munn et al. [61] further analyzed this
cholesterol trafficking defect in AGPS and GNPAT deficient CHO
cells. They showed a defect in cholesterol transport from the cell sur-
face or endocytic compartments to the ER, where it is esterified by
Acyl-CoA: cholesterol acyltransferase (ACAT). However, the move-
ment of cholesterol from the ER or endocytic compartments to the
plasma membrane was normal, as well as general vesicular protein
trafficking in these cells. Thus plasmalogen deficiency did not alter
the rate of cholesterol transfer to HDL, instead it reduced the pool of
cholesterol available for efflux. The mutant phenotype in both studies
was corrected by supplementation with chimyl alcohol. Further
expanding on this work, Mankidy et al. [62] using GNPAT deficient
CHO cells showed that cholesterol esterification depends on PISEtn

containing polyunsaturated fatty acids. These cells had higher total
and free, but less esterified cholesterol in total cell lysates. After
supplementation with 1-0-hexadecyl-2-acyl-sn-glycerol, only PISEtn
with >3 unsaturations (DHA, AA and linolenic acid) could significant-
ly reduce free and increase esterified cholesterol. Supplementation of
HEK293 cells with 1-0-hexadecyl-2-DHA-sn-glycerol resulted in in-
creased cellular ACAT levels, thus providing a mechanism for the
observed increased cholesterol esterification. Taken together these
studies are consistent with a defect in the transport of LDL-derived
cholesterol from the cell surface and/or endocytic compartments to
the ER [61], resulting in accumulation of free cholesterol [55], reduced
esterified cholesterol [62] and less cholesterol available for HDL medi-
ated efflux [60].

4.5. Oxidative potential

CHO cells incorporate 12-(1’-pyrene) dodecanoate into membrane
lipids. Subsequent excitation of the pyrene moiety by long wavelength
UV light under aerobic conditions generates singlet oxygen and may ini-
tiate radical species, causing cell death. Zoeller et al. [63] showed that
plasmalogen deficient CHO cells are more sensitive to cell death than
wild type cells. This effect was corrected when chimyl alcohol was
added to the culture media. Furthermore, plasmalogens in wild type
CHO cells were specifically degraded by this treatment, and the products
suggested a mechanism of cycloaddition of the singlet oxygen to the
vinyl ether linkage, generating a dioxetane intermediate or a hydroper-
oxide. Subsequent hydrolysis would release 2-monoacyl GPEtn and the
corresponding fatty aldehyde. UV resistance could be restored with
chimyl alcohol, and was confirmed in RCDP fibroblasts by Hoefler et al.
[64]. In addition, Zoeller et al. [65], demonstrated that plasmalogen defi-
cient RAW cells, were more sensitive to chemical hypoxia, superoxides
and singlet oxygen. Recovery required the presence of plasmalogens,
and not their alkyl ether analogs. Overall, experimental evidence indi-
cates the preferential oxidation of the vinyl ether bond in plasmalogens
over double bonds in other membrane lipids.

Although plasmalogen deficient cells may be more sensitive to re-
active oxygen species (ROS), it is not clear that ROS levels are higher
in these cells. Jansen and Wanders [66] showed that ROS species were
not increased in RCDP and Zellweger syndrome fibroblasts compared
to wild type cells, using the free radical inducer, menadione as an in-
tracellular generator of reactive oxygen species, and cytochrome C re-
duction as an extracellular indicator of ROS. However, Khan et al. [67]
used siRNA to reduce GNPAT levels in rat glial cells and measured in-
creased ROS species by the membrane permeable fluorescent dye,
DCFH2-DA. Finally, although not using a plasmalogen deficient cell
line, Zoeller et al. [68] showed that increasing plasmalogen levels in
human pulmonary artery endothelial cells protected them during
hypoxia by prolonging survival and reducing reactive oxygen species
accumulation.

4.6. Storage depots for DHA and AA

Zoeller et al. [65] showed decreased DHA levels in RAW cell lines.
Supplementation with the plasmalogen precursor, chimyl alcohol, re-
stored both PIsEtn and DHA levels, supporting the notion that DHA is
primarily targeted to PIsEtn during its biosynthesis. However, this
was not the case for AA. In wild type cells, AA release was mainly
from PlIsEtn, while in plasmalogen deficient cells, the diacyl GPEtn
species was increased to compensate. Thus, DHA targeting may be
more selective for plasmalogen species than AA in some tissues.

