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Abstract

The paper is devoted to the study of asymptotic relations for the function

�(�)�;�(z) =
�

�(�+ 1− 1=�)
∫ ∞

1
(t� − 1)�−1=�t� e−zt dt

generalising Tricomi con7uent hypergeometric function and modi8ed Bessel function of the third kind. The
full asymptotic representations for �(�)�;�(z) at zero and in8nity are established. Applications are given to obtain
full asymptotic expansions near zero and in8nity for the Liouville fractional integral

(I �−f)(x) =
1

�(�)

∫ ∞

x

f(t) dt
(t − x)1−� (x¿ 0; �∈C; Re(�)¿ 0)

and for the Erdelyi–Kober-type fractional integral

(I �−;�;�f)(x) =
�x��

�(�)

∫ ∞

x

t�(1−�−�)−1f(t) dt
(t� − x�)1−� (x¿ 0; �∈C; (Re(�)¿ 0)

with �¿ 0 and �∈C of power-exponential function f(t), and for three other fractional integrals.
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1. Introduction

The paper deals with a function �(�)�;�(z) de8ned by

�(�)�;�(z) =
�

�(�+ 1− 1=�)
∫ ∞

1
(t� − 1)�−1=�t� e−zt dt (1.1)

for

�¿ 0; �∈C; Re(�)¿ 1
� − 1; �∈R; z ∈C (Re(z)¿ 0); (1.2)

C and R being the sets of complex and real numbers, respectively. This function is analytic with
respect to z for Re(z)¿ 0. When � = 1 and 2; � = 0, then

�(1)�;�(z) = e
−z�(�; �+ � + 1; z) (1.3)

and

�(2)�;0(z) = 2
�+1�−1=2z−�K−�(z); (1.4)

where �(�; �+ �+ 1; z) is the Tricomi con7uent hypergeometric function [5, 6.5(2)] and K−�(z) is
the modi8ed Bessel function of the third kind known also as McDonald function [6, Section 7.2.2].
Therefore, we call (1.1) as a function of hypergeometric–Bessel type.
The function �(�)�;�(z) was introduced by Glaeske, Kilbas and Saigo [9]. It is a generalisation of

the function

�(n)� (z) =
(2�)(n−1)=2

√
n

�(�+ 1− 1=n)
( z
n

)�n ∫ ∞

1
(tn − 1)�−1=n e−zt dt (1.5)

(
n∈N = {1; 2; · · ·}; �∈C; Re(�)¿ 1

n − 1; z ∈C (Re(z)¿ 0)
)
;

introduced by Kratzel in [13] for natural parameter n, who in [13–16] investigated integral transforms
with such function kernels and gave application to solution of some ordinary diIerential equations.
It should be noted that function (1.5) is invariant with the accuracy of indices with respect to the
usual diIerentiation [15,16], while (1.1) has the invariant property to within indices

(I �−�
(�)
�;�)(x) = �

(�)
�;�−�(x) (1.6)

with respect to the Liouville fractional integration [26, (5.2)].

(I �−f)(x) =
1

�(�)

∫ ∞

x

f(t) dt
(t − x)1−� (x∈R+ = (0;∞); �∈C; Re(�)¿ 0) (1.7)

and the same property with respect to the corresponding Liouville fractional derivative D�−’
[26, 5.8]. The latter results being proved in [9], were applied in [4] to 8nd the explicit solutions of
certain types of integral and diIerential equations of fractional order in terms of function (1.1).
The 8rst terms of the asymptotic behaviour of �(�)�;�(z) at zero and in8nity and its Mellin transform

were also investigated in [9]. These results were applied in [9] and [3] to study the mapping prop-
erties of the integral transforms involving �(�)�;�(z) in the kernels, in spaces of tested and generalised
functions Fp;� and F′

p;� (see [19]) and in the weighted space of summable functions L�; r (see,
for example [25]), respectively.
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The Liouville fractional integral (1.7) of power-exponential function can be also evaluated via the
function �(�)�;�(z). Such a result was proved in [12] together with the similar representation for the
Erdelyi–Kober-type fractional integral I �−;�;�f de8ned for �∈C (Re(�)¿ 0), �¿ 0 and �∈C by
[26, (18.7)].

(I �−;�;�f)(x) =
�x��

�(�)

∫ ∞

x

t�(1−�−�)−1f(t) dt
(t� − x�)1−� (x∈R+): (1.8)

The present paper is devoted to investigate asymptotic properties of the function �(�)�;�(z) and
fractional integrals (1.7) and (1.8) of power-exponential functions. We establish full asymptotic
expansions of these functions at zero and in8nity. We also deduce the full asymptotic expansions
for the so-called fractional integral of a function by a power function [26, (18.41)]

(I �−; x�f)(x) =
�
�(�)

∫ ∞

x

t�−1f(t) dt
(t� − x�)1−� (x∈R+; �∈C; Re(�)¿ 0; �¿ 0) (1.9)

for the Kober and Erdelyi–Kober fractional integrals de8ned for �∈C (Re(�)¿ 0) and �∈C via
(1.7) by [26, (18.6), (18.8)]

(K−
�;�f)(x) =

x�

�(�)

∫ ∞

x

t−�−�f(t) dt
(t − x)1−� (x∈R+) (1.10)

and

(K�;�f)(x) =
2x2�

�(�)

