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A general ized model  of rough sets called variable precision model  (VP-model), a imed at 
modell ing classification problems involving uncertain or imprecise information, is presented. 
The  general ized model  inherits all basic mathematical propert ies of the original model  
introduced by Pawlak. The  main concepts are introduced formally and  illustrated with simple 
examples. The  application of the model  to analysis of knowledge representat ion systems is 
also discussed. 0 1993 Academic Press, Inc. 

1. INTRODUCTION 

The  theory of rough sets, as proposed by Pawlak [l], provides a  formal tool for 
dealing with imprecise or incomplete information in terms of three valued logic. 
Since its introduction the theory has generated a  great deal of interest a long 
logicians [2, 3,9] as well as among  researchers dealing with machine learning and  
knowledge acquisition for expert systems [4-14, 18-211. Substantial progress has 
been  achieved in understanding practical implications and  lim itations of this 
approach. In particular, the inability to mode l uncertain information was one  
lim itation frequently emphasized by users of the software package DataQuest. It is 
used for knowledge acquisition and  analysis [ 12, 151  based on  the theory of rough 
sets. This lim itation severely reduces the applicability of the rough set approach to 
problems which are more probabilistic than deterministic in nature. An attempt 
to overcome this restriction was reported in [16]. However, the proposed 
generalization was based on  strong statistical assumptions and  did not directly 
inherit all useful properties of the original mode l of rough sets. 

In this paper  a  new generalization of the rough set mode l is proposed. This 
generalization is a imed at handl ing undertain information and  is directly derived 
from the original mode l without any additional assumptions. The  properties of the 
new mode l are investigated, illustrated with examples, and  related to the properties 
of the classical approach. The  application areas for this mode l fall into the category 
of broadly understood knowledge discovery in databases, for example, for the 
purpose of rule induction from data, or control algorithm acquisition from analysis 
of previous operators’ actions and  pattern recognition. 
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2. MOTIVATION 

2.1. Some Limitations of the Rough Sets Model 

The central problem of the theory of rough sets is classification analysis. The 
whole approach is inspired by the notion of inadequacy of available information to 
perform complete classification of objects belonging to a specified category such as 
cars, humans, etc. 

Quite frequently, the available information allows only for partial classification. 
The theory of rough sets can be used to model this kind of classification but the 
classification must be fully correct or certain. The classification with a controlled 
degree of uncertainty, or a misclassification error, is outside the realm of this 
approach. It seems, however, that admitting in practice some level of uncertainty in 
the classification process may lead to a deeper understanding and a better utiliza- 
tion of the properties of data being analysed. For example, if 90% of German-made 
cars are in a category of high quality cars then the classification rule associating the 
feature “German-made” with the category “high quality” should be given a high 
degree of confidence. In other words, when predicting “high quality,” knowing that 
a car is “German-made,” the likelihood of incorrect decision will be low. A similar 
idea of decision making with a predefined degree of uncertainty has been used in 
statistical theory to estimate unknown value of a parameter of a probability 
distribution [23]. The notion of confidence interval is applied in this case to specify 
a range of values which will contain, with probability above a predefined confidence 
level, a real value of an estimated distribution parameter. The confidence level, 
which is usually close to one, ensures that regardless of whichever value, belonging 
to the confidence interval, will be used as an estimation of the actual value of the 
parameter, the likelihood of an error; i.e., the actual value, being further than the 
interval radius from the estimated value, will be very low. 

Another limitation of the original rough sets model stems from the assumption 
that the universe U of data objects under consideration is known and that all 
conclusions derived from the model are applicable only to this set of objects. In 
practice, however, there is an evident need to generalize conclusions obtained 
from a smaller set of example objects to a larger population. For example, the 
relationship between symptoms and diseases discovered from analysis of a number 
of past cases in a medical application may be used to draw a generalized conclusion 
which could, in turn, be applicable to new cases. This kind of induction is present 
in statistical reasoning and cannot be avoided here if the model is to be applicable 
to real life situations. Therefore, all conclusions derived from sample data are true 
only with respect to that set of data, and, they should be treated as uncertain 
hypotheses about properties of a larger universe. 

Hypotheses derived from sample data should not, however, be based only on 
error-free classification rules observed in the sample data. Also, partially incorrect 
classification should be taken into account. Any partially incorrect classification 
rule provides valuable trend information if the majority of available data to which 
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such a rule applies can be correctly classified. This trend information can be 
captured and analysed by using a collection of techniques derived from the 
proposed extended model of rough sets referred to as a variable precision rough set 
model (VP-model). 

