TCT-735
New Onset Atrio-Ventricular Block After Corevalve Implantation is Due to Direct Damage On the His-Bundle System
Raquel del Valle, Jose M Rubin, Pablo Avanzas, Alfredo Renilla, Enrique Rios, David Calvo, Beatriz Diaz-Molina, Cesar Moris Interventional Cardiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain

Background: Third-degree atrio-ventricular block (AVB) is a frequent complication following transcatheter aortic valve implantation (TAVI) with the Corevalve prosthesis. Previous observational studies relate AVB to a lower implantation of the prosthesis into the left ventricle outflow tract (LVOT), indirectly suggesting that AVB may be the result of direct mechanical damage to the conduction system. Our aim is to analyze whether the final position of the Corevalve prosthesis in relation to the His bundle is indeed related to new onset AVB.

Methods: In 24 permanent-pacemaker-free patients (P) undergoing TAVI, a tetrapolar catheter was used to identify the intracavitary electrograms of the His bundle and as a marker of the His bundle position. Two independent readers analyzed the relative position of the inferior border of the Corevalve prosthesis (IBCVP) and the tip of the His-bundle catheter (THBC) (above or below) at the end of the procedure in three fluoroscopy projections. Baseline electrocardiographic (EKG) conduction anomalies (AV and bundle branch blocks) and 3rd-degree AVB development during TAVI were also recorded for each P. This is a partial analysis of a more extensive study involving EPS stimulation immediately before and after Corevalve implantation. All P signed informed. PAWS 18 was used for statistical analysis.

Results: Two P were excluded from the analysis because the relative position of the IBCVP and the THBC suffered continuous variations along the cardiac cycle. The IBCVP was identified below the level of the THBC in 6P (group A) and above this level in the remaining 16 (group B). 3rd-degree AVB developed in 27% P following TAVI (in 67% P in group A and in 12.5% P in group B, p=0.025). No baseline EKG anomaly was related to 3rd-degree AVB development, probably due to the small sample size.

Conclusion: 3rd-degree AVB after Corevalve TAVI is related to prosthesis extension below the His bundle level. This study supports that the higher incidence of AVB reported in those P with a lower implantation of the prosthesis in the LVOT is due to direct damage to the His bundle system.

TCT-736
Impact of CT-Guided Bioprosthesis Sizing on Post Procedural Aortic Regurgitation in Transcatheter Aortic Valve Implantation
Kentarou Hayashida, Erik Bouvier, Thierry Lefevre, Thomas Hovasse, Marie-Claude Morice, Bernard Chevalier, Mauro Romano, Philippe Garot, Arnaud Farge, Patrick Donzeau-Gouge, Bertrand Cormier Institut Cardiovasculaire Paris Sud, Massy, France

Background: Measurement of the aortic annulus is crucial for appropriate valve sizing. CT-guided approach has been applied since 2010 (n=109). The Transesophageal echo (TEE)-guided valve sizing was conducted in our early experience (n=228). CT-guided strategy provides larger valve sizing compared to TEE with significant benefit to the patients.

Methods: All consecutive patients from our single-center prospective registry treated by TAVI transfomerally for aortic stenosis from November 2007 to April 2011, utilizing both commercially available valves were analyzed. Patients were categorized into low-, intermediate- and high-risk categories according to STS-PROS Score (STS) (<3, 3-8, ≥8) or Logistic EuroSCORE (LogES) (<10%, 10-20%, >20%). Statistical analysis were performed by the Valve Academic Research Consortium (VARC) definitions.

Results: 249 patients were included: mean age 79±7.5 years and 63.5% Edwards SAPIEN™. According to STS, there were 18.5% patients in the low-, 54.2% in the intermediate- and 27.3% in the high-risk category. According to LogES, there were 22.1% patients in the low-, 31.3% in the intermediate- and 46.6% in the high-risk group. Thirty-day mortality was 4.1% overall with no differences according to risk stratification: according to STS 6.8% in low- vs. 2.3% in intermediate- vs. 6.1% in high-risk (p=0.271). According to LogES 3.9% in low- vs. 1.3% in intermediate- vs. 6.1% in high-risk; p=0.250. Both high-risk groups developed more acute kidney injury stage 3: respectively in high-risk STS 20.6% and in high-risk LogES 13.8%. Moreover, there was a trend towards more life-threatening bleeding in the high-risk STS category (16.6% vs. 19.3% vs. 33.8%; p=0.055). There were no other differences in VARC safety and efficacy endpoints or combined safety endpoint at 30 days. Conclusion: Neither STS nor LogES are predictors of 30-day mortality in patients undergoing TAVR. New scores need to be developed to help risk stratify these patients.