∫ ∞

x

t1−2(�+�)f(t) dt
(t2 − x2)1−� (x∈R+); (1.11)

respectively. Note that the fractional integrals (1.9)–(1.11) are deduced from the Erdelyi–Kober-type
fractional integral (1.8). We present here the asymptotic results for these integrals because they as
well as the Erdelyi–Kober-type fractional integrals are arisen in applications, in particular while
solving dual integral equations and partial diIerential equations arisen in the potential theory—see,
for example [26, Sections 38, 39, 41, 43].
It should be noted that one may 8nd asymptotic representations at zero and in8nity for some

special functions in the handbooks of Erdelyi et al. [5–7] and monographs in [17,18,21–24,8].
Asymptotic estimates for the fractional integrals are studied less. In this connection we indicate that
the asymptotic representations at in8nity for the left-sided fractional integrals, corresponding to (1.7)
and (1.8) in which the integration over (x;∞) is replaced by the one taken over (0; x), were proved
in [20] and the 8rst author [10,11] in the cases when f(t) has simplest power and general power
asymptotic expansions, respectively. Asymptotic estimates for such a fractional integral of the form
(1.9), being taking over (0; x), were proved in [2] in the case when f(t) has power-exponential
expansion. See the results and bibliography in [26, Sections 16 and 17].
The paper is organised as follows. Section 2 contains some preliminary assertions. Section 3 deals

with full asymptotic representations of �(�)�;�(z) at zero and in8nity. Special cases of such asymptotic
relations for � = 1, 2 and 1=� are considered in Section 4. Section 5 and 6 are devoted to full
asymptotic expansions at zero and in8nity for the Liouville and Erdelyi–Kober-type fractional inte-
grals of power-exponential functions, respectively. Asymptotic estimates for the fractional integrals
(1.9), (1.10) and (1.11) are presented in Sections 7, 8 and 9, respectively.
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2. Preliminaries

We consider a function

f(t) = [g�(t)]�−1=�(t + 1)�; (2.1)

where

g�(t) =
(t + 1)� − 1

�t
; g�(0) = 1: (2.2)

Note that near t = 0 the function g�(t) can be represented in the series form

g�(t) =
1
�

∞∑
i=1

(−1)i(−�)i
i!

ti−1 =
∞∑
j=0

�(�)
�(� − j)

tj

(j + 1)!
; (2.3)

where (a)i is the Pochhammer symbol:

(a)0 = 1; (a)i = a(a+ 1) · · · (a+ i − 1) (i = 1; 2; : : :): (2.4)

Then for i∈N

g(i)� (t) =
∞∑
j=0

�(�)
�(� − j)

1
(j + 1)(j − i)! t

j−i

and hence

g(i)� (0) =
�(�)

(i + 1)�(� − i) : (2.5)

Further we need to know the value of the following limit

gk ≡ gk(�; �) = lim
t→0

Dk([g�(t)]�−1=�); D =
d
dt
: (2.6)

Lemma 2.1. If �¿ 0; �∈C and g�(t) is given by (2.2); then for any k ∈N there hold the relations

gk = k!
k∑

m=0

(
lim
t→0

[Dm([g�(t)]�−1=�)]
)∑ k∏

i=1

1
Pi!

[
�(�)

(i + 1)!�(� − i)
]Pi
; (2.7)

where
∑

is taken over all combinations of nonnegative integer values of P1; P2; : : : ; Pk such that
k∑
i=1

iPi = k;
k∑
i=1

Pi = m: (2.8)

Proof. There is known the following Faa di Bruno formula (see [1; p. 823])

Dkh[g(t)] = k!
k∑

m=0

Dmh[g(t)]
∑ k∏

i=1

1
Pi!

[
(Dig(t)
i!

]Pi
; (2.9)

where a summation
∑
is taken over all combinations of nonnegative integer values of P1; P2; : : : ; Pk

satisfying (2.8). Using this formula with h(g)= g�−1=� and g(t) ≡ g�=[(t+1)�− 1]=(�t) and taking
into account (2.5); from (2.9) we obtain (2.7).
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Corollary 2.2. The constants g1; g2 and g3 are given by

g1 =
(
�− 1

�

)
�
2
; (2.10)

g2 =
(
�− 1

�

)(
�− 1

�
− 1

)(
�
2

)2
+
(
�− 1

�

)
�(� − 1)

3
(2.11)

and

g3 =
(
�− 1

�

)(
�− 1

�
− 1

)(
�− 1

�
− 2

)(
�
2

)3

+ 3
(
�− 1

�

)(
�− 1

�
− 1

)(
�
2

)2 �(� − 1)
3

+
(
�− 1

�

)
�(� − 1)(� − 2)

4
; (2.12)

respectively.

3. Asymptotic representations for �(�)�;�(z)

First we investigate asymptotic representation for function (1.1) at zero. There holds the following
assertion.

Lemma 3.1. Let �¿ 0; �∈C; �∈R and N ∈N = {1; 2; : : :} be such that
1
�
− 1¡Re(�)¡− � + N

�
: (3.1)

Then for z ∈C; Re(z)¿ 0; the function (1.1) can be represented by

�(�)�;�(z) =
N−1∑
n=0

(−1)n
n!

�[− �− (� + n)=�]
�[1− (� + n+ 1)=�]z

n + RN (z); (3.2)

where

RN (z) = O(zN ) (z → 0): (3.3)

Proof. Let n∈N. Using the Taylor formula

e−zt =
N−1∑
n=0

(−1)n
n!

