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Abstract

This paper deals with upwind splitting schemes for the Ruijgrok–Wu model (Physica A 113 (1982) 401–416) of the
kinetic theory of rare7ed gases in the 8uid-dynamic scaling. We prove the stability and the convergence for these schemes.
The relaxation limit is also investigated and the limit equation is proved to be a 7rst-order quasi-linear conservation law.
The loss of quasi-monotonicity of the present model makes it necessary to give a more careful analysis of its structure.
We also obtain global error estimates in the spaces Ws;p for −16s61=p; 16p6∞ and pointwise error estimates for
the approximate solution. The proof naturally uses the framework introduced by Nessyahu and Tadmor (SIAM J. Numer
Anal. 29 (1992) 1505–1519) due to the convexity of the 8ux function. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we propose a numerical splitting scheme for the Ruijgrok–Wu (R–W) model derived
from the Boltzmann equation. This model was introduced by Ruijgrok and Wu [20]. In this model,
the gas is composed by two kinds of particles that move parallel to the x-axis with constant and
equal speeds c, either in the positive x-direction with a density u, or in the negative x-direction
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with a density v. The space–time evolution of the densities u = u(x; t); v = v(x; t) is described by the
semi-linear system

@u
@t

+ c
@u
@x

= −�u + v + �uv;

@v
@t

− c
@v
@x

= �u− v− �uv;

(1.1)

where (x; t) ∈ R × R+, with given nonnegative initial data u(x; 0) = u0(x); v(x; 0) = v0(x), where
�; ; �¿0 are three parameters. The equilibrium curve contains two branches separated by its two
asymptotics v = �=� and u = −=�.

We are interested in the 8uid-dynamic limit associated with the kinetic system (1.1). This will be
achieved by rescaling � → (�=�);  → (=�); � → (�=�). System (1.1) becomes

@u�

@t
+ c

@u�

@x
= −1

�
[�u� − v� − �u�v�];

@v�

@t
− c

@v�

@x
=

1
�

[�u� − v� − �u�v�];

(1.2)

where �¿ 0 is the relaxation parameter. The macroscopic variables of the system for this model are
the mass density �� = u� + v� and the 8ux j� = c(u� − v�). Since u� and v� can be expressed in terms
of �� and j�, system (1.2) is equivalent to the following system for the mass density and the 8ux:

@
@t

�� +
@
@x

j� = 0;

@j�

@t
+ c2 @

@x
�� = −1

�
B(��; j�);

(1.3)

where using

F(�) := c

[
�2 + 2

 − �
�

� +
(
 + �

�

)2
]1=2

−  + �
�

c (1.4)

and

G(�) := c

[
�2 + 2

 − �
�

� +
(
 + �

�

)2
]1=2

+
 + �

�
c; (1.5)

we have

B(�; j) := (� + )j − ( − �)c�− �c
2
�2 +

�
2c

j2

=
�

2c
[j − F(�)][j + G(�)]:

Using the special form of G(�) Gabetta and Perthame [6] has shown that j+G(�) is always positive.
Therefore, in the zero relaxation limit (� → 0+), system (1.3) can be approximated to leading order
by the equation

j = F(�) (1.6)
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and
@�
@t

+
@
@x

F(�) = 0; (1.7)

see [6]. A state satisfying (1.6) will be called a local equilibrium. A rigorous justi7cation of this
limit for � → 0 in (1.3) was given by Gabetta and Perthame [6], who also investigated the diJusive
limit to a viscous Burgers’ equation. The diJusive limit necessitates a diJusive scaling and the
reduced equations are of parabolic type, see, e.g., refs. [9,13,26]. In fact, this kind of limit from a
hyperbolic system to a hyperbolic system of fewer equations has drawn much attention due to the
work of Liu [14] as well as Chen et al. [4]. A total variation diminishing (TVD) bound was proved
for the special case B = j − F(�) in [16], for the higher space dimensional case see [11]. On the
other hand, this approximation is strongly connected with the study of 8uid-dynamical limits, see,
e.g., [3] or [19].

From a numerical point of view, hyperbolic conservation laws with stiJ source terms were exten-
sively studied in [2,7,8], see also [23]. One feature of the R–W model is that if the initial values are
nonnegative, then so are the solutions. Special care must be taken to assure that this nonnegativity
preserving property also holds at the discrete level. In the present paper we construct a 7rst-order
numerical scheme approximating (1.2). This is done by considering a fractional-step scheme, where
the homogeneous (linear) part is treated by using an explicit scheme and then the nonlinear source
term is treated by solving exactly an ODE in each time interval. Based on this idea Natalini [1]
proposed a class of schemes for the case B=j�−F(��) and proved the convergence of these schemes.
The convergence for 7rst-order relaxation schemes introduced in [10] was obtained by Yong [25].
See also [24] for the convergence of some second-order relaxation schemes. The main argument
in these investigations uses the fact that the systems have some monotonicity properties allowing
comparison properties. One of the main diJerences to previous models is that the R–W model is
not a quasi-monotone system in the sense of Natalini-Hanouzet [17], and thus needs a more careful
analysis of its structure.

This paper is organized as follows. In Section 2 we recall some analytical results on (1.2), or
(1.3), obtained in [6] and then introduce the numerical schemes for (1.2) that we want to study.
Section 3 is devoted to the proof of stability with respect to � of the schemes in the L∞; L1 and
BV norms. In Section 4 we prove that for a 7xed time step, the approximate solutions of (1.3)
converge as � → 0, to the numerical approximations by a TVD, L∞-stable discretization of the limit
conservation law (1.7). Convergence to solutions of (1.7) as Nx and � tend to zero is proved in
Section 5, in which some convergence rate estimates are also obtained.

Notation. Let BV = BV(R) denote the subspace of L1
loc(R) consisting of functions with bounded

variation, i.e.,

BV = {u ∈ L1
loc(R);TV(u)¡∞};

where

TV(u) = sup
h�=0

∫
R

|u(x + h) − u(x)|
|h| dx:

The L1-norm is denoted by ‖ · ‖1. For grid functions the total variation is de7ned by

TV(u) =
∑
i∈Z

|ui − ui−1|
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and ‖ · ‖1 denotes the discrete L1-norm, ‖ · ‖∞ the discrete L∞-norm that are de7ned as

‖u‖1 = Nx
∑
i∈Z

|ui|; ‖u‖∞ = sup
i∈Z

|ui|:

We shall use TV(u; v) to denote TV(u) + TV(v), similarly ‖(u; v)‖1; ‖(u; v)‖∞ and the like will also
be used.

2. Preliminaries and numerical scheme

First, we specify the assumptions for model (1.2) under which some analytical properties of
problems (1.2) were obtained in [6]. Then the discretization of the model and the initial data are
discussed.