The main objective of this article is to introduce the VP-model, to investigate 
some of the properties of the extended model, and to demonstrate how it can be 
used as a tool for data analysis. The generalized model allows for a controlled 
degree of misclassification in its formalism which, in turn, leads to more general 
notions of set approximations. The standard model of rough sets becomes a special 
case of VP-model. The primary advantage of a VP-model, in the context of data 
analysis applications, is its ability to recognize the presence of data dependencies in 
situations where data items are considered independent by the original rough 
sets model. Such situations occur when data dependencies are non-functional. 
Characterizing such non-functional, or non-deterministic dependencies in terms of 
approximate decision rules is one of the main practical reasons behind introduction 
of the VP-model of rough sets. 

2.2. Relationship to Other Classification Models 

The end result of the use of the rough sets model, or the VP-model, to data 
analysis is a set of classification rules for classifying objects into two or more 
categories. The rules form a description of each category, typically in terms of a 
Boolean formula combining simple predicates expressing some observable 
properties of objects, such as, the formula NR-OF-CYLINDERS > 2 AND 
ENGINE-POWER = HIGH, which is the description of a class of cars. New cases 
can be classified by matching their features with rule conditions. The main issue in 
the rough set approach is the formation of “good” rules, that is such rules which: 

( 1) discriminate between different decision categories (or partially dis- 
criminate between categories, such as, in a VP-model); 

(2) capture essential factors affecting the classification result and do not take 
into account irrelevant factors; 

(3) are nonredundant in terms of minimizing the required number of rules 
and their conditions; 

(4) receive strong support in the available data by being matched by many 
“training” cases, i.e., are general; 

(5) exhibit low error rate on new cases as a result of their generality. 

The above set of objectives has some overlap with the objectives of the statistical 
approaches to the classification problem. However, the formation of characteristic 
and discriminating descriptions of a decision category is not an issue in statistical 
techniques. The main issue in the statistical approach is the construction of a 
probabilistic classifier approximating the theoretically optimal Bayes classification 
rule [23-261. Different methods are used to build such classifiers [23-261. They 
usually involve strong assumptions, such as the typical assumptions of Gaussian 
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distribution of feature values in parametric techniques [24], or require very large 
sample collections, such as the method of estimation of probability density in a 
non-parametric approaches. Some non-parametric techniques make a highly 
questionable assumption of probabilistic independence of object features to estimate 
conditional probability distributions [24]. The nearest-neighbour method is based 
on the not always correct assumption that if two objects are close to one another 
in terms of some distance measure then they belong, or are likely to belong to the 
same class. Experience indicates that nearest-neighbour techniques provide 
unsatisfactory performance and lose essential information in the process of reducing 
the classification problem to vector distance computation. Linear discriminant 
functions do not perform well in the general case when decision categories are not 
linearly separable [24, 27,281. The extension of linear discriminant functions, the 
multilayer back propagation neural nets, do not have this limitation and, in 
principle, can be trained to distinguish any two separable categories [27]. They do, 
however, require tremendous computations power and the final result is strongly 
dependent on initial, intuitive parameter setting. Also, all these approaches suffer 
from dimensionality problems. They are not able to identify the essential subset of 
non-redundant factors (features), despite the fact that some dimensionality reduc- 
tion algorithms have been developed. Whereas the performance of a rough-set- 
based system improves with the addition of extra relevant features, the performance 
of the statistical techniques can unexpectedly degrade when new features are added 
[24]. The use of the fuzzy set approach to approximate pattern classification has 
been advocated by Zadeh and his associates [22]. In this approach objects are 
represented in terms of features whose values are imprecise linguistic constants, 
such as, LOW, MEDIUM, etc., represented as fuzzy membership functions. The 
use of fuzzy membership functions allows one to express a degree of association of 
an object with an imprecisely defined linguistic notion. The classification result, the 
target class, is also assumed to be a fuzzy set rather than the precise set. The central 
problem in the fuzzy set approach is the derivation of a formula linking the mem- 
bership functions of the unknown target class with given membership functions of 
object features. Given such a formula, for example, obtained from some “training” 
cases, one can predict the membership grades with respect to the target class in new 
cases. The formula can be perceived as a recognition rule corresponding to the set 
of logical rules forming target class descriptions in the rough set approach. The 
main difficulty with the fuzzy set method is the lack of objective techniques for 
defining feature or target class, membership functions. 