4.7. Fatty alcohol accumulation
Rizzo et al. [69] demonstrated fatty alcohol accumulation in fibro-

blasts and plasma from RCDP and ZSD patients due to their impaired in-
corporation into ether lipids. In fibroblasts, fatty alcohols accumulated



1448 N.E. Braverman, A.B. Moser / Biochimica et Biophysica Acta 1822 (2012) 1442-1452

only after addition of palmitic acid (C16:0), which increased FAR activ-
ity without increasing fatty alcohol oxidation.

4.8. Secondary plasmalogen deficiency

We have focused on three common disease states— respiratory
disorders, Alzheimer disease and inflammatory conditions- in
which there has been cumulative evidence for plasmalogen deficien-
cy in order to highlight general themes that would be more widely
applicable. These conditions emphasize the structural, anti-oxidant
and signaling roles of plasmalogens. They also emphasize how these
general roles are adapted to tissue specific functions. Secondary
plasmalogen deficiency could result from decreased synthesis and/
or increased degradation.

4.9. Respiratory disease

Several studies have reported an association between reduced
plasmalogens and bronchopulmonary dysplasia (BPD), a leading cause
of morbidity in prematurely born infants. Lower plasmalogen levels in
tracheal aspirates from premature infants increase their risk to develop
BPD [70]. Premature infants who received surfactant preparations with
higher plasmalogen content had better respiratory outcomes [71]. The
addition of small amounts (2 mol%) of plasmalogens to surfactant-like
phospholipid mixtures further reduces surface tension and viscosity
[72], suggesting that a structural role for plasmalogens in surfactant.
Since plasmalogen levels are relatively low in newborns, this may
place the premature group at higher risk for plasmalogen deficiency.

Asthma prevalence is associated with ozone exposure, a chemically
reactive gas present in air pollution. Its damaging effects may relate to
oxidation of surfactant lipids [73]. Exposure of murine surfactant to
ozone selectively decreased plasmalogens by ~53%, whereas diacyl spe-
cies were not significantly decreased compared to controls. There was a
corresponding increase in 1-hydroxy-2-acyl-sn-GPEtn and aldehyde
derivatives, indicating specific degradation at the vinyl ether bond of
plasmalogens. Plasmalogen deficiency has also been linked to chronic
obstructive pulmonary disease (COPD). Metabolic profiling in a large
cohort of COPD patients showed a statistically significant correlation be-
tween plasmalogen deficiency and smoking; this was corroborated by
finding down-regulation of AGPS transcript in lung tissue from
smokers, suggesting a decrease in plasmalogen synthesis [74].

MALDI imaging MS, used to investigate anatomical distribution of
lipid species in histological sections of lung, showed that plasmalogens
were enriched on the edges of large and small airways, most likely in
pulmonary epithelial cell membranes [75]. Interestingly, peroxisome
numbers were substantially increased in Clara and alveolar type II pul-
monary epithelial cells, implying an increased requirement for peroxi-
some metabolism that would include plasmalogen synthesis [76].
Since the lung is a direct target of ROS, plasmalogens might protect
against respiratory disease by virtue of their role as an anti-oxidant.
Lung plasmalogens are particularly enriched in AA, also suggesting a
role in immune defenses. Finally, plasmalogens contribute a structural
role to surfactant. Taken together with the high respiratory morbidity
observed in RCDP patients, these data suggest that plasmalogen may
have key roles in normal lung physiology.

4.10. Neurodegeneration

Since brain contains the highest amounts of tissue plasmalogens, it is
not surprising that reduced brain plasmalogens can be demonstrated in
various neurodegenerative disorders. These include Alzheimer disease
[6], Parkinson's disease [77], Neimann Pick type C[78], Down syndrome
[79] and experimental autoimmune encephalomyelitis [80]. However,
it remains to be determined whether plasmalogen loss is a contributing
cause or downstream effect of pathology. It may be both, as demon-
strated by the finding that plasmalogen deficiency further aggravates

brain injury in the X-ALD mouse model [81]. In addition, decreased
PIsEtn in brain white matter from cerebral ALD patients is related to in-
creased ROS species [67]. We will use Alzheimer disease as a paradigm
for discussing plasmalogen deficiency in neurodegenerative disorders,
demonstrating that secondary plasmalogen loss does not preclude its
further contribution to disease progression.