Let us consider the following conditions:

(H1) The initial functions (u�
0; v

�
0) ∈ BV(R) ∩ L∞(R) ∩ L1(R) are nonnegative and there exist

constants M∞; M1 and M0 not depending on � such that the data are uniformly bounded

‖(u�
0; v

�
0)‖∞6M∞; ‖(u�

0; v
�
0)‖L16M1; TV(u�

0; v
�
0)6M0:

(H2) The initial functions (u�
0; v

�
0) converge to (u0; v0) in L1

loc(R)2 as � → 0+.

Under hypothesis (H1), the initial value problem for (1.2) has a unique global weak solution,
satisfying u�(x; t)¿0; v�(x; t)¿0 and belonging to BV(R) for each t ¿ 0, see [6]. It turns out that
for � → 0+ the family of solutions �� = u� + v� converges in L1

loc(R) towards the entropy solution
� = �(x; t) of the scalar problem (1.7). Here we consider entropy solutions in the sense of Kruzkov
[12].

Now, we begin to discuss the discretization of system (1.2) and (1.3). We derive 7rst-order
accurate and stable discretizations that have the nonnegativity preserving property. Let the spatial
grid points be xi+1=2 = (j + 1=2)Nx; i ∈ Z with uniform mesh length Nx. The discrete time levels
tn = nNt with n ∈ N are also spaced uniformly with the time step Nt.

As usual we denote by (un; �
j ; vn; �j ) the nodal values (uNx; �(jNx; nNt); vNx; �(jNx; nNt)) of our ap-

proximate solutions. Our numerical approximations are taken to be step functions (uNx; �; vNx; �) that
are piecewise constant on each rectangle Ii× [tn; tn+1[ with Ii := [xi−1=2; xi+1=2[. Consider a solution for
some 7nite length of time T = NNt. We can write

(uNx; �; vNx; �)(x; t) =
N∑

n=0

∑
i∈Z

(un; �
i ; vn; �i ) Ii(x) [tn; tn+1[(t) (2.1)

with  Ii(x) denoting the characteristic function of the interval Ii. From now on we will drop the
superscript � for (un; �

i ; vn; �i ) and all other terms unless they are really needed for clarity of presentation.
Set

u0
i =

1
Nx

∫
Ii
u�

0(x) dx; v0
i =

1
Nx

∫
Ii
v�0(x) dx:

Thus denoting by u0
N; v0

N the associated step functions on R we have

‖(u0
N; v

0
N) − (u�

0; v
�
0)‖1 := ‖(u0

N − u�
0)‖1 + ‖(v0

N − v�0)‖16Nx TV (u�
0; v

�
0)6M0Nx:
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It is easy to deduce that the discrete initial data satisfy the bounds

(i) ‖(u0
N; v

0
N)‖∞6M;

(ii) ‖(u0
N; v

0
N)‖16M;

(iii) TV(u0
N; v

0
N)6M

(2.2)

where M = max{M0; M1; M∞}.
Now, we turn to the discretization of system (1.2). For the numerical approximation system (1.2)

may be split into a linear hyperbolic part and a system of ordinary diJerential equations. For given
data (un

N; v
n
N) = : Un

N, let Un+1=2
N be an approximate solution at time tn+1 of the system

@tu + c@xu = 0;

@tv− c@xv = 0
(2.3)

with initial data

U (tn; x) = Un
N(x):

Since (2.3) is a linear hyperbolic system in diagonal form, it is straightforward to apply the
upwind scheme. Doing this we get

un+1=2
i = un

i − "(un
i − un

i−1);

vn+1=2
i = vni + "(vni+1 − vni ):

(2.4)

It is well known that it is a consistent monotone scheme if "=c(Nt=Nx) satis7es the CFL condition
"61: The nonlinear part is treated by solving exactly, on the time interval [tn; tn+1], the problem

dw
dt

= −1
�

(�w − z − �wz);

dz
dt

=
1
�

(�w − z − �wz)
(2.5)

for the initial data

(w(tn); z(tn)) = (un+1=2
i ; vn+1=2

i ); i ∈ Z:
We denote by St the exact solution operator to the initial value problem for a solution U (t) =
(w(t); z(t)), t¿&, with given initial values U (&) at time &¿0, i.e., we write U (t) = St(&; U (&)).

The speci7c nature of the source terms leads to an explicit expression for (un+1
i ; vn+1

i )=(w; z)(tn+1)
in terms of (un+1=2

i ; vn+1=2
i ).

Lemma 2.1. System (2:5) has an explicit solution for each iteration. With � = u + v we introduce

'1(�) :=
1
2



√

�2 + 2
 − �

�
� +

(
 + �

�

)2

+ �− � + 
�


 ;

'2(�) :=
1
2



√

�2 + 2
 − �

�
� +

(
 + �

�

)2

− � +
� + 

�
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and de=ne the following function:

H (u; v) :=
�

�Nt

[
1 − exp

(
−�

�
Nt('1 + '2)

)]
�u− v− �uv

(u + '2) − (u− '1)exp[ − (�Nt=�)('1 + '2)]
:

The solution to (2:5) is given as

un+1
i = un+1=2

i − Nt
�

H (un+1=2
i ; vn+1=2

i );

vn+1
i = vn+1=2

i +
Nt
�

H (un+1=2
i ; vn+1=2

i ):
(2.6)

Proof. Solve (2.5) in [tn; tn+1] with initial data (w(tn); z(tn)) = (un+1=2
i ; vn+1=2

i ). First, adding the two
equations (2.5) shows that w(t) + z(t) is constant; with the above initial data we have w(t) + z(t) ≡
�n+1=2
i .
Thus the 7rst equation can be written as

dw
dt

=−�
�

[
w2 +

(
� + 

�
− �n+1=2

i

)
w − 

�
�n+1=2
i

]

=−�
�

[(w − '1(�n+1=2
i ))(w + '2(�n+1=2

i ))]; (2.7)

where 'i (i = 1; 2) are de7ned as above.
Thus (2.7) can be solved explicitly and we have the solution

w(t) =
'1 + b'2 exp[ − (�=�)('1 + '2)(t − tn)]
1 − b'2 exp[ − (�=�)('1 + '2)(t − tn)]

; b =
un+1=2
i − '1

un+1=2
i + '2

:

By vn+1
i = �n+1

i − un+1
i , after some simple calculations, we have

un+1
i = un+1=2

i − 1
�

[
1 − exp

(
−�

�
Nt('1 + '2)

)]
G(un+1=2

i ; vn+1=2
i );

vn+1
i = vn+1=2

i +
1
�

[
1 − exp

(
−�

�
Nt('1 + '2)

)]
G(un+1=2

i ; vn+1=2
i );

where

G(u; v) =
�u− v− �uv

(u + '2) − (u− '1)exp[ − (�Nt=�)('1 + '2)]
:

In the next section we shall give various estimates for scheme (2.4), (2.6) and prove convergence
for 7xed �¿ 0. To study the limit as � → 0, we rewrite the above schemes (2.4)–(2.6) in the
macroscopic variables �n

i and jni . This gives

�n+1=2
i = �n

i −
"
2c

(jni+1 − jni−1) +
"
2

(�n
i+1 − 2�n

i + �n
i−1);

jn+1=2
i = jni −

c"
2

(�n
i+1 − �n

i−1) +
"
2

(jni+1 − 2jni + jni−1)
(2.8)
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and

�n+1
i = �n+1=2

i ;

jn+1
i = jn+1=2

i − 2cNt
�

H̃ (�n+1=2
i ; jn+1=2

i );
(2.9)

where H̃ (�n+1=2
i ; jn+1=2

i ) = H (un+1=2
i ; vn+1=2

i ).
Note that we can solve the ODE (2.5) for the source term explicitly, due to the fact that the

macroscopic variable � remains unchanged in the relaxation step.

