

FULL LENGTH ARTICLE

# Application of energy management coupled with fuel switching on a hydrotreater unit



Egyptian Journal of

Petroleum

# Eman M. Gabr\*, Soad M. Mohamed, Seham A. El-Temtamy, Tahani S. Gendy

Egyptian Petroleum Research Institute

Egyptian Journal of Petroleum

www.elsevier.com/locate/egyjp

Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt

Received 27 November 2014; accepted 5 March 2015 Available online 13 February 2016

## **KEYWORDS**

Fuel switching; Gas emission; Heat exchanger network (HEN); Hydrotreater unit

Abstract In the last decades, saving energy and protecting environment became the most important topics for search and survey. The energy engineer for any chemical process is obliged by restrictions of "Kyoto Protocol" for limitation of carbon dioxide emissions from fuel combustion, so he does his best to reduce utility consumption and thus reduce gas emission. Proper designing of the heat exchanger network (HEN) for any process is an effective and successful method to minimize utility consumption and therefore minimize gas emission (mainly carbon gases (CO<sub>2</sub>) and sulfur gases  $(SO_x)$ ). Fuel switching coupled with energy targeting achieved the least gas emission. In this work we choose a hydrotreater unit of a petroleum refinery as a case study due to its effective role and its obvious consumption of utility. We applied the methodology of energy targeting through HEN design (using pinch technology) at several values of mean temperature difference ( $\Delta T_{\rm min}$ ); where the maximum percentage of energy saving was 37% for hot and cold utility which directly leads to percentage reduction of gas emission by 29% for  $CO_2$  and 17% for  $SO_x$ . Switching fuel oil to other types of fuel realized gas emission reduction percentage where the maximum reduction established was through natural gas fuel type and reached 54% for  $CO_2$  and 90% for  $SO_x$ . Comparison between existing design and the optimum  $\Delta T_{min}$  HEN led to few modifications with the least added capital cost for the hydrotreater existing design to revamp it through four scenarios; the first one depended on fuel switching to natural gas while the second one switched fuel to diesel oil, in the third scenario we applied heat integration only and the fourth one used both of heat integration and fuel switching in a parallel way.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Egyptian Petroleum Research Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

#### 1. Introduction

The change in the atmospheric air quality is strongly related to the emissions of gases from chemical processes and power generation plants. The combustion of fossil fuel by the chemical process industries and power plants contributes greatly to the emissions of carbon dioxide, as well as nitrogen oxides, sulfur oxides and particulates. The relationship between energy

http://dx.doi.org/10.1016/j.ejpe.2015.03.012

1110-0621 © 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Egyptian Petroleum Research Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

<sup>\*</sup> Corresponding author at: Process Development Department, Egyptian Petroleum Research Institute, Nº1, Ahmad El-Zomor Street, P. O. B. 11727, Nasr City, Cairo, Egypt.

E-mail address: Dremangabr@hotmail.com (E.M. Gabr).

Peer review under responsibility of Egyptian Petroleum Research Institute.

| Nomenc            | lature                                           |                    |                                                     |
|-------------------|--------------------------------------------------|--------------------|-----------------------------------------------------|
| СР                | heat capacity flow rate (MJ/h °C)                | $T_{\rm s}$        | supply temperature (°C)                             |
| HEN               | heat exchanger network                           | $T_{\text{STACK}}$ | stack temperature (°C)                              |
| HENS              | heat exchanger network synthesis                 | $T_{\rm in}$       | inlet temperature of stream (°C)                    |
| HENs              | heat exchanger networks                          | Tout               | outlet temperature of stream (°C)                   |
| Н                 | heat transfer coefficient (MJ/m <sup>2</sup> °C) | $T_{\rm TFT}$      | theoretical flame temperature (°C)                  |
| MER               | maximum energy recovery                          | $\Delta T_{\min}$  | minimum approach temperature difference (°C)        |
| PDM               | the pinch design method                          | β                  | mass percentage of the pollutant in non-oxide       |
| $M_{\rm pol}$     | mass flow rate of pollutant (kg/h)               |                    | form (dimensionless)                                |
| NĤV               | fuel net heating value (kJ/kg)                   | $\phi$             | the ratio of the molar mass of the oxidized form to |
| $Q_{\text{fuel}}$ | heat duty from fuel (kW)                         |                    | the non-oxidized form of the pollutant (dimen-      |
| $Q_{\rm proc}$    | process heat duty (kW)                           |                    | sionless)                                           |
| T <sub>o</sub>    | ambient temperature (°C)                         | $\eta_{ m furn}$   | furnace efficiency (dimensionless)                  |