4.11. Alzheimer disease (AD)

The pathophysiology of AD involves several factors including the
accumulation of neurofibrillary tangles (NFT), composed of intracel-
lular tau bodies, accumulation of extracellular amyloid 3 peptide
(AP) plaques and synaptic loss [82]. Oxidative and inflammatory
damage pursue. Although the only predictive factor for AD aside
from age is an ApoE4 genotype, an increasing number of studies has
shown that plasmalogen deficiency, as well as generalized peroxi-
some dysfunction, may also be a specific marker for AD pathology.
Thus far there has been no correlation between plasmalogen deficien-
cy and ApoE genotype, implicating that plasmalogen deficiency is an
independent marker [83].

AD patients have decreased PIsEtn and PlsCho in affected brain re-
gions and the extent of reduction is correlated to severity of disease
[84,85]. This selective plasmalogen decrease was not found in autopsy
brain samples from patients with Huntington's or Parkinson's disease.
Han et al. [6] correlated the plasmalogen deficiency in AD with the
patient's clinical dementia stage. The investigators found a dramatic
decrease of up to 40 mol% in plasmalogen content of white matter
at early AD stages, and a decrease of 10 mol% in gray matter at early
stages and 30 mol% in severe dementia. Wood et al. [86] showed
that erythrocyte plasmalogen levels also correlated to disease severi-
ty implying a systemic etiology for plasmalogen reduction.

Kou et al. [87] noted more extensive peroxisome-related alter-
ations in AD brain utilizing samples from a prospective study of
aging individuals. This unique study design, in which one brain hemi-
sphere was staged pathologically and the other studied biochemical-
ly, allowed direct correlation between biochemical findings and
amounts of NFT and plaques. These investigators found increased
very long chain fatty acids, decreased plasmalogens containing poly-
unsaturated fatty acids, increased peroxisome volume density in neu-
ronal cell bodies and decreased peroxisome numbers in neurites.
These changes showed a stronger association with tau, rather than
AP, accumulation. Although both are hallmarks of AD, NFT correlate
better with disease pathology, strengthening the association of re-
duced peroxisome functions with AD progression. Thus reduced
plasmalogens may be related to decreased synthesis secondary to
general loss of peroxisome functions in AD brain. In this regard,
Grimm et al. [88] showed that increased AP reduces AGPS protein
levels. Reduction in DHA levels observed in AD brain [89], could result
from deficient plasmalogens. Furthermore, reduced synthesis of DHA
was shown in AD liver, suggesting decreased synthesis of these pre-
cursors in the liver, as well as brain.

Loss of plasmalogens in the AD brain could also occur through ox-
idative damage, leading to plasmalogen degradation by ROS species.
In addition, increased catabolism of plasmalogens was suggested by
the finding of elevated plasmalogen specific PLA2 from the nucleus
basalis and hippocampal regions of AD brain [90,91]. This correlates
to the observed increase in lipid remodeling, as well as reduced levels
of DHA and AA in brain plasmalogen fractions [84,87].

Reduced plasmalogens might further enhance ongoing oxidative
damage in AD, as well as alter membrane properties to promote fur-
ther damage. The lipid environment affects APP processing, as its pro-
cessing enzymes are integral membrane proteins and the AR cleavage
takes place within the membrane. Increased membrane free choles-
terol increases the production of AR from amyloid precursor protein
(APP), whereas cholesterol esters stimulate non-amyloidogenic APP
degradation [92]. Plasmalogen deficiency, which results in higher
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membrane free cholesterol, would thus facilitate Ap production. Fur-
thermore, AR aggregation can be modulated by plasmalogens. Using a
sensitive fluorophore assay, Lee et al. [93] showed that, when Ap was
incubated with unilamellar vesicles composed of 1-(1Z-octadecenyl)-
2-arachidonyl-sn-GPEtn, there was inhibition of oligomer formation
and sluggish fibril formation. Depletion of neuroprotectin D1, a bioac-
tive molecule derived from DHA, may also have a role in A accumu-
lation [94]. Finally, loss of gray matter plasmalogens would be
expected to adversely affect synaptic structure and function, thus po-
tentially contributing to the synaptic dysfunction and neurotransmit-
ter depletion observed in AD.