3. Estimates for the numerical schemes

In this section we will give various estimates for schemes (2.4)–(2.6) starting with given non-
negative initial data of bounded variation satisfying (2.2).

3.1. Nonnegativity

For given nonnegative initial data (u�
0; v

�
0) we prove here the nonnegativity for the numerical

approximation given by scheme (2.4), (2.6). Denote U := (u; v), write U¿0 if u¿0 and v¿0.
Since U�

0¿0,

U 0
i =

1
Nx

∫
Ii
(u�

0(x); v�0(x)) dx =
1

Nx

∫
Ii
U �

0(x) dx¿0; i ∈ Z:

Theorem 3.1. Suppose "¡ 1 is satis=ed and U 0
i = (u0

i ; v
0
i )¿0 for any i ∈ Z, then for any i ∈ Z;

and n ∈ Z+ we have

Un
i ¿0: (3.1)

Proof. Since U 0
i ¿0 it suQce to show that if Uk

i ¿0, for 06k ¡n, i ∈ Z then Uk+1
i ¿ 0. In fact

due to the fact that the upwind scheme (2.4) is monotone we have Uk+1=2
i ¿0. Using the solution

operator for (2.5) and Lemma A.1 in the appendix we 7nd

U (t) = St(0; U
k+1=2
i )¿0 for any t ∈ [tk ; tk+1]:

In particular, one gets

Uk+1
i = Stk+1 (tk ; U

k+1=2
i )¿0

which completes the proof of Theorem 3.1.

3.2. L∞ bound for vnj

Theorem 3.2. For any i ∈ Z and n ∈ Z+, we have using (·)+ = max(·; 0)

sup
i∈Z

(
vni −

�
�

)
+

6

∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

exp
(
−nNt

�

)
: (3.2)
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Proof. Observe that the second equation of system (2.5) can be rewritten as

d
dt

(
z(t) − �

�

)
= −�

�
w(t)

(
z(t) − �

�

)
− 

�

(
z(t) − �

�

)
− �

��
: (3.3)

Note that for any diJerentiable function the distributional derivative of (f)+ on ]0;∞[ satis7es〈
d(f)+

dt
; ,
〉

= −〈(f)+; ,t〉 = −
∫
f(t)¿0

f,t dt = 〈 f(t)¿0ft; ,〉

for any test function , ∈ C∞
0 (]0;∞[). Since, for t ∈ [tn; tn+1],

(w; z)(t) = St(tn; U
n+1=2
i )¿0;

we obtain by multiplication Eq. (3.3) by  {z(t)−�=�¿0}

d
dt

(
z(t) − �

�

)
+

6− 
�

(
z(t) − �

�

)
+

:

Thus, using z(tn) = vn+1=2
i , we have(

z(t) − �
�

)
+

6

∥∥∥∥∥
(
vn+1=2 − �

�

)
+

∥∥∥∥∥
∞

exp
(
−(t − tn)

�

)
for t ∈ [tn; tn+1]:

Noting that vn+1=2
i = (1 − ")vni + "vni+1 as a convex combination for "61 leads to

sup
i∈Z

(
vn+1=2
i − �

�

)
+

6 sup
i∈Z

(
vni −

�
�

)
+

=

∥∥∥∥∥
(
vn − �

�

)
+

∥∥∥∥∥
∞

:

Therefore, vn+1
i := z(tn+1) for i ∈ Z, satis7es(

vn+1
i − �

�

)
+

6

∥∥∥∥∥
(
vn+1=2 − �

�

)
+

∥∥∥∥∥
∞

exp
(
−Nt

�

)

6

∥∥∥∥∥
(
vn − �

�

)
+

∥∥∥∥∥
∞

exp
(
−Nt

�

)
;

where we have used the monotonicity property of the linear scheme (2.4). By induction one 7nds
that

sup
i∈Z

(
vni −

�
�

)
+

6

∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

exp
(
−nNt

�

)

which completes the proof of Theorem 3.2.

Remark. Theorem 3.2 yields the estimate lim�→0+ vni6�=�.

3.3. L1 stability

Theorem 3.3 (Stability). For any i ∈ Z and n ∈ N, let Un
i and Ũ

n
i be solutions of schemes (2:4)–

(2:6), corresponding to the initial data U 0
i and Ũ

0
i , respectively; where U 0

i and Ũ
0
i satisfy (2:2).
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We set |U 0
i |1 = |u0

i | + |v0
i |, the usual 1-norm on R2. Then if n¿ 0, there exists a constant C not

depending on �; C = exp((2�=)‖(v0 − �=�)+‖∞), such that for any given positive integer I ∈ Z+,∑
|i|6I

|Un
i − Ũ

n
i |1Nx6C

∑
|i|6I+n

|U 0
i − Ũ

0
i |1Nx: (3.4)

Proof. By Lemma A.2 in the appendix with

(w0; z0) = (un+1=2
i ; vn+1=2

i ) and (w̃0; z̃0) = (ũn+1=2
i ; ṽn+1=2

i );

one has

|un+1
i − ũn+1

i | + |vn+1
i − ṽn+1

i |

6exp

(
2�


∥∥∥∥∥
(
vn+1=2 − �

�

)
+

∥∥∥∥∥
∞

[
1 − exp

(
−Nt

�

)])
[|un+1=2

i − ũn+1=2
i | + |vn+1=2

i − ṽn+1=2
i |]:

We de7ne

T (n; I) :=
∑
|i|6I

[|un
i − ũn

i| + |vni − ṽni |]:

The monotone scheme (2.4) being an L1-contraction [5], implies that

T (n + 1
2 ; I)6T (n; I + 1):

Noting that

sup
i∈Z

(
vn+1=2
i − �

�

)
+

6

∥∥∥∥∥
(
vn − �

�

)
+

∥∥∥∥∥
∞

:

Then a recursive argument gives

T (n + 1; I)6 exp

(
2�


∥∥∥∥∥
(
vn − �

�

)
+

∥∥∥∥∥
∞

[
1 − exp

(
−Nt

�

)])
T (n; I + 1)

6 exp

[
2�


(∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

+ · · · +

∥∥∥∥∥
(
vn − �

�

)
+

∥∥∥∥∥
∞

)

·
(

1 − exp
(
−Nt

�

))]
T (0; I + n + 1):

Now using (3.2) in Theorem 3.2 this gives

T (n + 1; I)6 exp

[
2�


∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

(
1 + exp

(
−Nt

�

)
+ · · · + exp

(
−nNt

�

))

·
(

1 − exp
(
−Nt

�

))]
T (0; I + n + 1)

6 exp

(
2�


∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

)
T (0; I + n + 1): (3.5)
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Thus Theorem 3.3 is proved.