3. BASIC NOTIONS AND PROPERTIES 

3.1. Majority Inclusion Relation 

The heart of the extended rough set model is the generalization of the notion of 
the standard set inclusion relation. As we indicated in the Introduction, the 
extended notion should be able to allow for some degree of misclassification in the 
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largely correct classification. The standard definition of the set inclusion relation is 
too rigorous to represent any “almost” complete set inclusion. 

Let X and Y be non-empty subsets of a finite universe U. We say that X is 
included in Y, or Y 2 X, if for all e E X implies e E Y. Clearly, there is no room for 
even the slightest misclassification according to this definition. Therefore, before a 
more general definition is presented, it is convenient to introduce the measure 
c(X, Y) of the relative degree of misclassification of the set X with respect to set Y 
defined as 

c(X, Y) = I- card(Xn Y)/card(X) 

c(X, Y) = 0 

where card denotes set cardinality. 

if card(X) > 0 or 

if card(X) = 0 

That is, if we were to classify all elements of the set X into set Y then in 
c(X, Y) * 100% of the cases we would make a classification error. Consequently, the 
quantity c(X, Y) will be referred to as the relative classification error. The actual 
number of misclassified elements is given by the product c(X, Y) * card(X) which is 
referred to as an absolute classification error. 

Based on the measure of relative misclassification one can define the inclusion 
relationship between X and Y without explicitly using a general quantifier: 

Y2X if and only if c(X, Y) = 0. 

The natural relaxation of this definition is to allow c(X, Y) to assume values greater 
than 0. These values, however, cannot be too high if the relation is to represent a 
trend, or a requirement that a speczJied majority of objects in X be classified in Y. 

The majority requirement implies that more than 50% of X elements should be 
in common with Y. The specz3ed majority requirement imposes an additional 
restriction. The number of elements of X in common with Y should be above 50% 
and not below a certain limit, e.g., 85%. These requirements may be added to the 
extended definition of inclusion relation by specifying an explicit limitation on 
the admissible level of classification error. According to the specified majority 
requirement the admissible classification error /3 must be within the range 
0 <p < 0.5. Based on this assumption the majority inclusion relation is defined as 

YLX- if and only if c(X, Y) < B. 

The above definition covers the whole family of b-majority relations. 

EXAMPLE 3.1. Let 
x1 = (Xl, x2, x3, X4>> 

x2= {Xl? x2, x5>, 

x3 = {x1, x6, x,}, 

y= {Xl, x2, x3,x*>. 
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According to definition 
relationships are satisfied: 
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of the p-majority inclusion relation the following 

0.25 0.33 
YZX,, YZX,, 

but for every b it is not true that 

Yh3. 

It follows directly from the definition that the majority inclusion relation becomes 
a standard inclusion relation if fi = 0. We will refer to standard inclusion relation 
as total inclusion. 

It should be also noted that the majority inclusion relation does not have-the 
transitivity property. Some useful properties of the majority inclusion relation are 
listed in Propositions 3.1 and 3.2. 

PROPOSITION 3.1. If A n B = 0 and B 2 X then it is not true that A 2 X. 

PROPOSITION 3.2. Zf j1 < p2 then Y 2 X implies Y 2 X. 

3.2. Set Approximations in the VP-Model 
As in the original model of rough sets the approximation space is defined 

as a pair A = (U, R) which consists of a non-empty, finite universe U and of 
the equivalence relation R on U. The equivalence relation R, referred to as an 
indiscernibility relation, corresponds to a partitioning of the universe U into a 
collection of equivalence classes or elementary sets R* = {E,, E,, . . . . E,}. The 
central issue of the theory of rough sets is the specification of the discernibility 
limits of a set in U by means of elementary sets of R. As we illustrated in Section 2 
the hypotheses derived from the standard set inclusion criterion may be too 
restrictive in some situations characterized by strong trends but the absence of total 
inclusion. By replacing the inclusion relation with a majority inclusion relation in 
the original definition of lower approximation of a set we obtain the following 
generalized notion of p-lower approximation or P-positive region, of the set U I> X, 

&X= u {EE R*: X i E} or, equivalently, 

&X= (J (EE R*: c(E, X) </3). 

To follow the traditional notation of the theory of rough sets the p-lower 
approximation will also be called P-positive region of the set X and denoted 
alternatively as POSR,(X). 

The P-upper approximation of the set U 1 X is defined as 

&X=U {EER*:c(E,X)<~-fl} 
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and, consequently, the P-boundary region of a set is given by 

BNR,X= u {EU*: fi<c(E, X)< 1 -/I}. 