efficiency and flue gas emissions is clear [1]. Many approaches have been proposed to control and/or reduce the greenhouse gas emissions, such as carbon capture, fuel switching,  $CO_2$ storage, and process integration. Among all approaches, improvements in efficient use of energy and changes in fuel selection appear to be most straight forward as well as financially feasible [2]. The more inefficiency in our use of energy, the more fuel we burn and hence the greater are the flue gas emissions [3].

In the past three decades, extensive efforts have been made in the fields of energy integration and energy recovery technologies due to the steadily increasing of energy cost and shortage of energy resources. A heat recovery system consisting of a set of heat exchangers can be treated as a heat exchanger network (HEN), which is widely used in process industries such as gas processing and petrochemical industries [4].

Over the past decade, the pinch analysis technique and mathematical programing approaches have been widely adopted to achieve energy consumption reduction by achieving optimal heat exchanger network (HEN) [2,5]. The most important methods used in designing of HEN are mathematical programing assignment problem methods [6–8] and thermodynamic-based methods [9–15]. Some recent methods

have appeared for designing of HEN such as genetic algorithm [16,17], genetic/simulated annealing algorithm [18–21] and tabu search procedure [22].

The pinch design method (PDM) is the most complete thermodynamic method which realized the optimality conditions of the HEN design step by step. It has a track record of worldwide industrial applications that resulted in energy savings of 15–45%. Basics, applications, and benefits of pinch technology are given in Linnhoff et al. [12] see also [http://www. cheresource.com].

The petroleum refining industry uses the largest quantity of premium fuels in the industrial sector. Removal of sulfur is essential for protecting the catalyst in subsequent processes (such as catalytic reforming) and for meeting product specifications for certain "mid-barrel" distillate fuels. Hydrotreating is the most widely used treating process in today's refineries [23]. Hydrotreater unit, removes sulfur, nitrogen and metal contaminants, but it needs about 19% of refinery energy consumption [24]. Improving energy efficiency for this unit is an attractive opportunity for cost and gas emission reductions [25].

In this work, application of energy management by designing the maximum energy recovery (MER) heat exchanger network of a hydrotreater unit coupled with fuel switching can



Figure 1 Flowsheet of the existing hydrotreater unit.

realize the least consumption of utility and the least gas emissions.

# 2. Emissions

Human activities are major contributors to the increase of greenhouse gas concentration in the upper atmosphere, which catalyze global warming effect and lead to melting of polar ice caps, rising sea level, desertification, and weather disruption. Greenhouse gases are defined as gases that are capable of trapping radiative energy emitted by sun [2]. Conventional fossil fuels such as coal, oil and natural gas continue to be a dominant source of primary energy in world economy [26]. The common components of fossil fuels are carbon, hydrogen, sulfur and nitrogen, which, upon combustion with air produce the desired amount of heat required by the process. The combustion reactions are also associated with the emission of harmful pollutants [1,27]. Combustion processes work with excess air to ensure complete combustion of the fuel. The theoretical flame temperature provides an appropriate reference to indicate the maximum amount of heat released by combustion as the flue gas is cooled from the flame temperature  $(T_{\text{TFT}})$ to the stack temperature ( $T_{\text{STACK}}$ ). Theoretical flame temperature of the flue gases are usually in the region of 1800 °C. Stack temperature should not be lower than the corrosion limit. A typical stack temperature of 160 °C is adopted. The furnace efficiency is defined as the ratio of the useful heat delivered to the process to the amount of fuel burnt [1]. The heat duty from fuel and targeting the emission rate of various pollutants for a given fuel can be estimated through Eq. (1)-(3) [28]