It is well known that L1-stability implies the following BV estimate.

Theorem 3.4. Let Un
N = (un; vn) be a numerical solution to (2:4); (2:6). We have for n = 1; : : : ; N

TV(Un
N)6C TV(U 0

N) (3.6)

with C = exp((2�=)‖(v0 − �
� )+‖∞).

Proof. In (3.4) we choose Ũ
n
N = (un

i−1; v
n
i−1); U n

N = (un
i ; v

n
i ); then take I → ∞ to obtain

TV(Un+1
N ) =

∑
i∈Z

[|un+1
i − un+1

i−1 | + |vn+1
i − vn+1

i−1 |]

6 exp

(
2�


∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

)
TV(U 0

N) = C TV(U 0
N):

The proof is complete.

3.4. Local equilibrium estimate

Now, we turn to showing that the 8ux jni is close to F(�n
i ) for all n ∈ Z+ and i ∈ Z. To this

end we consider the equivalent scheme in macroscopic variables (�; j); (2.8), (2:9); where (2.9) is
obtained by solving the following ODE in t ∈ [tn; tn+1]; i.e.,

d�
dt

= 0;

dj
dt

= −1
�
B(�; j); (3.7)

(�; j)(t = tn) = (�n+1=2
i ; jn+1=2

i ); i ∈ Z; n = 1; : : : ; N

with

B(�; j) =
�

2c
[j − F(�)][j + G(�)];

as well as F; G as de7ned in (1.4), (1.5). A direct computation shows that |F ′(�)|6c and F(0)=0.

Theorem 3.5. Suppose that the initial data (u0
i ; v

0
i ) satisfy (2:2): Let (�n

N; j
n
N) be numerical approx-

imations generated by scheme (2:8); (2:9) with respect to the initial data �0 =u0 +v0; j0 =c(u0−v0).
Then for all n = 1; : : : ; N;

jni + G(�n
i )¿

2c
�

; i ∈ Z (3.8)

and

‖j n − F(�n)‖16exp
(
−nNt

�

)
‖j0 − F(�0)‖1 +

4c�


exp

(
2�


∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

)
TV(u0; v0):

(3.9)
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Proof. In view of de7nition (1.5), inequality (3.8) can be proved as by Gabetta and Perthame [6].
To prove (3.9), let us 7rst consider the relaxation step (3.7). Set

Z(t) = j(t) − F(�(t)):

From (3.7), using d�=dt = 0; we have

dZ
dt

=
d[j(t) − F(�(t))]

dt
=

dj
dt

=− �
2c�

[j − F(�)][j + G(�)] = − �
2c�

Z(t)[j + G(�)]:

Standard regularization of the signum function, which we omit here, yields that

d|Z(t)|
dt

= − �
2c�

|Z(t)|[j + G(�)]6− 
�
|Z(t)|;

where (3.8) is used. From this

|Z(t)|6|Z(&)|exp
(
−

�
(t − &)

)
; t ¿ & (3.10)

follows. Thus Z(tn+1) = Zn+1
i is bounded from above by Z(t = tn) = Zn+1=2

i in the following manner:

|Zn+1
i |6|Zn+1=2

i | exp
(
−

�
Nt
)
: (3.11)

Next, we estimate |Zn+1=2
i | in terms of |Zn

i | in the convection step (2.4). By de7nition and using for
some intermediate value /n

i between �n+1=2
i and �n

i

|F ′(/n
i )| =

∣∣∣∣∣F(�n+1=2
i ) − F(�n

i )

�n+1=2
i − �n

i

∣∣∣∣∣6c;

we have

Zn+1=2
i − Zn

i = jn+1=2
i − jni − [F(�n+1=2

i ) − F(�n
i )]

= −c
"
2

(�n
i+1 − �n

i−1) +
"
2

(jni+1 − 2jni + jni−1)

−F ′(/n
i )
[
"
2

(�n
i+1 − 2�n

i + �n
i−1) − "

2c
(jni+1 − jni−1)

]

6 c"[|�n
i+1 − �n

i | + |�n
i − �n

i−1|] + "[|jni+1 − jni | + |jni − jni−1|]:
Summing up the above inequalities over i ∈ Z; and noting that � = u + v and j = c(u− v); we have,
by Theorem 3.4,∑

i

|Zn+1=2
i |6

∑
i

|Zn
i | + 4c"

∑
i

[|un
i+1 − un

i | + |vni+1 − vni |]

6
∑

i

|Zn
i | + 4c" exp

(
2�


∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

)
TV(U 0

N): (3.12)
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The combination of (3.11) with (3.12) yields

∑
i

|Zn+1
i |6

∑
i

|Zn+1=2
i |exp

(
−

�
Nt
)

6

[∑
i

|Zn
i | + 4c" exp

(
2�


∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

)
TV(U 0

N)

]
exp

(
−

�
Nt
)
: (3.13)

Setting

H (n) :=
∑

i

|jni − F(�n
i )|Nx = ‖Zn‖1

and

! := 4c exp

(
2�


∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

)
TV(U 0

N)¿ 0;

we obtain from (3.13) the estimate

H (n + 1)exp
(

�

Nt
)
6H (n) + !Nt:

By a recursive argument this yields

H (n + 1)6 exp
(
−

�
(n + 1)Nt

)
H (0) +

1 − exp(−((n + 1)=�)Nt)
1 − exp(−(=�)Nt)

exp
(
−

�
Nt
)
!Nt

6 exp
(
−

�
(n + 1)Nt

)
H (0) +

!

�:

This implies (3.9).

Based on the L1-stability and the locally equilibrium estimate (3.9), we show that the diJerence
approximations are L1(locally) Lipschitz continuous in time t.