4.12. Lipid signaling and disease states

Imbalances of major lipid signaling pathways contribute to disease
progression in chronic inflammation, metabolic syndrome, type II di-
abetes, neurodegenerative and cardiovascular diseases. Increased
lipid oxidation accompanies these pathological states and is associated
with decreased plasmalogen levels.

Plasmalogens are enriched in nascent lipoproteins secreted by cul-
tured rat hepatocytes where they may serve as endogenous plasma anti-
oxidants [8]. Colas et al. [95] evaluated LDL from obese patients with
metabolic syndrome and patients with type Il diabetes and found de-
creased PIsEtn levels (22% and 49% respectively), increased lipid peroxi-
dation, decreased cholesterol ester and increased triglyceride compared
to controls. PIsEtn levels were also found to be decreased by 20% in eryth-
rocyte membranes from hyperlipidemic patients.

Leukocyte myeloperoxidase generates hypochlorous acid (HOCI)
from hydrogen peroxide and chloride gas, as part of immune defense
reactions. Plasmalogens, already enriched in leukocytes, are one of the
primary targets of HOCI due to sensitivity of the vinyl ether bond to ox-
idants. The rate constants for HOCI dependent plasmalogen modifica-
tion are around 10 fold higher than their diacyl GP counterparts [96].
The direct products, a-chloro fatty aldehyde and 1-lyso-2-acyl-sn-GP
(Fig. 3), may produce a family of chlorinated lipids that can regulate in-
flammatory responses [4]. Monocyte infiltration into atherosclerotic
vascular wall and into myocardial infarct zones is associated with the
accumulation of the a-chloro fatty aldehyde, 2-chlorohexadecanal, in
these tissues. Similarly, neuroinflammation results in the accumulation
of 2-chlorohexadecanal in brain lipids of endotoxin treated mice [97].
Thus inflammatory conditions may deplete plasmalogen levels.

In myocardial ischemia, there is early activation of plasmalogen spe-
cific PLA2, leading to plasmalogen loss. The provision of chimyl alcohol
to isolated rat hearts reduced reperfusion injury following ischemia as
measured by increased left ventricular function and coronary flow, re-
duced creatine kinase release and decreased lipid peroxidation [98].
This study suggested that increased plasmalogen levels, secondary
to chimyl alcohol supplementation, might protect against ischemic dam-
age. Furthermore, plasmalogens may have additional functions in cardi-
ac sarcolemma, where they are enriched. Ford and Hale [99] showed
preferred reconstitution of the trans-sarcolemmal Na™-Ca?* exchanger
(SLC8A1) in phospholipid vesicles containing plasmalogens as com-
pared to diacyl GP alone, suggesting a structural role for plasmalogens.

5. Plasmalogen replacement therapy

Plasmalogen replacement therapy would be of substantial benefit in
RCDP, and may also be of benefit in disorders that feature secondary
plasmalogen deficiency. Although plasmalogens are mostly bio-
synthesized, small amounts can be obtained from dietary compounds
[100]. The highest amounts are found in oils of invertebrate marine an-
imals, such as shark liver and krill oil [101]. The average adult is estimat-
ed to consume 10-100 mg of 1-0-octadecyl-sn-glycerol (batyl alcohol)
daily [102]. Although it is the alkylglycerol content of these dietary
compounds that has been more extensively studied, there is some

evidence that intestinal absorption of phospholipids is superior to that
of alkylglycerols [101].

Dietary alkylglycerols are absorbed intact, however the ether bond
can be subsequently oxidized in intestinal mucosal cells [103]. As
summarized by Das et al. [104] in rodent feeding studies, only 1-0-
alkylglycerols, saturated or monounsaturated, of appropriate chain
length (C15-19) can be incorporated into plasmalogens. Administra-
tion of 1-2% 1-0-heptadecyl-sn-glycerol in feeds to growing rats
resulted in a 40-60% incorporation of the targeted C17 moiety at
the C1 position of PIsEtn in most tissues and an increase in the
alkylglycerol content, but no change in total plasmalogen content
[104]. Thus the alkyl composition of plasmalogens can be altered by
dietary supplementation, but the total tissue plasmalogen amount re-
mains unchanged, perhaps reflecting control by FAR1.