$$\eta_{\rm furn} = \frac{T_{\rm TFT} - T_{\rm STACK}}{T_{\rm TFT} - T_{\rm o}} \tag{1}$$

$$Q_{\text{fuel}} = \frac{Q_{\text{proc}}}{\eta_{\text{furp}}} \tag{2}$$

$$M_{\rm pol} = \frac{Q_{\rm fuel}}{\rm NHV} \beta \phi \tag{3}$$

where:

 $\eta_{\text{furn}}$ : the furnace efficiency (dimensionless),

 $T_{\text{TFT}}$ : the theoretical flame temperature °C,

 $T_{\text{STACK}}$ : the stack temperature °C,

 $T_{\rm o}$ : the ambient temperature °C,

 $Q_{\rm fuel}$ : heat duty from fuel,

 $Q_{\rm proc}$ : the process heat duty,

 $M_{\rm pol}$ : the mass flow rate of pollutant,

NHV: the fuel net heating value,

 $\beta$ : the mass percentage of the pollutant in non-oxide form,  $\phi$ : the ratio of the molar mass of the oxidized form to the non-oxidized form of the pollutant.

| Table 1         Streams' specification of the case study. |                                 |                                   |            |                             |  |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------|-----------------------------------|------------|-----------------------------|--|--|--|--|--|--|
| Stream                                                    | Inlet temperature $(T_{in})$ °C | Outlet temperature $(T_{out})$ °C | CP MJ/h °C | $H \mathrm{MJ/m^2 \circ C}$ |  |  |  |  |  |  |
| Reactor effluent (h1)                                     | 350                             | 38                                | 165.6      | 2.02                        |  |  |  |  |  |  |
| Lean oil (h2)                                             | 232                             | 38                                | 13.5       | 1.7                         |  |  |  |  |  |  |
| Stripper condenser (h3)                                   | 157                             | 38                                | 273.9      | 2.02                        |  |  |  |  |  |  |
| Reactor feed (C1)                                         | 95                              | 350                               | 167.3      | 2.02                        |  |  |  |  |  |  |
| Stripper feed (C2)                                        | 38                              | 167                               | 117.8      | 2.02                        |  |  |  |  |  |  |
| Stripper feed 2 (C3)                                      | 52                              | 130                               | 12.0       | 2.02                        |  |  |  |  |  |  |
| Mixed stripper feed (C4)                                  | 162                             | 211                               | 212.6      | 2.02                        |  |  |  |  |  |  |
| Stripper reboiler (C5)                                    | 231.9                           | 232                               | 249690.0   | 2.02                        |  |  |  |  |  |  |



Figure 2 Heat exchanger network of the case study at  $\Delta T_{\min}$  of 5 °C.

#### 3. Hydrotreater unit as a case study

The function of this unit is removing sulfur compounds from naphtha by catalytic hydrotreating. This step is necessary to protect the valuable reforming catalyst from poisoning due to the presence of sulfur compounds in naphtha feed. 3.1. Process description

The flowsheet of the hydrotreater process unit is shown in Fig. 1. Naphtha feed is mixed with the recycled hydrogen and preheated against the hot reactor effluent product to a temperature of 204  $^{\circ}$ C. The mixed feed is then heated in a fired



Figure 3 Heat exchanger network of the case study at  $\Delta T_{\min}$  of 10 °C.



Figure 4 Heat exchanger network of the case study at  $\Delta T_{\min}$  of 15 °C.