Theorem 3.6. If 0¡"61; "=cNt=Nx; then there exists a positive constant L(�)¿ 0; independent
of Nt and Nx such that if k ¿p¿ 0;

‖Uk − Up‖16L(�)(k − p)Nt: (3.14)

If ‖j0 − F(�0)‖1 = O(�); then L(�) = L is independent of �. Furthermore;

‖�k − �p‖16L(k − p)Nt: (3.15)

Proof. To prove (3.14), we need to estimate ‖Un+1 −Un‖1. Using Theorem 3.3 with ũn+1
i = un

i we
obtain

‖Un+1 − Un‖16exp

(
2�


∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

)
‖U 1 − U 0‖1: (3.16)
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By scheme (2.4),

‖U 1=2 − U 0‖1 =
∑

i

[|u1=2
i − u0

i | + |v1=2
i − v0

i |]Nx

6 "TV(U 0)Nx = TV(U 0)Nt: (3.17)

Noting that �n+1
i = �n+1=2

i ; to estimate ‖U 1 − U 1=2‖1 one only needs to estimate ‖j1 − j1=2‖1. In fact
by (3.7) with j(t0) = j1=2

i and j(Nt) = j1
i we have

j1
i − j1=2

i =
∫ Nt

0

dj(t)
dt

dt =
∫ Nt

0
− �

2c�
[j(t) − F(�(t))][j(t) + G(�(t))] dt:

Thus, setting Z(t) = j(t) − F(�) we obtain

∑
i

|j1
i − j1=2

i |Nx6
C
�

∑
i

(∫ Nt

0
|Z(t) dt

)
Nx

with

C =
�

2c
max

06t6Nt
[j(t) + G(�(t))]:

By (3.10) and (3.12) one gets

∑
i

|j1
i − j1=2

i |Nx6
C
�

∑
i

|Z1=2
i |Nx

∫ Nt

0
exp

(
−&

�

)
d&

6
C1



[
1 − exp

(
−

�
Nt
)](∑

i

|Z0
i |Nx + 4cC2 TV(U 0)Nt

)

6

{
C(�)Nt if ‖Z0‖1 = O(1);

C3Nt if ‖Z0‖1 = O(�); C3 is independent of �;

which combined with �1
i = �1=2

i implies

‖U 1 − U 1=2‖16C(�)Nt: (3.18)

Hence estimates (3.16)–(3.18) yield

‖Un+1 − Un‖16C(�)Nt;

‖Uk − Up‖16
k−1∑
n=p

‖Un+1 − Un‖16C(�)(k − p)Nt; p¡k

which proves (3.14). Estimate (3.15) follows from (3.16) and (3.18) and the fact that �1
i = �1=2

i .

Consider the family of approximate solutions (U�
N(x; t))Nt¿0 de7ned in (2.1) as

U�
N(x; t) = (u�

N; v
�
N)(x; t) =

N∑
n=0

∑
i∈Z

(un
i ; v

n
i ) [xi−1=2 ; xi+1=2[(x) [tn; tn+1[(t); (3.19)
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the corresponding solutions in macroscopic variables are

(��
N; j

�
N)(x; t) = (u�

N + v�N); c (u�
N − v�N)) (x; t)

=
N∑

n=0

∑
i∈Z

(un; �
i + vn; �i ; c(un; �

i − vn; �i )) [xi−1=2 ; xi+1=2[(x) [tn; tn+1[(t)

=
N∑

n=0

∑
i∈Z

(�n
i ; j

n
i ) Ii(x) [tn;tn+1[(t); (3.20)

where (�n
i ; j

n
i ) are the solutions of schemes (2.8), (2.9) with initial data de7ned through (u0

i ; v
0
i ).

Let us present our main estimates as follows.

Theorem 3.7. Suppose (u0; v0) satisfy (2:2): Let U�
N(x; t) be the numerical solution generated by

(2:4); (2:6) with respect to the initial data U 0
i = (u0

i ; v
0
i ). Then there exists a constant C0 not

depending on �; C0¿exp((2�=)‖(v0 − �=�)+‖∞); such that the following estimates hold:

06u�
N6C0; 06v�N6

�
�

+

∥∥∥∥∥
(
v0 − �

�

)
+

∥∥∥∥∥
∞

; (3.21)

TV(U�
N)6C0 TV(U�

0); (3.22)

‖U�
N‖16C0‖U�

0‖1; (3.23)

‖U�
N(t) − U�

N(t′)‖16C(�)(Nt + |t − t′|): (3.24)

Here C(�) = C is independent of � if ‖j�0 − F(��
0)‖1 = O(�).

For the solution in macroscopic variables (��
N; j

�
N)(x; t); we have

Theorem 3.8. Under the assumptions in Theorem 3:7; there exists a positive constant C1 not de-
pending on �; such that we obtain the estimates

06��
N6C4; (3.25)

TV(��
N)6C4TV(U�

0); (3.26)

‖��
N‖16C4‖U�

0‖1; (3.27)

‖��
N(t) − ��

N(t′)‖16C4(Nt + |t − t′|); (3.28)

‖j�N − f(��
N)‖16C4�; if ‖j�0 − F(��

0)‖1 = O(�): (3.29)

Proof. Using ��
N = u�

N + v�N; estimates in Theorem 3.7, and (3.9), one proves Theorem 3.8 by just
choosing C4 as

C4 = max

{
exp

(
2�


∥∥∥∥∥
(
v�0 −

�
�

)
+

∥∥∥∥∥
∞

)
;
4c


TV(U�)exp

(
2�


∥∥∥∥∥
(
v�0 −

�
�

)
+

∥∥∥∥∥
∞

)
; C0

}
:

The above estimates ensure the convergence result in the following section.
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4. Convergence of the numerical scheme

First, we prove the convergence of ((u�
N; v

�
N)(x; t))Nt¿0 for 7xed �.

Theorem 4.1. Let �¿ 0 and suppose that (H1) holds. For any T ¿ 0; let the CFL number " =
cNt=Nx be constant. As Nt → 0; the sequence U (�)

N = (u�
N; v

�
N) converges in L∞(0; T ;L1(R)2) to

the unique solution U (�) of (1:2) with initial data U�
0(x) = (u(�)

0 (x); v(�)
0 (x)) satisfying (H1); U (�) ∈

C0([0; T ];L1(R)2) ∩ L∞(0; T ;L∞(R)2) and the following estimates hold:

06u(�)(x; t)6C TV(u�
0); (4.1)

06v�(x; t)6
�
�

+

∥∥∥∥∥
(
v�0 −

�
�

)
+

∥∥∥∥∥
∞

exp
(
−t

�

)
; (4.2)

TV(u�(·; t); v�(·; t))6exp

(
2�


∥∥∥∥∥
(
v�0 −

�
�

)
+

∥∥∥∥∥
∞

)
TV(u�

0; v
�
0) for t ∈ [0; T ]; (4.3)

‖(u�(·; t); v�(·; t))‖16exp

(
2�


∥∥∥∥∥
(
v�0 −

�
�

)
+

∥∥∥∥∥
∞

)
‖(u�

0; v
�
0)‖1; (4.4)

‖(U�(·; t) − U�(·; t′))‖6C(�)|t − t′|; ∀t; t′ ∈ [0; T ]: (4.5)

Proof. Consider �¿ 0 7xed. Equipped with Theorem 3.7 we may apply standard arguments related
to Helley’s compactness principle to claim that there exists a subsequence Ntk → 0 such that
(u�

Ntk ; v
�
Ntk ) tends to a limit pair (u�; v�)(x; t) bounded almost everywhere in R+ × R. This limit pair

(u�; v�) satis7es (4.1)–(4.5), which is derived easily from the estimates in Theorem 3.7. Since scheme
(2.4), (2.6) are conservative and consistent diJerence schemes of system (1.2) the limit functions
(u�; v�) are weak solutions of this system in the sense of distributions by the Lax–WendroJ theorem.
This fact combined with the uniqueness of weak solutions [6] implies the convergence of the whole
sequence.