(zt)n + rN (zt); rN (u) = O(uN ) (u→ 0); (3.4)

we have

�(�)�;�(z) =
�

�(�+ 1− 1=�)
N−1∑
n=0

(−z)n
n!

∫ ∞

1
(t� − 1)�−1=�t�+n dt + RN (z); (3.5)

where

RN (z) =
�

�(�+ 1− 1=�)
∫ ∞

1
(t� − 1)�−1=�t�rN (zt) dt: (3.6)
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Making the change t=s−1=� and applying the known formulas for the Beta-function (see; for example
[5; 1.5(1) and 1.5(5)]) we obtain for n= 0; 1; : : : ; N − 1

�
∫ ∞

1
(t� − 1)�−1=�t�+n dt =

∫ 1

0
s−�−1−(�+n)=�(1− s)�−1=� ds

=B
(
−�− � + n

�
; �+ 1− 1

�

)
=
�[− �− (� + n)=�]
�[1− (� + k + 1)=�] :

Substitution of this relation into (3.5) yields (3.2). Estimate (3.3) for the remainder RN (z) follows
from (3.6) and (3.4) if we take into account the condition (3.1).

Using the de8nition of asymptotic expansion (see, for example [7,21]) from (3.2) we obtain the
asymptotic expansion of �(�)�;�(z) at zero in the form

�(�)�;�(z) ∼
∞∑
n=0

(−1)n
n!

�[− �− (� + n)=�]
�[1− (� + n+ 1)=�]z

n (z → 0): (3.7)

We note that relation (3.7) is true provided �¿ 0, �∈C and �∈R satisfy the condition

�+
� + n
�

�=0; 1; 2; : : : (n= 0; 1; 2; : : :): (3.8)

To investigate the asymptotic behaviour of �(�)�;�(z) at in8nity we rewrite it in the form

�(�)�;�(z) =
��+1−1=�

�(�+ 1− 1=�) e
−z

∫ ∞

0
f(t)t�−1=� e−zt dt; (3.9)

where f(t) is given by (2.1)–(2.2).

Theorem 3.2. Let �¿ 0 and �∈C be such that Re(�)¿−1+1=� and let �∈R. Then there holds
the asymptotic expansion for z → ∞ (Re(z)¿ 0)

�(�)�;�(z) ∼
��+1−1=�

�(�+ 1− 1=�) e
−zz−(�+1−1=�)

∞∑
n=0

�
(
�− 1

�
+ 1 + n

)
cn
n!
z−n; (3.10)

where

cn =
n∑
k=0

n!
k!(n− k)!(−1)

n−k(−�)n−kgk (n= 0; 1; : : :); (3.11)

g0 = 1 and gk being given by (2.7) for k = 1; 2; : : : :

Proof. First of all we note that

(t� − 1)�−1=�t� ∼ t� Re(�)+�−1 (t → ∞)
and hence there exist the numbers A¿ 0 and K ¿ 0 such that

|(t� − 1)�−1=�t�|6Kt� Re(�)+�−1 (t¿A): (3.12)
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Using the representation of �(�)�;�(z) in the form (3.9) we divide this integral in two taking over
(0; A) and (A;∞):

�(�)�;�(z) =
��+1−1=�

�(�+ 1− 1=�) e
−z

∫ A

0
f(t)t�−1=�e−zt dt

+
��+1−1=�

�(�+ 1− 1=�) e
−z

∫ ∞

A
f(t)t�−1=�e−zt dt = I1(z) + I2(z): (3.13)

Using (3.12) we estimate I2(z) for Re(z)¿ 1:

|I2(z)|6 �Re(�)+1−1=�

|�(�+ 1− 1=�)|
∫ ∞

A+1
(t� − 1)�−1=�t� e−Re(z)t dt

6
K�Re(�)+1−1=�

|�(�+ 1− 1=�)|
∫ ∞

A+1
t� Re(�)+�−1 e−Re(z)t dt

6
K�Re(�)+1−1=�

|�(�+ 1− 1=�)|
(

1
Re(z)

)(� Re(�)+�) ∫ ∞

1
u� Re(�)+�−1 e−u du:

Hence

I2(z) = O(z−(��+�)) (z → ∞) (3.14)

and this estimate is asymptotically small in compare with any term of the series in (3.10).
To 8nd the asymptotic expansion of the 8rst integral in (3.13)

∫ A

0
f(t)t�−1=� e−zt dt; (3.15)

f(t) being given by (2.1)–(2.2), we apply the Watson lemma (for example, see [26, Lemma 16.3]).
According to this lemma if �¿ 0, �¿ 0, f(t) is continuous for 06 t6A and in8nitely diIerentiable
in the neighbourhood of t = 0, then the asymptotic equality

∫ A

0
f(t)t�−1 e−zt

�
dt ∼ 1

�

∞∑
n=0

�
(
n+ �
(�)

)
f(n)(0)
n!

z−(n+�)=� (3.16)

is true as z → ∞ (Re(z)¿ 0). Applying this Watson lemma with �= 1 and �= �+ 1− 1=� to the
integral in (3.15) we have

∫ A

0
f(t)t�−1=� e−zt dt ∼

∞∑
n=0

�
(
�− 1

�
+ 1 + n

)
f(n)(0)
n!