The P-negative region of X is defined as a complement of the P-upper 
approximation, i.e., 

NEGR,X= u {EE R*: c(E, X)2 1 -B}. 

The lower approximation of the set X can be interpreted as the collection of all 
those elements of U which can be classified into X with the classification error not 
greater than /I. Similarly, the P-negative region of X is the collection of all those 
elements of U which can be classified into the complement of X, -X with the 
classification error not greater than /I. The latter interpretation follows from the 
following simple Proposition 3.3. 

PROPOSITION 3.3. For every Xs U the following relationship is satisfied: 

POSR,( -X) = NEGR,X. 

The p-boundary region of X consists of all those elements of U which cannot be 
classified either into X or into -X with the classification error not greater than B. 
It should be interested to note here that the Law of Excluded Middle of 
propositional calculus does hold, in general, for imprecisely specified sets. The law 
states that, given proposition p, the disjunction p v 1p of p with its negation 1p 
is always true. For example, for any XE U, and Xs U either XE X or x E -X. 
Suppose now that set X is specified approximately in terms of its /?-positive region 
POSR,(X) and B-negative region NEGRJX). If the P-boundary region is empty, 
i.e., if BNR,(X) = 0 then 

POSR,(X) u NEGR,(X) = U. 

Because /?-positive and p-negative regions are disjoint then the proposition 
x E POSR,(X) or x E NEGR,(X) is true for any x E U, indicating that in the case 
of an empty boundary region the Law of Excluded Middle will be satisfied for sets 
specified in terms of P-positive and /?-negative regions. If, however , the B-boundary 
region is non-empty the proposition x E POSR,(X) or x E NEGR,(X) will not be 
true for all x E U, as some x’s would belong to BNR,(X) rather than POSR,(X) or 
NEGR,(X), (the boundary region is disjoint with P-positive and negative regions). 
Consequently, the Law of Excluded Middle would not hold in the latter case. 

Finally, the /?-upper approximation R,X of X includes all those elements of U 
which cannot be classified into -X with the error not greater than B. 

By comparing the above definitions of set approximations with the definitions 
introduced in the original model of rough sets [ 11, one may notice that if B = 0 
then the original rough set model becomes a special case of VP-model. This fact is 
summarized in the following proposition. 
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PROPOSITION 3.4. Let X be an arbitrary subset of the universe U: 

1. l&X = RX, where &Y is a lower set approximation defined as RX = 
U{EER*:XIE} 

2. &X = RX, where RX is an upper set approximation defined as RX = 
u {EER*:E~XZ~} 

3. BNR,X= BN, X, where BN,X is the set X boundary region defined as 
BN,X=BX-RX. 

4. NEGR,X= NEG, X where NEG,X is the negative region defined as 
NEG,X= U-RX. 

In addition to the properties listed in Proposition 3.4 for every 0 6 p ~0.5 the 
following relationships are also satisfied. 

PROPOSITION 3.5. 

&X2 zjx, 
Rx2 Rpx, 

BN,X=,BNR,X, 

NEGR,X?NEG,X. 

Intuitively, with the decrease of the classification error /I the size of the positive 
and negative regions of X will shrink, whereas the size of the boundary region will 
grow. With the reduction of /I fewer elementary sets will satisfy the criterion for 
inclusion in /l-positive or p-negative regions, thereby the size of the boundary will 
increase. Exactly the reverse process will occur with the increase of /I. With the j 
approaching the limit 0.5, fl-+ 0.5, the set approximations will approach the 
following limits. 

PROPOSITION 3.6. 

&X-,&SX=U {EER*:c(E, X)<O.5), 

BNR,+BNR,,X=(j (EeR*:c(E, X)=0.5}, 

The set BNR,,, X is called an absolute boundary of X because it is included in 
every other boundary region of X. The following proposition summarizes the 
primary relationships between set X discernibility regions computed on 0.5 
accuracy level and higher levels. 
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PROPOSITION 3.7. 

BNR,,,X= (7 BNR,X, 
B 

R&k-= n i&Y, 
P 

NEG,,X= u NEG,X. 
B 

The absolute boundary is, in a sense, very “narrow,” consisting only of those 
elementary sets which have SO/SO aplit of elements among set X interior and its 
exterior. All other elementary sets are classified either into positive region &,,X or 
the negative region NEGR,, X. 

EXAMPLE 3.2. To illustrate the extended notions of set approximations consider 
the approximation space A = (U, R) with U = {xi, x2, . . . . x2,,} and the equivalence 
classes of the relation R given by: 

We will compute approximations of the set X= {x4, x5, x8, xi4, x16, x,~, x,s, 
x,~, x,,} for two accuracy levels: pi = 0 and fiz = 0.25. 