69

heater to a 350 °C and introduced to the top of the fixed bed reactor. The reactor condition is adjusted to keep the reactor temperature at 350 °C although the reaction is exothermic. The reactor effluent exchanged heat with the reactor feed firstly then with the stripper feed and finally cooled to a temperature of 38 °C. The reactor effluent is then separated into vapor and liquid fractions. The vapor contains mainly hydrogen which is recycled to the feed stream, while the liquid fraction is a mixture of the treated naphtha and some light

hydrocarbons which must be stripped off before transferring the treated naphtha to the reformer unit.

Using data sheet of input stream chemical analysis, operating condition, product specifications and process simulation program to calculate mass and energy balance and estimate the intermediate streams properties, the actual consumption of energy for the hydrotreater unit can be calculated as 54803.1 MJ/h and 47266.8 MJ/h for hot and cold utilities, respectively.



Figure 6 Heat exchanger network of the case study at  $\Delta T_{\min}$  of 25 °C.





|--|

| $\Delta T_{\min} ^{\circ}\mathrm{C}$ | Hot utility<br>consumption MJ/h | Cold utility<br>consumption MJ/h | % Saving<br>of hot<br>utility | % Saving<br>of cold<br>utility | Capital<br>cost of<br>HEN \$/y | Overall<br>annual<br>cost \$/y | N <u>o</u><br>of<br>units | Pinch<br>Pt °C | % Gas emission<br>reduction as a result<br>of energy managemer |                             |
|--------------------------------------|---------------------------------|----------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------|----------------|----------------------------------------------------------------|-----------------------------|
|                                      |                                 |                                  |                               |                                |                                |                                |                           |                | % CO <sub>2</sub><br>reduction                                 | % So <sub>x</sub> reduction |
| 5                                    | 37308.3                         | 29999.8                          | 32                            | 36.5                           | 226,269                        | 3,271,528                      | 13                        | 154.5          | 29                                                             | 17.3                        |
| 10                                   | 38733.8                         | 31425.6                          | 29                            | 33.5                           | 175,249                        | 3,337,407                      | 13                        | 152            | 26.7                                                           | 14.1                        |
| 15                                   | 40159.3                         | 32850.8                          | 27                            | 30.5                           | 134,715                        | 3,413,772                      | 13                        | 149.5          | 24                                                             | 10.8                        |
| 20                                   | 41584.8                         | 34276.2                          | 24                            | 27.5                           | 110,956                        | 3,506,910                      | 13                        | 147            | 21.3                                                           | 7.6                         |
| 25                                   | 43010.3                         | 35701.7                          | 21.5                          | 24.5                           | 87,228                         | 3,600,081                      | 12                        | 144.5          | 18.6                                                           | 4.5                         |
| 30                                   | 44471.8                         | 37163.2                          | 19                            | 21.4                           | 76,066                         | 3,708,769                      | 13                        | 142            | 15.8                                                           | 1.3                         |

# 3.2. Energy targeting through heat exchanger network synthesis (HENS)

Minimizing the hydrotreater utilities can be realized by applying pinch technology to design HEN. The first step was classification of the process streams into hot and cold streams with their specifications as shown in Table 1. Due to the effect of minimum approach temperature difference ( $\Delta T_{\min}$ ) on both capital and operating costs, determination of minimum consumption of utilities at several values of  $(\Delta T_{\min})$ ; 5, 10, 15, 20, 25, 30 °C) took place as the second step. By applying pinch technology technique, we designed a HEN for the hydrotreater unit at each value of  $\Delta T_{\min}$  (see Figs. 2–7). Energy target through designing of HENs realized minimizing of heavy fuel oil consumption as a hot utility (reached to 32%) and thus reduction of gas emissions (reached to 29% of CO<sub>2</sub> and 17% of  $SO_x$ ) as shown in Table 2. (Properties and prices of fuel types are presented in Table 3). The rate of fuel emissions is computed by applying Eq. (1)-(3) [28].