z−(�+1+n−1=�)

as z → ∞ (Re(z)¿ 0). Using the Leibnitz rule, the formula

Dm(1 + t)� = (−1)m(−�)m(1 + t)�−m (m∈N)
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and relations (2.1), (2.2), (2.6), (2.7) we evaluate f(n)(0):

f(n)(0) =
n∑
k=0

n!
k!(n− k)! (−1)

n−k(−�)n−kgk = cn:

Thus ∫ A

0
f(t)t�−1=� e−zt dt ∼

∞∑
n=0

�
(
�− 1

�
+ 1 + n

)
cn
n!
z−(�+1+n−1=�)

as z → ∞ (Re(z)¿ 0). Substituting this estimate into (3.13) and taking (3.14) into account we
arrive at estimate (3.10) which completes the proof of theorem.

4. Asymptotic representations for �(b)�;�(z) in special cases

Setting � = 1, 1=� and 2 in (3.7) we deduce the asymptotic expansions of �(1)�;�(z), �
(1=�)
�;� (z) and

�(2)�;�(z) at zero in the forms

�(1)�;�(z) ∼
∞∑
n=0

(−1)n
n!

�(−�− � − n)
[�(−� − n)] z

n (z → 0) (4.1)

(�+ � + n �=0; 1; 2; : : : ; n= 0; 1; 2; : : :); (4.2)

�(1=�)�;� (z) ∼
∞∑
n=0

(−1)n
n!

�[− (1 + � + n)�]
�[1− (� + n+ 1)�] z

n(z → 0) (4.3)

(1 + � + n� �=0; 1; 2; : : : ; n= 0; 1; 2; : : :) (4.4)

and

�(2)�;�(z) ∼
∞∑
n=0

(−1)n
n!

�[− �− (� + n)=2]
�[1− (� + n+ 1)=2] z

n (z → 0) (4.5)

(
�+

� + n
2

�=0; 1; 2; : : : ; n= 0; 1; 2; : : :
)
; (4.6)

respectively
In the cases �=1, 1=� and 2 asymptotic expansions of �(�)�;�(z) at in8nity can be obtained without

using relation (2.9).

Theorem 4.1. There hold the following asymptotic expansions; as z → ∞ (Re(z)¿ 0).

(a) If �∈C (Re(�)¿ 0) and �∈R; then

�(1)�;�(z) ∼ e−zz−�
∞∑
n=0

(−1)n (�)n(−�)n
n!

z−n: (4.7)
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(b) If �∈C and �∈R; then

�(1=�)�;� (z) ∼
1
�
e−zz−1

∞∑
n=0

(−1)n(−�)nz−n: (4.8)

(c) If �∈C (Re(�)¿− 1=2) and �∈R; then

�(2)�;�(z) ∼
(
2
z

)�+1=2
e−z

∞∑
n=0

(−1)n
(
�+

1
2

)
n

cnz−n; (4.9)

where

cn =
n∑
k=0

2k

k!(n− k)!
(
1
2
− �

)
k

(−�)n−k : (4.10)

In particular;

�(2)�;0(z) ∼
(
2
z

)�+1=2
e−z

∞∑
n=0

(−1)n
n!

(
�+

1
2

)
n

(
1
2
− �

)
n

(2z)−n: (4.11)

Proof. There hold the following representations in the form (3.9) for the functions in the left-hand
sides of (4.7); (4.8) and (4.9):

�(1)�;�(z) =
1
�(�)

e−z
∫ ∞

0
t�−1=�(1 + t)� e−zt dt; (4.12)

�(1=�)�;� (z) =
1
�
e−z

∫ ∞

0
(t + 1)� e−zt dt (4.13)

and

�(2)�;�(z) =
2

�(�+ 1=2)
e−z

∫ ∞

0
t�−1=2(t + 2)�−1=2(1 + t)�e−zt dt (4.14)

respectively. We use arguments similar to those in the proof of Theorem 3.2. Namely we divide the
integrals in (4.12);(4.13) and (4.14) into two integrals; being taken over (0; A) (A¿ 0) and (A;∞);
and show that the second integrals are asymptotically small in compare with any terms of series in
the right-hand sides of (4.7); (4.8) and (4.9). Then we apply relation (3.16) to the 8rst integrals
with �=1; �= �; f(t)= (1+ t)� for �(1=�)�;� (z); with �= �=1; f(t)= (1+ t)� for �

(1=�)
�;� (z) and �=1;

�= �+1=2; f(t)=(t+2)�+1=2(1+ t)� for �(2)�;�(z). The direct calculations yield the asymptotic results
in (4.7); (4.8) and (4.9). (4.9) with � = 0 yields (4.11).

Remark 4.2. Using (1.3) and (4.7) with �=a and �=c−a−1; we obtain the asymptotic expansion
for the Tricomi con7uent hypergeometric function �(a; c; z) at in8nity

�(a; c; z) ∼ z−a
∞∑
n=0

(−1)n (a)n(a+ 1− c)n
n!

z−n (z → ∞;Re(z)¿ 0): (4.15)

Such an expansion is well known—see, for example [5, 6.13(1)].
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Remark 4.3. Using (1.4) and (4.11) we arrive at the asymptotic expansion for the McDonald func-
tion K�(z), as z → ∞ (Re(z)¿ 0),

K�(z) ∼
( �
2z

)1=2
e−z

∞∑
n=0

(−1)n
(
1
2
− �

)
n

(
1
2
+ �

)
n

(2z)−n: (4.16)

Since

(−1)n
(
1
2
− �

)
n

(
1
2
+ �

)
n

=
2−2n

n!
[4�2 − 1][4�2 − 32] · · · [4�2 − (2n− 1)2]

relation (4.16) coincides with the known asymptotic estimate for K�(z) at in8nity—for example; see
[6; 7.13(7)].