TCT-737
Does the STS-PROM Score or the Logistic EuroSCORE Predict Outcomes Following Transcatheter Aortic Valve Replacement at 30 Days: The Milan Experience
Gilli Louise Buchanan, Alaida Chieffo, Matteo Montorfano, Francesco Maisano, Azem Latib, Cosmo Godino, Micaela Cioni, Mauro Carlino, Maria A Gallucci, Remo D Covello, Anna Rita Francese, Chiara Gerbi, Antonio Grimaldi, Giovanni La Cannata, Piero Spognola, Ottavio Alfieri, Antonio Colombo. 1 Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy; 2 EMO-GYM Centro Cuore Columbus, Milan, Italy; 3 Cardiovascular Surgery Unit, San Raffaele Scientific Institute, Milan, Italy; 4 Radiology Unit, San Raffaele Scientific Institute, Milan, Italy; 5 Department of Anaesthesia and Intensive Care, San Raffaele Scientific Institute, Milan, Italy

Background: No data has been published previously comparing the outcomes of transcatheter aortic valve replacement (TAVR) by commonly used surgical risk stratification scores.

Methods: 249 patients were included: mean age 79±7.5 years and 63.5% Edwards SAPIEN™. According to STS, there were 18.5% patients in the low-, 54.2% in the intermediate- and 27.3% in the high-risk category. According to LogES, there were 22.1% patients in the low-, 31.3% in the intermediate- and 46.6% in the high-risk group. Thirty-day mortality was 4.1% overall with no differences according to risk stratification: according to STS 6.8% in low- vs. 2.3% in intermediate- vs. 6.1% in high-risk (p=0.271). According to LogES 3.9% in low- vs. 1.3% in intermediate- vs. 6.1% in high-risk; p=0.250. Both high-risk groups developed more acute kidney injury stage 3: respectively in high-risk STS 20.6% and in high-risk LogES 13.8%. Moreover, there was a trend towards more life-threatening bleeding in the high-risk STS category (16.6% vs. 19.3% vs. 33.8%; p=0.055). There were no other differences in VARC safety and efficacy endpoints or combined safety endpoint at 30 days. Conclusion: Neither STS nor LogES are predictors of 30-day mortality in patients undergoing TAVR. New scores need to be developed to help risk stratify these patients.

TCT-738
Geometry of the Edwards SAPIEN XT valve as assessed by Multidetector Computed Tomography
Alex Bruce Willson, John G Webb, Ronald Binder, Stefan Toggweiler, Ronen Gurvitch, David Wood, Mark Madden, Cameron Hague, Jonathon Leipisch Interventional Cardiology Research, St Pauls Hospital Vancouver, Vancouver, Canada

Background: The SAPIEN XT aortic bioprosthesis is the balloon expandable valve of choice for transcatheter aortic valve replacement (TAVR) due to its lower profile delivery system. This has been made possible, in part, by design and material changes to the frame. Clinical evaluation of the effect of these design modifications on radial expansion and circularity is lacking. We assessed the geometry of the SAPIEN XT bioprosthesis with multidetector computed tomography (MDCT) and correlated these findings with early clinical events.

Methods: MDCT was performed in 49 patients within one week of SAPIEN XT valve implantation. Geometry of the stent frame was assessed for circularity, minimum (Dmin) and maximum (Dmax) external diameter and expansion ratio at three stent levels: inflow, mid and outflow. Circularity was defined as an eccentricity index (EI) of less than 0.1 (1-EI = 1-D-Dmax) and expansion ratio (ER) as the MDCT derived stent area divided by the area of a fully expanded valve. Valve/annular malapposition on MDCT and grade of paravalvular aortic regurgitation (PR) on TEE were assessed.

Results: Stents were circular in 95.9% of cases (47/49). The mean expansion ratio was 105.1±7.2% with no valves having an ER of less than 90%. The mean external diameter for the 20.25, 26 and 29 mm valves was 20.0±1.0mm, 23.5±1.1mm, 25.9±0.7mm and 29.0±1.0mm respectively. There was no difference in circularity or expansion ratio from the inflow to outflow aspect of the stents (EI = 0.02 vs. 0.02, p=0.75; ER: 104.8% vs. 106.5%, p=0.26). There was no difference in expansion or circularity in patients with moderate to severe valvular PR compared to trace/mild PR (ER: 108.4% vs. 105.3%, p= 0.37, EI: 0.05 vs. 0.02, p=0.40). Malapposition (12/43, 27.9%) on MDCT was associated with moderate to severe valvular PR in 21.4% (3/14) compared with 5.7% (2/35) with circumferential annular apposition (p=0.12).

Conclusion: The early structural integrity of the SAPIEN XT valve is excellent as demonstrated by full expansion and circularity across all stent levels. Malapposition on MDCT may be associated with paravalvular aortic regurgitation.