Since � = u + v; j = c(u− v) give a one to one linear mapping from (u; v) to (�; j); we also have
the convergence of ((��

N; j�N)(x; t))Nt¿0 for 7xed �.

Theorem 4.2. We consider the assumptions of Theorem 4:1. As Nt → 0; the sequence (��
N; j

�
N)

converges in L∞(0; T ;L1(R)2) to the unique solution (�(�); j(�)) (x; t) of (1:3) with initial data
(��

0; j
�
0) = (u�

0 + v�0; c(u�
0 − v�0))(x) with

(��; j�) ∈ C0([0; T ];L1(R)2) ∩ L∞(0; T ;L∞(R)2):

We obtain the following estimates:

06�(�)(x; t)6M̃ ; |j�(x; t)|6M̃ ; (4.6)
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TV(��)6C1TV(U�
0); (4.7)

‖��(·; t) − ��(·; t′)‖16C1|t − t′| (4.8)

and

‖j� − F(��)‖16C1�; if ‖j�0 − F(��
0)‖1 = O(�): (4.9)

Next, we investigate the behavior of the above numerical schemes as the relaxation parameter �
tends to zero. For 7xed Nt ¿ 0; letting � → 0; (3.29) implies for n = 0; : : : ; N

�n+1
i − �n

i

Nt
+

1
2Nx

(jni+1 − jni−1) − c
2Nx

(�n
i+1 − 2�n

i + �n
i−1) = 0; jni = F(�n

i ): (4.10)

Here the estimates in Theorem 3.8 allow us to prove the convergence and stability properties of the
relaxed scheme (4.10).

Theorem 4.3. Suppose that (2:2) holds and =x Nt ¿ 0. As � → 0 the solution of (2:8)–(2:9) �n;�
N ;

converges in L∞(0; T ;L1
loc(R)) to a limit �n

N; and jn; �N → F(�n
N)=jnN in L∞([1; T ]; L1

loc(R)) as � → 0+

and 1¿ 0. Moreover; if ‖j�0 − F(��
0)‖1 = O(�) one can take 1 = 0. The limit (�n

N; j
n
N) satis=es the

estimates

06�N(t)6M̃ ; ∀t ∈ [0; T ]; (4.11)

TV(�n
N)6C1TV(U 0

N); (4.12)

jnN = F(�n
N); 06n6N; (4.13)

‖�N(t) − �N(t′)‖16C1(Nt + |t − t′|); ∀t; t′ ∈ [0; t]: (4.14)

Proof. By Theorem 3.8, for n ∈ {0; : : : ; N}; the sequence {�n;�
N } is bounded in L1(R)∩BV(R). Then

there exists a sequence �k → 0 such that �n;�k
N converges in L1

loc(R) to �n
N =

∑
i �

n
i  [xi−1=2 ; xi+1=2[(x) and

�n;�k
i → �n

i .
De7ne

�N(x; t) =
N∑

n=0

∑
i∈Z

�n
i  [xi−1=2 ; xi+1=2[(x) [tn; tn+1[(t);

we have

��k
N(x; t) → �N(x; t) in L∞(0; T ;L1

loc(R)):

Estimates (4.11)–(4.14) are an immediate consequence of the estimates in Theorem 3.8. If ‖j�;0 −
F(��;0)‖1 = O(�); then (3.29) implies

‖j�N − F(��
N)‖16C1�:
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As � → 0; we have jn; �N → F(�n
N) in L∞([0; T ]; L1

loc(R)). Then taking the limit � → 0 for the equation
of (2.9), we get

�n+1
i − �n

i

Nt
= − 1

2Nx
(jni+1 − jni−1) +

c
2Nx

(�n
i+1 − 2�n

i + �n
i−1);

jni = F(�n
i ); n¿0:

Thus �n
N is unique and the whole sequence converges.

Substituting F(�n
i ) for jni in the 7rst equation of (4.10), we get the scheme

�n+1
i − �n

i

Nt
+

1
2Nx

(F(�n
i+1) − F(�n

i−1)) − c
2Nx

(�n
i+1 − 2�n

i + �n
i−1) = 0: (4.15)

Since |F ′(/)|6c; the relaxed scheme (4.15) associated with (2.4)–(2.6) is a monotone and consis-
tent scheme, which is consistent with any entropy condition [5]. This fact allows us to prove the
convergence of relaxed scheme (4.15) towards the entropy solution of the initial value problem for
the conservation law, i.e.,

@
@t

� +
@
@x

F(�) = 0; (x; t) ∈ R× R+; (4.16)

�(x; 0) = �0(x); x ∈ R: (4.17)

We use the entropy conditions of Kruzkov [12].

De'nition 1. A function � ∈ L∞(R× [0; T ]) is an entropy solution of (4.16) and (4.17) if for any
d ∈ R and , ∈ C∞

0 (R× [0; T ]); ,¿0; we have∫∫ (
@
@t

,|�− d| + sgn(�− d)(F(�) − F(d))
@
@x

,
)

dx dt¿0:

Theorem 4.4. Suppose (2:2) is satis=ed. The numerical relaxed solution �N(x; t) related to (2:4)–
(2:6) converges in L∞(0; T ;L1(R)) to the unique entropy solution of (4:16); (4:17) with �(t=0)=�0;
as Nt → 0 and Nt=Nx is kept constant.

5. Error estimates

In the previous sections we have proved that the diJerence approximation (2.8), (2.9) converges
to the entropy solution of the scalar conservation law

@
@t

[�(x; t)] +
@
@x

[F(�(x; t))] = 0; t ¿ 0; x ∈ R (5.1)

with initial data (u�
0; v

�
0) satisfying (H1) and (H2). From expression (1.4) for F we have

F ′′(�) =
4c�

�2(�2 + 2[( − �)=�]� + ( + �=�)2)3=2
¿a¿ 0:

This facts allows us to apply the Lip′ theory developed in [18,22] to investigate the convergence
rate of the approximate solution generated by (2.8) and (2.9).
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Consider the approximation (un
i ; v

n
i ) of (1.2) generated by scheme (2.4)–(2.6), then the macro-

scopic variables (�n
i ; j

n
i ) are generated by scheme (2.8)–(2.9). Under the assumptions of Theorem

4.3 and for any 7xed Nt the limit for � → 0 of �n;�
i converges to the solution (�n

i ) of the relaxed
scheme

�n+1
i − �n

i

Nt
+

1
2Nx

(F(�n
i+1) − F(�n

i−1)) +
c

2Nx
(�n

i+1 − 2�n
i + �n

i−1) = 0: (5.2)

This is a 7rst-order scheme for the conservation law (5.1). Therefore, the numerical relaxed solution
{�n

j} generated by (5.2) converges in L1
loc(R× R+) to the entropy solution of (5.1).