### 3.3. Combined process integration and fuel switching strategy

Fuel switching from heavy fuel oil into natural gas, diesel oil and coal took place, where the rate of gas emissions for each fuel is computed by applying Eq. (1)-(3) and using alternative

 Table 3
 Classification and properties of different types of fuels.

|              | Natural gas | Diesel oil | Fuel oil | Coal |
|--------------|-------------|------------|----------|------|
| NHV (MJ/kg)  | 51.2        | 42.0       | 39.57    | 30.0 |
| Cost (\$/GJ) | 4.21        | 7.79       | 9.9      | 1.61 |

fuel analysis [28]. The effect of fuel type and its emission on every HEN for the hydrotreater unit is shown obviously in Table 4. According to the fuel type the least emission is accomplished with natural gas while the use of coal led to much emission as shown in Table 4. Economic analysis among several scenarios should take place to choose optimum conditions of HEN design and fuel type.

#### 3.4. Economic analysis and cost targeting

We have several designs of HEN for the hydrotreater unit as shown in Figs. 2–7, we must estimate the overall cost to compare between them taking into consideration gas emission [1,29]

(4)

$$= Fuel \cos t + Cold Water Cost$$
(5)

Annualized Capital Cost (CC) = Capital Cost of HEN (6)

Exchanger Capital Cost (\$) =  $8600 + 670 (area)^{0.83}$  (7)

Life time = 5 years No. of working days/y = 330 (8)

Operating cost, capital cost and thus the overall annual cost of every HEN design were estimated for the three types of fuel (natural gas, diesel oil and coal).

Table 5 is a collection of options for the hydrotreater HEN designs at different values of  $\Delta T_{\min}$  with different types of fuel. According to cost only; coal as a fuel type realized least overall

```
Table 4 Rate of the fuel gas emissions for the hydrotreater HENs at different values of \Delta T_{\min} with different types of fuel.
```

| $\Delta T_{\min}$ °C | Hot utility<br>consumption MJ/h | Cold utility<br>consumption MJ/h | No of<br>units | Pinch<br>Pt °C | Natural gas      |                  | Diesel oil       |                  | Coal             |                  |
|----------------------|---------------------------------|----------------------------------|----------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                      |                                 |                                  |                |                | C Emiss.<br>kg/h | S Emiss.<br>kg/h | C Emiss.<br>kg/h | S Emiss.<br>kg/h | C Emiss.<br>kg/h | S Emiss.<br>kg/h |
| 5                    | 37308.3                         | 29999.8                          | 13             | 154.5          | 2090.5           | 2.25             | 3108.0           | 15.17            | 5301.5           | 121.66           |
| 10                   | 38733.8                         | 31425.6                          | 13             | 152            | 2170.4           | 2.33             | 3226.8           | 15.75            | 5504.1           | 126.3            |
| 15                   | 40159.3                         | 32850.8                          | 13             | 149.5          | 2250.3           | 2.4              | 3345.6           | 16.32            | 5706.7           | 131              |
| 20                   | 41584.8                         | 34276.2                          | 13             | 147            | 2330.1           | 2.6              | 3464.3           | 16.91            | 5909.3           | 135.6            |
| 25                   | 43010.3                         | 35701.7                          | 12             | 144.5          | 2410.0           | 2.7              | 3583.1           | 17.5             | 6111.8           | 140.3            |
| 30                   | 44471.8                         | 37163.2                          | 12             | 142            | 2491.9           | 2.8              | 3704.8           | 18.08            | 6319.5           | 145.0            |

**Table 5** Effect of fuel type on annualized total cost and % gas emission reduction of the hydrotreater HENs at several  $\Delta T_{min}$ .