If the assumed classification error /I = 0, then, as it was noted in Proposition 3.9, 
the fl-approximations of the set X are equal to the standard set approximations. 
Thus, 

&,X=E, 
R,X=E,UE,UE,UE,UE~ 

BNR,X= E,uE,uE,uE, 
NEGR,X= E3. 

As we relax the admissible classification error to become /I2 = 0.25 then the negative 
and positive regions start to grow at the expense of the boundary region, leading 
to the following result: 
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&,.zs X = Es TV & 
R,,,X=E,VE,VE,UE,UE, 

BNR,,,,X= E, v E, u E, 

NEGR,,, X = E,. 

3.3. Measure of Approximation 

To express the degree with which a set X can be approximately characterized by 
means of elementary sets of the approximation space A = (U, R), we will generalize 
the accuracy measure introduced in [ 11. The /?-accuracy for 0 < b < 0.5 is defined 
as 

a( R, j?, X) = card( & X)/card( R,X). 

The /I-accuracy represents the imprecision of the approximate characterization of 
the set X relative to assumed classification error /3. It is interesting to note that with, 
the increase of jI the cardinality of the P-upper approximation will tend downward 
and the size of the j-lower approximation will tend upward which leads to the 
conclusion that is consistent with intuition that the relative accuracy may increase 
at the expense of a higher classification error. 

3.4. Relative Discernability of Sets 

The notion of discernability of set boundaries is relative. If a large classification 
error is allowed then the set X can be highly discernable within assumed classifica- 
tion error limits. When smaller values of the classification tolerance are assumed it 
may become more difficult to discern positive and negative regions of the set to 
meet the narrow tolerance limits. 

The set X is said to be p-discernable if its b-boundary region is empty or, 
equivalently, if 

l&X= R,x. 

For the p-discernible sets the relative accuracy cc(R, /?, X) is equal to unity. The 
discernibility status of a set can change depending on the value of fl. In general, the 
following properties are true. 

PROPOSITION 3.8. If X is discernible on the classification error level 0 <j? < 0.5 
then X is also discernible at any level j3, > 8. 

PROPOSITION 3.9. If i?,, X # &,X then the set X is not discernible on every 
classification error level 0 < j < 0.5. 

The latter proposition emphasizes the fact that a set with a nonempty absolute 
boundary can never be discerned. In general, one can easily demonstrate the 
following. 
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PROPOSITION 3.10. If X is not discernible on the classification error level 
0 < j3 -C 0.5 then X is also not discernible at any level fi2 -C /II. 

Any set X which is not discernible for every fl will be called absolutely 
indiscernible or absolutely rough. The set X is absolutely rough if and only if 
BNR0,5X# 0. Any set which is not absolutely rough will be referred to as relatively 
rough or weakly discernible. For each relatively rough set X there exists such a 
classification error level /? that set X is discernible on this level. 

Let NDIS(R, X) = (0 <p < 0.5: BNR,(X) # a}. NDIS(R, X) is a range of all 
those p values for which X is indiscernible. The least value of classification error B 
which makes X discernable will be referred to as discernibility threshold. The value 
of the threshold is equal to the least upper bound i(R, X) of NDIS(X), i.e., 

(‘(R, X) = sup NDIS( R, X). 

Proposition 3.11 provides a simple property which can be used to find the 
discernibility threshold of a weakly discernible set X. 

PROPOSITION 3.11. {(R, X) = max(m,, m ,), where 

nz, = 1 -min(c(E, X): EE R* &OS <c(E, A’)}, 

m ,=max{c(E,X):EER*&c(E,X)<OS}. 

EXAMPLE 3.3. To illustrate the latter point let us assume that, given the 
following elementary classes, 

E, = (~1, x2, ~39x4, x5>, 

E, = (X6, X7, x8 >, 

E3 = ix,, x103 XII, x12), 

E4 = (-+r ~14, ~15, x,6), 

E, = 1x17, X18}, and the set 

the classification errors of the set X computed for all classes are: 

c( E, , X) = 0.6, 

c( E2, X) = 0.66, 

c(E,, X) = 1.0, 

c( E4, X) = 0.25, 

c( ES, X) = 0.0. 
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It can be easily verified, based on the Proposition 3.11, that the least value for 
which X is still discernible is c(R, X) = 0.4. 

The discernibility threshold of the set X equals a minimal classification error fi 
which must be allowed in order to make this set b-discernible. 