5. Asymptotic expansions for Liouville fractional integrals

To obtain asymptotic representations for the Liouville fractional integral (1.7) and for the Erdelyi–
Kober-type fractional integral (1.8) of power-exponential function f(t) we use the following result
proved in [12, Theorem 5.1].

Lemma 5.1. Let �∈C; Re(�)¿ 0 and let �∈C; �¿ 0 and +¿ 0. Then the relation

(I �−[t
�−1 exp(−+t�)])(x) = x�+�−1�(1=�)�+�−1;−1+�=�(+x

�) (5.1)

holds for x¿ 0.

Applying the asymptotic estimate (3.7) to (5.1), we obtain the following asymptotic expansion
near zero for the Liouville fractional integral:

(I �−[t
�−1 exp(−+t�)])(x) ∼ x�+�−1

∞∑
n=0

1
n!
�(1− �− � − �n)
�(1− � − �n) (−+x�)n (x → +0) (5.2)

(�∈C; �¿ 0; +¿ 0; �− 1 + � + �n �=0; 1; 2; : : : ; n= 0; 1; 2; : : :): (5.3)

From Theorem 3.2 and relation (5.1) we deduce the full asymptotic expansion at in8nity for the
Liouville fractional integral of power-exponential function.

Theorem 5.2. Let �∈C(Re(�)¿ 0); �∈C; �¿ 0 and +¿ 0. Then the following relation holds;
as x → +∞;

(I �−[t
�−1 exp(−+t�)])(x) ∼ (�+)−�

�(�)
x�−1+�(1−�) exp(−+x�)

∞∑
n=0

(�)ncn(+x�)−n; (5.4)

in particular;

(I �−[t
�−1 exp(−t�)])(x) ∼ �−�

�(�)
x�−1+�(1−�) exp(−x�)

∞∑
n=0

(�)ncnx−�n: (5.5)
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Here

cn =
n∑
k=0

n!
k!(n− k)!(−1)

n−k
(�
�
− 1

)
n−k

gk (n= 0; 1; : : :); (5.6)

g0 = 1; gk = k!
k∑

m=0

(
lim
t→0
[Dm([g�(t)]�−1)]

)∑ k∏
i=1

1
Pi!

[
�(1=�)

(i + 1)!�([1=�]− i)
]Pi

(5.7)

for k = 1; 2; : : : ; n;

g�(t) =
∞∑
j=0

�(1=�)
�(1=�− j)

tj

(j + 1)!
(5.8)

and a summation
∑

is taken over all combinations of nonnegative integer values of P1; P2; : : : ; Pk
satisfying (2.8).

Corollary 5.3. Let �∈C(Re(�)¿ 0); �∈C and +¿ 0. Then; as x → +∞;

(I �−[t
�−1 e−+t])(x) ∼ +−�x�−1 e−+x

∞∑
n=0

(−1)n
n!

(�)n(1− �)n(+x)−n: (5.9)

Corollary 5.4. Let �∈C(Re(�)¿ 0); �∈C and +¿ 0. Then; as x → +∞;

(I �−[t
�−1 exp(−+t1=2)])(x) ∼

(
2
+

)�
x�=2+�−1 exp(−+x1=2)

∞∑
n=0

(−1)n(�)ncn(+x1=2)−n; (5.10)

where

cn =
n∑
k=0

2k

k!(n− k)!(1− �)k(1− 2�)n−k (n= 0; 1; 2 : : :): (5.11)

In particular;

(I �−[t
−1=2 exp(−+t1=2)])(x)

∼
(
2
+

)�
x(�−1)=2 exp(−+x1=2)

∞∑
n=0

(−2)n
n!

(�)n(1− �)n(+x1=2)−n (x → +∞): (5.12)

Corollaries 5.3 and 5.4 follow from (5.1) with � = 1 and � = 1=2, respectively, if we take into
account the asymptotic estimate (4.7) for the former while the asymptotic relations (4.9)–(4.11) for
the latter.

Remark 5.5. In particular; if � = m+ 1(m∈N); the asymptotic expansion in (5.9) yields the exact
expression. Namely; it was proved in [12; Corollary 5.2] that if �∈C (Re(�)¿ 0); m∈N and +¿ 0;
then there holds the relation for x¿ 0

(I �−[t
m e−+t])(x) = +−�xm e−+x

m∑
n=0

(�)n(−m)n
n!+n

(−1)n
xn

: (5.13)
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6. Asymptotic expansions for Erdelyi–Kober-type fractional integrals

To obtain asymptotic representations for the Erdelyi–Kober-type fractional integral (1.8) of power-
exponential function f(t) we use the following result proved in [12, Theorem 5.2].