In order to apply the result obtained in [18, Theorem 2:1], we extend our grid solution (�n;�
i ; jn; �i )

to a piecewise bilinear function

(�N; �(x; t); jN; �(x; t)) =
∑

i∈Z; n∈Z+

(�n;�
i ; jn; �i )4n

i (x; t);

where 4n
i (x; t) :=4i(x)4n(t) with

4i(x) =
1

Nx
min(x − xi−1; xi+1 − x)+;

4n(t) =
1

Nt
min(t − ti−1; ti+1 − t)+:

From now on we assume that the initial data (u�
0; v

�
0) are compactly supported and Lip+-bounded,

i.e.,

‖(u�
0; v

�
0)‖Lip+ := ‖(u�

0; ‖Lip+ + ‖v�0)‖Lip+6C: (5.3)

Here, ‖ · ‖Lip+ denotes the usual Lip+-seminorm

‖w(x)‖Lip+ ≡ esssup
x �=y

(
w(x) − w(y)

x − y

)+

; (·)+ = max(·; 0):

We let ‖w‖Lip′(R) denote the Lip-dual seminorm de7ned as

sup
 

(,− ,̂0;  )
‖ ‖Lip(R)

; where ,̂0 =
∫

supp ,
, dx:

A discrete lip+-seminorm is de7ned for discrete functions w as

‖w‖lip+ := max
j∈Z

(
wj+1 − wj

Nx

)+

:

Let us recall that entropy solutions of (5.1) are Lip+-bounded, e.g., [18,21],

‖�(·; t)‖Lip+6‖�(·; 0)‖Lip+ ; t¿0: (5.4)

We, therefore, concentrate on Lip+-stable approximations, i.e., approximate solutions �N; �(x; t) satis-
fying

‖�N; �(x; t)‖Lip+6C; t¿0: (5.5)

We shall use the results of [18, Theorem 2:1], which assert that Lip′-consistency and Lip+-stability
imply a convergence of which the rate may be quanti7ed in terms of the Lip′-size of the truncation
error.
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We begin with the question of Lip+-stability. By the de7nition of the discrete initial values we
have

�0
i+1 − �0

i =
1

Nx

∫
Ii
(��

0(x + Nx) − ��
0(x)) dx6‖��

0‖Lip+ Nx

6 (‖u�
0‖Lip+ + ‖v�0‖Lip+ )Nx6CNx:

Thus, we obtain

‖�0
N‖lip+6

�0
i+1 − �0

i

Nx
6C; (5.6)

which leads to the bound

u0
i+1 − u0

i

Nx
=

1
2
�0
i+1 − �0

i

Nx
+

1
2c

j0
i+1 − j0

i

Nx

=
1
2

(
1 +

F ′(/0
i )

c

)
(�0

i+1 − �0
i )

Nx
6C; (5.7)

where F ′(/0
i )(�0

i+1 − �0
i ) = F(�0

i+1) − F(�0
i ) and |F ′(/0

i ))|6c are used. Similarly, we get the bound

v0
i+1 − v0

i

Nx
6C

and obtain the following lemma.

Lemma 5.1. Suppose ‖(u0
i ; v

0
i )‖lip+6C; and v0

i6�=� then the approximations {un
i ; v

n
i } generated by

(2:4)–(2:6) satisfy

‖un
i ‖lip+ + ‖vni ‖lip+62C: (5.8)

Proof. The lip+-stability (5.8) can be proved by the same method as that in [15]. Therefore, we
omit the proof.

Next, we turn to the question of Lip′-consistency.

Lemma 5.2 (Lip′-consistency). The approximation generated by (2:8); (2:9) satis=es the following
truncation error estimate

‖�N; �
t + F(�N; �)x‖Lip′(R; [0; T ])6CT (Nx + �); (5.9)

where CT is a positive constant depending on T .

Proof. Let N denote the number of time steps in [0; T ], i.e., T = tN = NNt.
Set

Zn
i = F(�n

i ) − jni ; for (i; n) ∈ Z× {1; : : : ; N}:
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Then it follows from (2.9), dropping � for simplicity, that

Nx(�n+1
i − �n

i ) =−Nt
2

[F(�n
i+1) − F(�n

i−1)] +
Nx
2

["(�n
i+1 − �n

i ) − "(�n
i − �n

i−1)]

+
Nt
2

[Zn
i+1 − Zn

i−1]: (5.10)

Let (·; ·) stand for the usual L2 inner product. Following [18] we have that there exists a bounded
piecewise-constant function

Dn(x) =
∑

i

Dn
i+1=2 i+1=2(x);  i+1=2(x) =

{
1; x ∈ [xi; xi+1];

0; others;

such that(
@
@t

�N(x; t); 4n
i

)
N x; t

+
(

@
@x

F(�N(x; t)); 4n
i (x; t)

)
x;Nt

=
Nt
2

(
@
@t

�N(x; t);
@
@t

4n
i (x; t)

)
Nx;t

− Nx
2

(
@
@x

�N(x; t);
@
@x

4n
i (x; t)

)
D(x);Nt

+
Nt
2

(Zn
i+1 − Zn

i−1); (5.11)

where

Dn
i+1=2 = c − N�i+1=2(tn)

∫ 1=2

−1=2

(
1
4
− /2

)
F ′′(�i+1=2(/; tn)) d/;

�i(t) =
∑
n

�n
i 4

n(t); N�i+1=2(t) = �i+1(t) − �i(t);

�i+1=2(/; t) = 1
2 [�i(t) + �i+1(t)] + /N�i+1=2(t):

For arbitrary , ∈ C∞
0 we set tn = t and de7ne the piecewise bilinear interpolant ,̂(x; t) =∑

i; n ,(xi; tn)4n
i (x; t). Then we may write (5.11) as

(@t�N; �(x; t) + @xF(�N; �(x; t)); ,)x; t =
4∑

k=1

TNx
k + T �

with

TNx
1 = −Nx

2
(@x�N; @x,̂)D(x);Nt ;

TNx
2 =

Nt
2

(@t�Nx; @t,̂)Nx; t ;

TNx
3 = (@t�N(x; t); ,)x; t − (@t�Nx; ,̂)Nx; t ;

TNx
4 = (@xF(�N); ,)x; t − (@xF(�N)x; ,̂)x;Nt ;

T � =
∑
i∈Z

N∑
n=0

,(xi; tn)
Nt
2

(Zn
i+1 − Zn

i−1):
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The estimates on TNx
k for k = 1; 2; 3; 4 were obtained in [18, (3.6) and (3.7)], i.e.,

4∑
k=1

|TNx
k |6Const:Nx‖�N‖L1([0; T ];BVx)‖,‖Lip(R×[0; T ]): (5.12)

It remains to estimate T �, which comes from the relaxation term. Using summation by parts

|T �| =

∣∣∣∣∣
∑
i∈Z

∑
n∈N

Nt
2

Zn
i+1(,(xi; tn) − ,(xi+2; tn)

∣∣∣∣∣
6Nt‖,(·; t)‖Lip(R; [0; T ])

∑
i; n

|Zn
i+1|Nx:

By (3.9), we have
∑

i |Zn
i |Nx6C� if

∑
i |Z0

i |Nx=O(�). This combined with the above estimate leads
to

|T �|6CT�‖,(·; t)‖Lip(R; [0; T ]): (5.13)

Equipped with estimates (5.12), (5.13) we have

|(@t�N; �(x; t) + @xF(�N; �); ,)x; t|6CT (Nx + �)‖,‖Lip(R; [0; T ])

which implies (5.9).