4. PROPERTIES OF /?-APPROXIMATIONS 

In this section we will demonstrate some fundamental properties of P-approxi- 
mations. With a few exceptions these properties are identical to properties of 
approximations given in [ 161. 

PROPOSITION 4.1. For every 0 6 /? < 0.5 the following relationships are true: 

(14 
(lb) 

(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

ProoJ 

l&%=&%=%;&U=iqJ=U 
R&Xv Y) 2 apxv R, Y 
&XnRpY3&(Xn Y) 

&(Xu Y)2&XLJ&Y 

R,Xn R, Yz R&Xn Y) 

&( -X) = -K,(X) 

R,( -X) = -l&x. 

(la) To demonstrate that X 2 &X it suffices to show that for any two 
elementary sets E,, E2 if c(E,, X) < /I and c(E,, X) 6 /I then 

c(E, u&,WGP. 

Directly from the definition of the measure c(X, Y) we obtain 

(i) c(E,,X)=card(E,n(-X))/(card(E,n(-X))+card(E, nX))<P 

(ii) c( E2, X) = card(E, n ( - X))/(card( E2 n ( - X)) + card( E2 n X)) < fi. 

From (i) and (ii) it follows that 

card(E, n ( -X)) + card(E2 n ( -X)) 

<B(card(E,n(-X))+card(E,nX) 

+ card( E2 n ( - X)) + card( E, n X)) 

which means that 

c(E, u J%, x) = card((E, u E2) n (-X))/card(E, u E2) ~8. 
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(1 b) The inclusion &X2 Z&X follows directly from definitions of lower and 
upper approximations. 

(2) Since c(E, 0) = 1 for any elementary set E, it follows that &a = 0 and 
& 0 = 0. Similarly, since c(E, v) = 0 it follows that &(U) = U and &(U) = U. 

(3) This property follows from the simple fact that if UZ X, Y then 
c(E, Xu Y) <c(E, X) and c(E, Xv Y) dc(E, Y). 

(4) This inclusion is a direct consequence of the relationship c(E, Xn I”) 4 
c(E, A’) and c(E, Xn I’) b c(E, Y). 

(5) This property follows again from the fact given in (3). 
(6) Same as (4). 
(7) Can be simply derived from the property c(E, -A/) = 1 - c(E, A’). 
(8) Also directly follows from the formula given in (7) and definitions of lower 

and upper bounds. 

One essential difference in comparison to the group of properties listed in [ 161 
for the standard rough set model is the absence of the inclusion i&X 2 X in the 
generalized case. This is due to the fact that for any positive fi, the P-negative region 
NEG,X is not, in general, disjoint from X. 

5. ANALYSIS OF INFORMATION SYSTEMS 

The primary motivation behind the development of the extended approach to 
rough sets is the need for a more flexible tool for analysis of information systems. 
The logical notion of an information system was introduced in [8] to formalize 
basic components of such a knowledge representation technique in which informa- 
tion is expressed by attributes and their values. As it will be demonstrated below 
it is possible to use attribute values to impose a structure of an approximation 
space. on such an information system. This, in turn, leads to the important 
definition of attribute dependency which is based on the idea of set approximations. 
The attribute dependency measure expresses the degree of functional relationship 
among two groups of attributes, for example, symptoms versus diseases in a 
medical application. The computation of attribute dependency combined with 
attribute reduction and attribute weight computation provides an analytical tool for 
a logical analysis of properties of data. 

The major difficulty associated with the analytical methodology based on rough 
sets is the high sensitivity of computational results to small misclassification errors. 
This is caused by the fact that the definition of attribute dependency [ 161 is based 
on the standard notion of set inclusion which excludes any misclassification errors. 
The generalization of this definition to allow for some degree of misclassification is 
derived from the notion of partial inclusion relation. 
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5.1. Knowledge Tables 

According to the definition given in [8] a knowledge representation system, or 
an information system, is a quadruple 

s=(U,A, V,f) such that 
U is the universe of objects, 
A is the collection of object attributes, 
Y is the union of attribute domains, i.e., V= U V, for a E A, where I’, denotes 

the domain of the attribute a and 
f is an information function which associates a unique value of each attribute 

with every object belonging to U. 

An information system can be conveniently represented in the form of a 
knowledge table in which rows correspond to objects represented by attribute 
values. An example of a knowledge table is shown in Table I. 

In this section we will focus on analysis of the relationship between two groups 
of attributes A 2 P, Q referred to respectively as condition and decision attributes. 