Lemma 6.1. Let �∈C; Re(�)¿ 0 and let �¿ 0; �∈C; �∈C; �¿ 0 and +¿ 0. Then the relation

(I �−;�;�[t
� exp(−+t�)])(x) = x��(�=�)�−1+�=�; [�(1−�−�)+�]=�−1(+x

�) (6.1)

is valid for x¿ 0.

Applying the asymptotic estimate (3.7) to (6.1), we obtain the following asymptotic expansion
near zero for the Erdelyi–Kober-type fractional integral:

(I �−;�;�[t
� exp(−+t�)])(x) ∼ x�

∞∑
n=0

1
n!

�[�− (� + �n)=�)]
�[�+ �− (� + �n)=�)](−+x

�)n (x → +0) (6.2)

with �∈C, �¿ 0, �∈C, �¿ 0 and +¿ 0 such that(
−�+ � + �n

�
�=0; 1; 2; : : : ; n= 0; 1; 2; : : :

)
: (6.3)

From Theorem 3.2 and relation (6.1) we deduce the full asymptotic expansion at in8nity for the
Erdelyi–Kober-type fractional integral of power-exponential function.

Theorem 6.2. Let �∈C (Re(�)¿ 0). �¿ 0; �∈C; �∈C; �¿ 0 and +¿ 0. Then the following
relation is valid; as x → +∞:

(I �−;�;�[t
� exp(−+t�)])(x) ∼ (�=�+)�

�(�)
x�−�� exp(−+x�)

∞∑
n=0

(�)ncn(+x�)−n; (6.4)

in particular;

(I �−;�;�[t
� exp(−t�)])(x) ∼ (�=�)�

�(�)
x�−�� exp(−x�)

∞∑
n=0

(�)ncnx−�n: (6.5)

Here

cn =
n∑
k=0

n!
k!(n− k)!(−1)

n−k
(
1− �(1− �− �) + �

�

)
n−k

gk ; (6.6)

g0 = 1; gk = k!
k∑

m=0

(
lim
t→0

[Dm([g�;�(t)]�−1)]
)∑ k∏

i=1

1
Pi!

[
�(1=�)

(i + 1)!�([�=�]− i)
]Pi

(6.7)

for k = 1; 2; : : :;

g�;�(t) =
∞∑
j=1

�(�=�)
�(�=�− j)

tj

(j + 1)!
(6.8)

and a summation
∑

is taken over all combinations of nonnegative integer values of P1; P2; : : : ; Pk
satisfying (2.8).
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Corollary 6.3. Let �∈C(Re(�)¿ 0). �¿ 0; �∈C; �∈C and +¿ 0. Then; as x → +∞;
(I �−;�;�[t

� exp(−+t�)])(x)

∼ +−�x�−�� exp(−+x�)
∞∑
n=0

(−1)n
n!

(�)n

(
�+ �− �

�

)
n

(+x�)−n: (6.9)

Corollary 6.4. Let �∈C (Re(�)¿ 0); �¿ 0; �∈C; �∈C and +¿ 0. Then

(I �−;�;�[t
� exp(−+t�=2)])(x)

∼
(
2
+

)�
x�−��=2 exp(−+x�=2)

∞∑
n=0

(−1)n(�)ncn(+x�=2)−n (x → +∞); (6.10)

where

cn =
n∑
k=0

2k

k!(n− k)! (1− �)k
(
2
[
�+ �− �

�

]
− 1

)
n−k

(n= 0; 1; 2 : : :): (6.11)

In particular; as x → +∞;
(I �−;�;�[t

�(�+�−1=2) exp(−+t�=2)])(x)

∼
(
2
+

)�
x�[�+(�−1)=2] exp(−+x�=2)

∞∑
n=0

(−2)n
n!

(�)n(1− �)n(+x�=2)−n: (6.12)

Corollaries 6.3 and 6.4 follow from (6.1) with � = � and � = �=2, respectively, if we take into
account the asymptotic estimate (4.7) for the former while the asymptotic relations (4.9)–(4.11) for
the latter.

Remark 6.5. In particular; when �=�(�+�+m) (m∈N); the asymptotic expansion in (6.9) yields
the exact expression. Namely; it was proved in [12; Corollary 6.3] that if �∈C(Re(�)¿ 0); �¿ 0;
�∈C; m∈N; +¿ 0; then there holds the relation for x¿ 0

(I �−;�;�[t
�(�+�+m) exp(−+t�)])(x) = +−�x�(�+m) exp(−+x�)

m∑
n=0

(�)n(−m)n
n!+n

(−1)n
x�n

: (6.13)

7. Asymptotic expansions for fractional integrals of a function by a power function

It is known [26, (18.39)] the following connection between the fractional integral I �−; x�f and the
Erdelyi–Kober-type fractional integral I �−;�;−�f:

(I �−; x�f)(x) = x
��(I �−;�;0f)(x) (x∈R+; �∈C;Re(�)¿ 0; �¿ 0): (7.1)

Therefore, the asymptotic expansions for the fractional integral (1.9) follow from (7.1) and the
results in Section 6 with �=−�.
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From (7.1) and (6.2) we deduce the asymptotic expansion of (I �−; x�f)(x), as x → +0,

(I �−; x�[t
� exp(−+t�)])(x) ∼ x�+��

∞∑
n=0

1
n!
�[− �− (� + �n)=�)]
�[− (� + �n)=�)] (−+x�)n (7.2)

(
�¿ 0; �∈C; �¿ 0; +¿ 0; �+

� + �n
�

�=0; 1; 2; : : : ; n= 0; 1; 2; : : :
)
: (7.3)

Relation (7.1) and Theorem 6.2 yield the asymptotic expansion for the fractional integral (1.9) at
in8nity.