Nevertheless, the vast majority of endogenous mammalian
plasmalogens contain only C16:0, C18:0 and C18:1 alkyl chains. Plas-
ma lipids reflect dietary changes over a period of days, whereas
changes in erythrocyte and other tissue lipids occur over several
weeks [105]. 1-0-Heptadecyl-sn-glycerol was not incorporated into
tissues of newborn mouse pups after supplementation of mothers
for most of the gestational period, indicating that ether lipids are
not transported across the placenta to the fetus [104]. Transfer
through lactation was observed, but was less efficient than direct con-
sumption from foods. There was also low incorporation into brain, ei-
ther because alkylglycerols do not efficiently cross the blood brain
barrier, or because of high turnover in brain.

Since the plasmalogen precursor, 1-O-alkylglycerol, enters the
plasmalogen biosynthetic pathway downstream of the peroxisomal
steps (Fig. 2), it may help recover plasmalogen levels in Zellweger spec-
trum and RCDP patients. Recovery of tissue plasmalogen levels and vari-
ous cell dependent functions after alkylglycerol supplementation has
been reported using patient fibroblast cell lines, as discussed above. Sev-
eral case reports show improvement in erythrocyte plasmalogen levels in
PBD patients after batyl alcohol supplementation [104,106,107]. Brites et
al. [108], using a PEX7 null mouse model, showed that high doses (around
400 mg/kg) and early supplementation were required for maximal clini-
cal efficacy. Reduced transport across the placenta and through lactation
was confirmed. Although plasmalogen levels could be recovered and tis-
sue pathology improved in somatic tissues, this was not the case in brain,
in which only around 1% of control plasmalogens were present after
2 months of treatment, and around 2% at 4 months of treatment.

Wood et al. [109] synthesized an alkyl-diacyl plasmalogen pre-
cursor, 1-0-hexadecyl-2-DHA-sn-lipoic acid on the basis that lipoic
acid stabilized the oral precursor, and that tissue deficiencies of
plasmalogens containing DHA could be more effectively targeted.
Using their plasmalogen precursor in RCDP cell lines, these investi-
gators showed recovery of the target, 1-0 (1Z-hexadecyl-2-DHA-
sn-GPEtn as well as other 1-0 (1Z-hexadecyl)-2-acyl-GPEtn spe-
cies, indicating active remodeling at sn-2. Evaluation of reduced
plasmalogen species in a PEX7 hypomorphic mouse model showed
the most dramatic decrements in species containing DHA, especial-
ly in brain and eye [110]. After specific labeling of this plasmalogen
precursor and providing it by gavage at 100 mg/kg for 3 days,
Wood et al. [110] showed around a 10 fold increase in incorpora-
tion of the target plasmalogen into brain and eye of PEX7
hypomorphic mice, and around a 4 fold increase in adrenal, kidney
and lung tissues compared to controls. Thus greater uptake was
obtained in plasmalogen deficient tissues. Overall, these studies in-
dicate that sustained treatment periods with plasmalogen precur-
sors will be needed to overcome turnover and reach steady state
physiological levels in brain. These reports also demonstrated
that rearrangement at the 1-0-alkyl group does not occur, and
therefore the naturally occurring alkylglycerols, chimyl alcohol,
batyl alcohol and 1-0-octadecenyl-sn-glycerol (selachyl alcohol),
would need to be provided together in order to recover each
plasmalogen class.
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6. Concluding remarks

Plasmalogens, by virtue of their vinyl ether bond and enrichment
in DHA and AA, play a critical role in cell membranes— providing
unique structural attributes, facilitating signaling processes and
protecting membrane lipids from oxidation. As these factors are par-
ticular to different tissue types, plasmalogen functions are likely to be
tissue and developmental stage specific. The peroxisome disorder,
RCDP, reveals their roles in organ development, whereas secondary
plasmalogen deficiency disorders reveal roles in tissue homeostasis.
A number of useful studies have been done at the cellular level to in-
vestigate plasmalogen functions. The current availability of RCDP
mouse models should enable us to more quickly evaluate these in tis-
sue and organ systems. Furthermore, the elucidation of the spectrum
of plasmalogen subspecies by LC/MSMS will contribute to better un-
derstanding of plasmalogen biology. Finally, there is a need to deter-
mine how to improve the uptake of plasmalogen precursors into the
central nervous system.
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