EXAMPLE 5.1. In the Table I a collection of cars is described in terms of 
attributes such as overall length (size), number of cylinders (cylinder), presence 
of a turbocharger (turbo), type of fuel system (fuelsys), engine displacement 
(displace), compression ratio (compress), type of transmission (transmis), and gas 
mileage. The information was collected from car test results published by Popular 
Science. To analyze such an information system with respect to the relationship 
between car gas mileage and other parameters, the mileage and other parameters, 
the mileage attribute has been declared as a decision attribute Q and all remaining 
attributes form a set of conditions P. 

5.2. Approximate Dependency of Attributes 

The approximate dependency measure of attributes is defined, based on the idea 
of lower approximation of a set. Let IND(P) and IND(Q) be two indiscernibility 
relations imposed on U by sets of attributes P and Q according to the following 
definition: 

Two objects x, y E U are equivalent with respect to P, i.e., 
(x, y) E IND(P) if and only if f(x, a) =f( y, a) for all a E P. 

In other words, two objects are said to be equivalent if they have identical values 
of attributes belonging to P. The set of equivalence classes of the relation IND(P) 
will be referred to as condition classes and denoted as P*. Similarly, the collection 
of equivalence classes of the relation IND(Q) will be called decision classes and 
denoted as Q*. 
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The set of attributes Q is said to B-depend in degree y(P, Q, /3) on the set of 
attributes P if 

Y(P, Q, IO = card POS(P, Q, iWard U, 

where POS(P, Q,P) is a /?-positive region of the partition Q* defined as 
pos(p, Q, p) = u YE Q* m(P), y. 

The P-dependency level is a measure of the relative size of the union of B-positive 
regions of all equivalence classes of the relation IND(Q) computed in the 
approximation space induced by IND(P). The p-dependency, when computed from 
experimental data, can be interpreted as a proportion of those cases in U which can 
be discriminated between different classes of the relation IND(Q) with the 
classification error less than 0 </I < 0.5. 

The approximate dependency is clearly a generalization of the idea of rough 
dependency [ 161 as it becomes rough dependency for B = 0. Informally speaking, 
the rough dependency measure is an evaluation of the overall ability to perform 
exact, i.e., error free classification of objects, whereas the approximate dependency 
measures the ability to do the classification with an error falling into the preset 
tolerance limit /I. The approximate dependency, as opposed to the rough 
dependency, cannot be interpreted as a functional or partial functional dependency 
of attributes. The properties of approximate dependencies are much weaker than 
properties of functional dependencies; for instance, the transitivity property does 
not hold. 

EXAMPLE 5.2. To illustrate the idea of approximate dependency we will 
compute the dependency level between attributes P= {a, 6, c} and Q = {d} for 
different values of the tolerance limit p based on Table II. 

There are four classes of the partition P*: 

x, = (1,2,19,20,21}, x2= {3}, x3= (413}, 
X, = { 14-18) and there are three classes Y, = (l-12}, 
Y, = { 13-17}, Y, = { 18-21) of the partition Q*. 

The classes of the partition Q* are represented by values of the attribute d in the 
Table II. 

Let us assume first the error tolerance level /I = 0. To compute the positive region 
of Q* we need to find all those condition classes which are completely included in 
some decision classes. The only such class is X, and therefore to O-dependency, or 
rough dependency, is 

y(P, Q, 0) = card(X,)/card( U) = l/21 = 0.047. 

For the increased tolerance fl =O.l to compute the O.l-positive region of Q* one 
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TABLE II 
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u a b c d 

1 1 0 0 1 
2 1 0 0 1 
3 1 1 1 1 
4 0 1 1 1 
5 0 1 I 1 
6 0 1 1 1 
I 0 1 1 1 
8 0 1 1 1 
9 0 1 1 1 

10 0 1 1 1 
11 0 1 1 1 
12 0 1 1 1 
13 0 1 1 2 
14 1 1 0 2 
15 1 1 0 2 
16 1 1 0 2 
17 1 1 0 2 
18 1 1 0 3 
19 1 0 0 3 
20 1 0 0 3 
21 1 0 0 3 

has to identify all classes of P* which are included in some classes of Q* with an 
error not greater than 0.1. There are two classes which satisfy this condition: 

0.1 0.1 
Y,2X2 and Y,ZX,. 

From these two classes we can compute the O.l-dependency measure between 
attributes P and Q as 

y(P, Q, 0.1) = card(X, u X,)/card U = 1 l/21 = 0.52. 