Theorem 7.1. Let �∈C(Re(�)¿ 0); �∈C; �¿ 0 and +¿ 0. Then there holds the following relation;
as x → +∞;

(I �−; x�[t
� exp(−+t�)])(x) ∼ (�=�+)�

�(�)
x�+�(�−�) exp(−+x�)

∞∑
n=0

(�)ncn(+x�)−n; (7.4)

in particular

(I �−; x�[t
� exp(−t�)])(x) ∼ (�=�)�

�(�)
x�+�(�−�) exp(−x�)

∞∑
n=0

(�)ncnx−�n: (7.5)

Here

cn =
n∑
k=0

n!
k!(n− k)! (−1)

n−k
(
1− � + �

�

)
n−k

gk ; (7.6)

where gk (k = 0; 1; 2; : : :) are given by (6.7)–(6.8).

Corollary 7.2. Let �∈C(Re(�)¿ 0); �¿ 0; �∈C and +¿ 0. Then; as x → +∞;
(I �−; x�[t

�exp(−+t�)])(x)

∼ +−�x�exp(−+x�)
∞∑
n=0

(−1)n
n!

(�)n

(
−�
�

)
n

(+x�)−n; (7.7)

Corollary 7.3. Let �∈C(Re(�)¿ 0); �¿ 0; �∈C and +¿ 0. Then

(I �−; x�[t
� exp(−+t�=2)])(x)

∼
(
2
+

)�
x�+��=2 exp(−+x�=2)

∞∑
n=0

(−1)n
n!

(�)n

(
�− �

�

)
n

(+x�=2)−n; (7.8)

as x → +∞; where

cn =
n∑
k=0

2k

k!(n− k)!(1− �)k
(
−2�
�

− 1
)
n−k

(n= 0; 1; 2 : : :): (7.9)
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In particular; as x → +∞,
(I �−; x�[t

�(�+�−1=2) exp(−+t�)])(x)

∼
(
2
+

)�
x�[�+(�+1)=2] exp(−+x�=2)

m∑
n=0

(−2)n
n!

(�)n(1− �)n(+x�=2)−n: (7.10)

Corollaries 7.2 and 7.3 follow from (7.1) and Corollaries 6.3 and 6.4 with �=−�.

Remark 7.4. In particular; if � = �m(m∈N); the asymptotic expansion in (7.7) yields the exact
expression for (I �−; x�[t

�m])(x). It is directly proved that if �∈C (Re(�)¿ 0); �¿ 0; m∈N; +¿ 0;
then there holds the relation for x¿ 0

(I �−; x�[t
�m exp(−+t�)])(x)

=+−�x�m exp(−+x�)
m∑
n=0

(−1)n
n!

(�)n(−m)n(+x�)−n: (7.11)

Such a formula also can be deduced from (5.14) if we take into account the connection between
the fractional derivative I �−; x�f and the Liouville fractional derivative I �−f given by

(I �−; x�f(t))(x) = (I
�
−f(t

1=�))(x�): (7.12)

8. Asymptotic expansions for Kober fractional integrals

The Kober fractional integral (1.10) is connected with the Erdelyi–Kober-type fractional integral
(1.8) by the following formula:

(K−
�;�f)(x) = (I

�
−;1; �f)(x) (x∈R+; �∈C; Re(�)¿ 0; �∈C): (8.1)

So (8.1) and the results in Section 6 with �=1 yield the asymptotic expansions for this integral.
(8.1) and (6.2) yield the asymptotic relation for the Kober fractional integral near zero

(K−
�;�[t

� exp(−+t�)])(x) ∼ x�
∞∑
n=0

1
n!

�(�− � − �n)
�(�+ �− � − �n)(−+x

�)n (x → +0) (8.2)

(�∈C; �∈C; �¿ 0; +¿ 0; −�+ � + �n �=0; 1; 2; · · · ; n= 0; 1; 2; · · ·): (8.3)

From (8.1) and Theorem 6.2 we deduce the asymptotic expansion for the fractional integral (1.10)
at in8nity.

Theorem 8.1. Let �∈C(Re(�)¿ 0); �∈C; �∈C; �¿ 0 and +¿ 0. Then the following relation
holds; as x → +∞:

(K−
�;�[t

� exp(−+t�)])(x) ∼ (�+)−�

�(�)
x�−�� exp(−+x�)

∞∑
n=0

(�)ncn(+x�)−n; (8.4)
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in particular;

(K−
�;�[t

� exp(−t�)])(x) ∼ (�)−�

�(�)
x�−�� exp(−x�)

∞∑
n=0

(�)ncnx−�n: (8.5)

Here

cn =
n∑
k=0

n!
k!(n− k)!(−1)

n−k
(
1− 1− �− �+ �

�

)
n−k

gk ; (8.6)

where gk (k = 0; 1; 2; · · ·) are given by (6.7)–(6.8) with � = 1.

Corollary 8.2. Let �∈C (Re(�)¿ 0); �∈C; �∈C and +¿ 0. Then; as x → +∞;
(K−

�;�[t
� e−+t])(x)

∼ +−�x�−� e−+x
∞∑
n=0

(−1)n
n!