| $\Delta T_{\min} ^{\circ}\mathrm{C}$ | % Gas em            | ission reduct                   | ion due to en       | nergy targetir | Overall Annual cost \$/y according to fuel type |                                 |             |            |         |  |
|--------------------------------------|---------------------|---------------------------------|---------------------|----------------|-------------------------------------------------|---------------------------------|-------------|------------|---------|--|
|                                      | Natural gas         |                                 | Diesel oil          |                | Coal                                            |                                 |             |            |         |  |
|                                      | CO <sub>2</sub> (%) | $\mathrm{SO}_{x}\left(\% ight)$ | CO <sub>2</sub> (%) | $SO_x$ (%)     | CO <sub>2</sub> (%)                             | $\mathrm{SO}_{x}\left(\% ight)$ | Natural gas | Diesel oil | Coal    |  |
| 5                                    | 54                  | 90                              | 32                  | 32             | -16                                             | -446                            | 1,528,579   | 2,586,404  | 760,327 |  |
| 10                                   | 52.5                | 89.5                            | 29                  | 29.4           | -20                                             | -466                            | 1,528,863   | 2,626,106  | 730,256 |  |
| 15                                   | 50.7                | 89.2                            | 26.7                | 26.8           | -25                                             | -487                            | 1,537,632   | 2,676,295  | 710,672 |  |
| 20                                   | 48.9                | 88.3                            | 24.1                | 24.2           | -29                                             | -508                            | 1,564,174   | 2,743,256  | 707,861 |  |
| 25                                   | 47                  | 87.9                            | 21.5                | 21.5           | -34                                             | -529                            | 1,590,749   | 2,810,249  | 705,082 |  |
| 30                                   | 45                  | 87.5                            | 18.9                | 18.9           | -38                                             | -550                            | 1,631,160   | 2,892,098  | 712,397 |  |

cost but calculation of gas emission reduction indicated that natural gas is the best. The energy engineer can choose one of these options as a new design for the hydrotreater unit depending on the economical conditions of his region.



**Figure 8** Relation between  $\Delta T_{min}$ , overall cost and % gas emission reduction for the hydrotreater HENs using fuel oil.

#### 3.5. Revamping of the existing design of the case study

Table 2 shows that as  $\Delta T_{\min}$  increased, minimum hot utility consumption increased so overall cost increased while gas emission reduction percentage is decreased. To choose an optimum value of  $\Delta T_{\min}$  for the case study, we plot a curve representing  $\Delta T_{\min}$ , overall cost and percentage of gas emission reduction [29,30] where the optimum  $\Delta T_{\min}$  for the case study is deduced as18 °C; see Fig. 8. The design of the hydrotreater HEN at the optimum  $\Delta T_{\min}$  of 18 °C is presented in Fig. 9. The existing HEN of the hydrotreater is presented in Fig. 10. By comparing Figs. 9 and 10 we deduced some required modification for the existing HEN, which are adding the heat exchanger (NO 4) on naphtha feed stream and a heater for cold stream C4 (treated naphtha + light hydrocarbon). The revamped flow sheet is shown in Fig. 11, where the background of the added units are presented in gray color.

Revamping can happen through four suggested scenarios: The first one is revamping through fuel switching from fuel oil to natural gas where utility consumption of this scenario and existing design are equal while gas emission reduction reached to 35% and 87.8% for both  $CO_2$  and  $SO_x$ , respectively and net annual saving is 2,782,894 \$/y.

The second is switching fuel oil to diesel oil, so consumption of utilities is similar to the existing but gas emission reduction reached to 28% and 38.7% for both  $CO_2$  and  $SO_x$ , respectively and net annual saving is 1,093,909 \$/y.

The third scenario depended on heat integration only and the proposed design achieved saving of hot and cold utilities as 25.4% and 28.7%, respectively and accomplished gas emission reduction of 19% with net annual saving as 1,189,981 \$/y.

The fourth scenario combined both heat integration and fuel switching and the revamped design achieved the same percentage of utility saving as the third scenario but the gas emission reduction reached to 40% and 88.8% for both CO<sub>2</sub> and SO<sub>x</sub>, respectively (when fuel switched from fuel oil to natural gas) and the net annual saving was 3,265,021 \$/y.