Furthermore, we show that �N; � is also Lip′-consistent with the initial data. We 7rst note that
�N; �(x; t) are clearly conservative, for by our choice of the discrete initial data,∫

�N; �(x; t) dx =
Nx
2

∑
i

(�n
i + �n

i+1) =
Nx
2

∑
i

(�0
i + �0

i+1) =
∫

��
0(x) dx: (5.14)

Moreover, these initial conditions are Lip′-consistent. In fact, we have

|(�N; �(x; 0) − ��
0(x); ,(x))| = |(�N; �(x; 0) − ��

0(x)); ,(x) − ,(xi+1=2))|

6Nx‖,‖Lip(R)

∑
i

∫ xi+1

xi
|�N; �(x; 0) − ��

0(x)| dx

6C(Nx)2‖��
0(x)‖BV‖,‖Lip(R):

This yields

‖�Nx; �(x; 0) − ��
0(x)‖Lip′(R)6C‖��

0‖BV(Nx)2: (5.15)

Now, we can use results of Nessyahu and Tadmor [18, Theorem 2:1] and get

‖�N; �(·; T ) − �(·; T )‖Lip′(R) 6CT [‖�Nx; �(·; T ) − �0(x)‖Lip′(R) + ‖�N; �
t + F(�N; �)x‖Lip′(R; [0; T ])]

6CT (Nx + �) = O(Nx + �): (5.16)

The Lip′ error estimate (5.16) may now be interpolated into the Ws;p-error estimates as shown in
[18, Corollary 2:2, 2:4].

Our error estimate result is summarized in the following.
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Theorem 5.3. Consider the convex scalar conservation law (5:1) with Lip+-bounded initial data
��

0 = u�
0 + v�0 and v�06�=�. Then our di>erence-relaxation approximation with discrete initial data

(�0
i ; j

0
i ) and

‖j0 − F(�0))‖1 = O(�);

converges; and the piecewise-linear interpolants �N; �(x; t) satisfy the convergence rate estimates

‖�N; �(·; T ) − �(·; T )‖Ws;p6CT (Nx + �)(1−sp)=2p for − 16s6
1
p
; 16p6∞; (5.17)

as well as

|�N; �(x; T ) − �(x; T )|6Constx;T (Nx + �)1=3; (5.18)

Constx;T ∼ 1 + |�x(·; T )|L∞(x−(Nx+�)1=3 ; x+(Nx+�)1=3):

Remark. (1) When (s; p) = (−1; 1), the error estimate (5.17) turns into the Lip′ error estimate
(5.16).

(2) When (s; p) = (0; 1), (5.17) yields L1-convergence rate of order O(
√

Nx + �).
(3) Uniform convergence which corresponds to (s; p) = (0;∞) in (5.17) fails in this case, due to

the possible presence of shock discontinuities in the entropy solution �(·; t). But we have pointwise
convergence (5.18) away from the singular support of �(·; t).
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Appendix

In this appendix we present two technical lemmas that are needed for the estimate of the approx-
imate solution. This 7rst lemma gives us the positivity of the relaxation step.

Lemma A.1. Let (w0; z0) be a nonnegative initial data for system (2:5) with corresponding solution
(w(t); z(t)). Then the solution is nonnegative for any t¿0; i.e.;

(w(t); z(t))¿0:

Proof. Let 8 = {(w; z); w¿0; z¿0}. We have assumed (w0; z0) ∈ 8. We claim that the trajectory of
(2.5) originating from (w0; z0) ∈ 8 will remain in 8 for all t ∈ [0; T ]. To see this, we show that the
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vector 7eld

V =

(− 1
� (�w − z + �wz)

1
� (�w − z + �wz)

)

points strictly into 8 on @8 = {w = 0} ∪ {z = 0}. This immediately follows from the fact

V1|w=0 =

�
z¿0 on the axis z¿0;

V2|z=0 =
�
�
w¿0 on the axis w¿0:

(A.1)

This proves that (w(t); z(t)) ∈ 8 for any t ∈ [0; T ].

This next lemma allows us to obtain the L1 stability for the solutions to the splitting scheme.

Lemma A.2. Let (w0; z0)¿0; (w̃0; z̃0)¿0 be two initial conditions for system (2:5); then the corre-
sponding solutions (w(t); z(t)) and (w̃(t); z̃(t)) satisfy

|w(t) − w̃(t)| + |z(t) − z̃(t)|

6exp

(
2�


(
z0 − �

�

)
+

[
1 − exp

(
−

�
t
)])

[|w0 − w̃0| + |z0 − z̃0|]:

Proof. Set ( Sw; Sz)(t) = (w; z)(t)–(w̃; z̃)(t), then ( Sw(t); Sz(t)) satisfy the system
d Sw
dt

= −1
�
{� Sw −  Sz − � Swz − �w̃ Sz};

d Sz
dt

=
1
�
{� Sw −  Sz − � Swz − �w̃ Sz}:

Multiply the 7rst equation by sgn( Sw), and the second equation by sgn( Sz), this gives
d
dt
| Sw|=−1

�
[�| Sw| −  Sz sgn( Sw) − �| Sw|z − �w̃ Sz sgn( Sw)];

d
dt
| Sz|=

1
�

[� Sw sgn( Sz) − | Sz| − � Swz sgn( Sz) − �w̃| Sz|]:
Adding the two equations, we get

d
dt

[| Sw| + | Sz|] =
1
�

[ − �| Sw| + � Sw sgn( Sz) +  Sz sgn( Sw) − | Sz|

+�| Sw|z − � Swz sgn( Sz) + �w̃ Sz sgn( Sw) − �w̃| Sz|]:
If sgn( Sw) = sgn( Sz), then

d
dt

[| Sw| + | Sz|] = 0;

otherwise, sgn( Sw) = −sgn( Sz), then
d
dt

[| Sw| + | Sz|] =
2�
�
| Sw|
(
z − �

�

)
− 2

�
( + �w̃)| Sz|:
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We set T (t) = | Sw| + | Sz| and note that w̃¿0. We have

d
dt

T (t)6
2�
�

(
z − �

�

)
+

| Sw|62�
�

(
z − �

�

)
+

T (t):

Thus,

T (t)6T (0)exp

(
2�
�

∫ t

0

(
z(&) − �

�

)
+

d&

)
for 0¡t6T:

By using the technique in the proof of Theorem 3.2 we get(
z(t) − �

�

)
+

6
(
z0 − �

�

)
+

exp
(
−t

�

)
:

Thus,

T (t)6T (0)exp

(
2�


(
z0 − �

�

)
+

[
1 − exp

(
−t

�

)])
:

Hence Lemma A.2 follows.
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