(�)n(�+ �− �)n(+x)−n: (8.7)

Corollary 8.3. Let �∈C (Re(�)¿ 0); �∈C; �∈C and +¿ 0. Then

(K−
�;�[t

� exp(−+t1=2)])(x)

∼
(
2
+

)�
x�−�=2 exp

(−+x�=2)
∞∑
n=0

(−1)n(�)ncn(+x�=2)−n (x → +∞); (8.8)

where

cn =
n∑
k=0

2k

k!(n− k)! (1− �)k(2[�+ �− �]− 1)n−k (n= 0; 1; 2 · · ·): (8.9)

In particular; as x → +∞;
(K−

�;�[t
�+�−1=2 exp(−+t1=2)])(x)

∼
(
2
+

)�
x�+(�−1)=2 exp(−+x�=2)

∞∑
n=0

(−2)n
n!

(�)n(1− �)n(+x�=2)−n: (8.10)

Corollaries 8.2 and 8.3 follow from (8.1) and Corollaries 6.3 and 6.4 with � = 1.

Remark 8.4. In particular; when � = � + � + m (m∈N); the asymptotic expansion in (8.7) yields
the exact expression. Namely; it was proved in [12; Corollary 7.5] that if �∈C (Re(�)¿ 0); �∈C;
m∈N and +¿ 0; then there holds the relation for x¿ 0

(K−
�;�[t

�+�+� e−+t])(x) = +−�x�+m) e−+x
m∑
n=0

(�)n(−m)n
n!+n

(−1)n
xn

: (8.11)
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9. Asymptotic expansions for Erdelyi–Kober fractional integrals

The Erdelyi–Kober fractional integral (1.11) is connected with the Erdelyi–Kober-type fractional
integral (1.8) by the following relation:

(K�;�f)(x) = (I �−;2; �f)(x) (x∈R+; �∈C;Re(�)¿ 0; �∈C): (9.1)

Thus the asymptotic expansions for this integral follow from (9.1) and the results in Section 6 with
� = 2.
From (9.1) and (6.2) we obtain the asymptotic relation for the Erdelyi–Kober integral near zero

(K�;�[t� exp(−+t�)])(x) ∼ x�
∞∑
n=0

1
n!

�[�− (� + �n)=2]
�[�+ �− (� + �n)=2](−+x

�)n (x → +0) (9.2)

(
�∈C; �∈C; �¿ 0; +¿ 0; −�+ � + �n

2
�=0; 1; 2; : : : ; n= 0; 1; 2; : : :

)
: (9.3)

Relation (9.1) and Theorem 6.2 yield the asymptotic expansion for the fractional integral (1.11) at
in8nity.

Theorem 9.1. Let �∈C (Re(�)¿ 0); �∈C; �∈C; �¿ 0 and +¿ 0. Then there holds the asymp-
totic relation; as x → +∞;

(K�;�[t� exp(−+t�)])(x) ∼ (2=�+)�

�(�)
x�−�� exp(−+x�)

∞∑
n=0

(�)ncn(+x�)−n; (9.4)

in particular;

(K�;�[t� exp(−t�)])(x) ∼ (2=�)�

�(�)
x�−�� exp(−x�)

∞∑
n=0

(�)ncnx−�n: (9.5)

Here

cn =
n∑
k=0

n!
k!(n− k)!(−1)

n−k
(
1− 2(1− �− �) + �

�

)
n−k

gk ; (9.6)

where gk (k = 0; 1; 2; : : :) are given by (6.7)–(6.8) with � = 2.

Corollary 9.2. Let �∈C (Re(�)¿ 0); �∈C; �∈C and +¿ 0. Then; as x → +∞;

(K�;�[t� exp(−+t2)])(x)

∼ +−�x�−2� exp(−+x2)
∞∑
n=0

(−1)n
n!

(�)n
(
�+ �− �

2

)
n
(+x2)−n: (9.7)
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Corollary 9.3. Let �∈C (Re(�)¿ 0); �∈C; �∈C and +¿ 0. Then

(K�;�[t� e−+t])(x)

∼
(
2
+

)�
x�−�=2 e−+x

∞∑
n=0

(−1)n(�)ncn(+x)−n (x → +∞); (9.8)

where

cn =
n∑
k=0

2k

k!(n− k)!(1− �)k
(
2
[
�+ �− �

2

]
− 1

)
n−k

(n= 0; 1; 2 · · ·): (9.9)

In particular; as x → +∞;

(K�;�[t2(�+�)−1) e−+t])(x) ∼
(
2
+

)�
x2�+�−1 e−+x

∞∑
n=0

(−2)n
n!

(�)n(1− �)n(+x)−n: (9.10)

Corollaries 9.2 and 9.3 follow from (9.1) and Corollaries 6.3 and 6.4 with � = 2.

Remark 9.4. In particular; if � = 2(� + � + m) (m∈N); the asymptotic expansion in (9.7) yields
the exact expression. Namely; it was proved in [12; Corollary 7.2] that if �∈C (Re(�)¿ 0); �∈C;
m∈N and +¿ 0; then there holds the relation for x¿ 0

(K�;�[t2(�+�+�) exp(−+t2)])(x)

= +−�x2(�+m) exp(−+x2)
m∑
n=0

(�)n(−m)n
n!+n

(−1)n
x2n

: (9.11)
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