Similarly, if /? is set to 0.2 then 
0.2 0.2 0.2 

y,zx,, Y,zXx,, Y22X4 

which result in the dependency level 

y(P, Q, 0.2) = card(X, u X3 u X,)/card U = 16/21= 0.76. 

5.3. Approximate Reduct 

One of the most important notions of the rough sets model is the notion of 
attribute reduct or minimal set of attributes. According to the definition given in 
[16], a reduct is the minimal subset of condition attributes P preserving the 
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dependency with decision attributes Q. By adapting the extended definition of 
approximate dependency one can generalize the idea of a reduct by introducing the 
approximate reduct as follows. 

A /I-reduct, or approximate reduct, of the set of condition attributes P with 
respect to a set of decision attributes Q is a subset RED(P, Q, /I) of P which 
satisfies the following two criteria: 

(1) Y(P> !A 8) = ?IWWP, Q, PI> Q, B) 
(2) no attribute can be eliminated from RED(P, Q, /I) without affecting the 

requirement ( 1). 

The idea of reduct turned out to be the most useful in those applications where it 
was necessary to find the most important collection of attributes responsible for a 
cause-and-effect relationship. It is also useful for eliminating noise attributes from 
the table of observations. The following example illustrates the computation of 
reducts. 

EXAMPLE 5.3. There are over 100 different minimal sets of attributes which can. 
be computed from the information system presented in the Table I with condition 
attributes P and the decision attribute Q defined as in Example 5.1 (the tolerance 
level is fi = 0). Some of them are shown below: 

1. cylinder, fuelsys, compress, power, weight 
2. size, fuelsys, compress, power, weight 
3. size, fuelsys, displace, weight 
4. size, cylinder, fuelsys, power, weight 
5. cylinder, turbo, fuelsys, displace, compress, weight 
6. size, cylinder, fuelsys, compress, weight 
7. size, cylinder, turbo, fuelsys, transmis, weight 
8. size, displace, weight, price. 

Each of the above minimal sets of attributes can be used to represent information 
about cars instead of all the condition attributes. 

5.4. Selection of the Best Minimal Set of Attributes 
Every minimal set of attributes may be perceived as an alternative group of 

attributes which could be used instead of all available attributes in the decision 
making based on cases. The main difficulty is how to select an optimal reduct. This 
selection depends on the optimality criterion associated with attributes. If it is 
possible to assign a cost function to attributes then the selection can be based 
naturally on the combined minimum cost criterion. For example, in the medical 
domain, some diagnostic procedures are much more expensive than the others. By 
selecting the least expensive series of tests represented by the minimum cost reduct, 
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considerable savings can be accomplished without decreasing the quality of 
diagnosis. In the absence of attribute cost function the only source of information 
to select the reduct is the contents of the table. Two approaches are possible in this 
case. In the first one, the reduct with the m inimal number of attributes is selected. 
In the second approach, the reduct which has the least number of combinations of 
values of its attributes is selected. The latter criterion favors reduct which represents 
the strongest pattern or data regularity. 

For instance, in the collection of reducts presented in Example 5.3, the best 
reduct is 

8. size, displace, weight, price, 

which has only 10 combinations of attribute values, while other reducts have 
approximately 20 combinations. 

6. CLOSING REMARKS 

The variable precision rought set model presented in this paper is a direct 
generalization of the original rough sets model published in [ 11. Since its introduc- 
tion over 300 research papers dealing with theoretical as well as practical aspects 
of the rough sets model have been published across the world. Several software 
systems aimed at machine learning and data analysis applications of rough sets 
were developed [3, 7, 12, 15, 171. For example, all computational results presented 
in this paper were produced by using a commercial software package for knowledge 
acquisition called DataQuest. Despite this significant progress the area is still not 
mature in either the theoretical or the practical area. The generalization discussed 
in this paper illustrates that there is much room for expansion of the theory. To 
demonstrate the practical utility of the approach, further research is needed. In 
particular, there is a need for objective comparative studied classification results 
produced by rough set-based algorithms versus other methods such as statistical, 
neural nets, etc. Practical implementations of the rough set model and the investiga- 
tion of its utility in different areas of engineering and science are very costly and 
time consuming. Therefore, one cannot expect quick growth on the applications 
side of the rough sets methodology despite continuous efforts in this direction. The 
broad availability of general purpose commercial software packages for data 
analysis and rule asquisition with rough sets will likely accelerate the practical 
utilization of the model. Also, a comprehensive monography describing the 
fundamentals of the original rough set model [29] and a book describing selected 
practical applications of rough sets [30] published recently will contribute to better 
understanding of the model and to the development of new applications. 
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