A summary of the revamped designs' results is shown in Table 6; the four cases achieved improvement in energy saving, gas emission reduction and less operating cost compared to the base case (existing design). While the best case was through heat integration coupled with fuel switching to natural gas



**Figure 9** The hydrotreater HEN as  $\Delta T_{\min}$  of 18 °C.



Figure 10 The HEN of the existing hydrotreater.



Figure 11 The revamped flow sheet of the hydrotreater unit.

| Table 6 | Summary | of | the | revamped | designs' | results | for | the | hydrotreat | er unit |
|---------|---------|----|-----|----------|----------|---------|-----|-----|------------|---------|
|         |         |    |     |          |          |         |     |     |            |         |

| Design case            | % Saving of hot utility | % Saving of cold utility | Operating cost \$/y | Added capital<br>cost \$/y | Net annual saving \$/y | % CO <sub>2</sub> emission reduction | % SO <sub>x</sub> emission reduction |
|------------------------|-------------------------|--------------------------|---------------------|----------------------------|------------------------|--------------------------------------|--------------------------------------|
| <sup>a</sup> Base case | -                       | -                        | 4,861,009           | -                          | -                      | -                                    | -                                    |
| <sup>b</sup> Case 1    | -                       | -                        | 2,078,115           | -                          | 2,782,894              | 35                                   | 87.8                                 |
| <sup>c</sup> Case 2    | _                       | _                        | 3,767,100           | -                          | 1,093,909              | 28                                   | 38.7                                 |
| <sup>d</sup> Case 3    | 25.4                    | 28.7                     | 3,621,589           | 49,439                     | 1,189,981              | 19                                   | 19                                   |
| <sup>e</sup> Case 4    | 25.4                    | 28.7                     | 1,546,549           | 49,439                     | 3,265,021              | 40                                   | 88.8                                 |

<sup>a</sup> Base case: existing design using fuel oil.
 <sup>b</sup> Case 1: fuel switching from fuel oil to natural gas.

<sup>c</sup> Case 2: fuel switching from fuel oil to diesel oil.

<sup>d</sup> Case 3: heat integration without fuel switching.

<sup>e</sup> Case 4: heat integration with fuel switching to natural gas.



Base Case: Existing design using fuel oil Case 1: fuel switching from fuel oil to natural gas Case 2: fuel switching from fuel oil to diesel oil Case 3: heat integration without fuel switching Case 4: heat integration with fuel switching from fuel oil to natural gas

Figure 12 Comparison between base case and the four revamped design cases. (A) According to operating cost and (B) according to % gass emission reduction.

(case 4). Comparison among base case and the four other cases with respect to operating cost and % gas emission reduction is shown in Fig. 12(A) and (B).

# 4. Conclusion

The pivot of minimizing both of energy consumption and gas emission for any chemical process is realized through MER heat exchanger network synthesis coupled with fuel switching. This methodology was applied on a case study which is a hydrotreater unit of petroleum refinery where results realized as energy saving of 37% for hot and cold utilities and gas emission reduction of 54% for  $CO_2$  and 90% for  $SO_x$ . Revamping the existing design of the hydrotreater unit was studied through four scenarios, the four alternative designs realized better results of energy saving, gas emission reduction and net annual saving compared to the existing hydrotreater unit.

Maximum energy saving, maximum gas emission reduction and maximum net annual saving were realized through heat exchanger network synthesis coupled with fuel switching from fuel oil to natural gas. The revamped design in this case achieved saving of hot and cold utilities as 25.4% and 28.7%, respectively, the gas emission reduction reached 40% and 88.8% for both CO<sub>2</sub> and SO<sub>x</sub>, respectively and the net annual saving was 3,265,021 \$/y.

### Acknowledgement

The authors acknowledge the administration of Egyptian Petroleum Research Institute for their support and encourage.

#### References

- [1] A. Mahmoud, M. Shuhaimi, Samed M. Abdel, Energy 34 (2009) 190–195.
- [2] B.J. Tiew, M. Shuhaimi, H. Hashim, Appl. Energy 92 (2012) 686–693.
- [3] R. Smith, E.A. Petela, H.D. Spriggs, Heat Recovery Syst. CHP 10 (4) (1990) 329–390.
- [4] S.A. El-Temtamy, I. Hamid, E.M. Gabr, A. Sayed, Pet. Sci. Technol. 28 (2010) 1316–1330.
- [5] T. Gunderson, L. Naess, Comput. Chem. Eng. 12 (1988) 503– 530.
- [6] I.E. Grossmann, R.W.H. Sargent, Comput. Chem. Eng. 2 (1978) 1–7.
- [7] S.A. Papoulias, I.E. Grossmann, Comput. Chem. Eng. 7 (1983) 702–734.
- [8] C.A. Floudas, A.R. Ciric, I.E. Grossmann, AIChE J. 32 (1986) 276–290.
- [9] B. Linnhoff, J.R. Flower, AIChE J. 24 (1978) 633-642.
- [10] B. Linnhoff, J.R. Flower, AIChE J. 24 (1978) 642-654.
- [11] B. Linnhoff, D.R. Mason, I. Wardle, Comput. Chem. Eng. 3 (1979) 295–302.

- [12] B. Linnhoff, D.W. Townsend, D. Boland, G.F. Hewitt, B.E.A. Thomas, A.R. Guy, R.H. Marsland, A User Guide on Process Integration for the Efficient Use of Energy, Pergamon Press, Oxford, 1982.
- [13] B. Linnhoff, J.A. Turner, Chem. Eng. 11 (1981) 56-70.
- [14] B. Linnhoff, E. Hindmarsh, Chem. Eng. Sci. 38 (1983) 745–763.
- [15] B. Linnhoff, Chem. Eng. Res. Des. 71 (1993) 503-522.
- [16] D.R. Lewin, H. Wang, O. Shalev, Comput. Chem. Eng. 22 (1998) 1503–1513.
- [17] D.R. Lewin, H. Wang, O. Shalev, Comput. Chem. Eng. 22 (1998) 1387–1405.
- [18] H.M. Yu, H.P. Fang, P.J. Yao, Y. Yuan, Comput. Chem. Eng. 24 (2000) 2023–2035.
- [19] G.F. Wei, Y.Q. Sun, G.H. He, P.J. Yao, X. Luo, W. Roetzel, J. Dalian Univ. Technol. 44 (2004) 218–223.
- [20] G.F. Wei, P.J. Yao, X. Luo, W. Roetzel, J. Chin. Inst. Chem. Eng, 35 (2004) 285–297.
- [21] G.F. Wei, P.J. Yao, X. Luo, W. Roetzel, Chin. J. Chem. Eng. 12 (2004) 66–77.
- [22] B. Lin, D.C. Miller, Comput. Chem. Eng. 28 (2004) 1451-1464.
- [23] The Petroleum Refining Industry, Chapter 5.
- [24] C. Bergh, Energy efficiency in the South African crude oil refining industry: drivers, barriers and opportunities (MSc), Sustainable Energy Engineering, University of Cape Town, 29 May, 2012.
- [25] E. Worrell, C. Galitsky, Energy Efficiency Improvement and Cost Saving Opportunities for Petroleum Refineries, Lawrence Berkeley National Laboratory, 2005.
- [26] M. Gharaie, N. Zhanga, M. Jobsona, R. Smitha, Panjeshahiba M. Hassan, Chem. Eng. Res. Des. 28 (2004) 1483–1498.
- [27] European Commission (EU), Monaco, Switzerland, Ukraine Kyoto Protocol and Government Action, Doha Amendment to the Kyoto Protocol, 2012.
- [28] R. Smith, O. Delaby, Trans. IChemE 69 (A) (1991).
- [29] El-Temtamy, et al., Project: energy conservation in petroleum industries; petroleum energy and mining research council, ASRT, Final report, 1989.
- [30] Kamlu R. Gota, S. Khanam, IJRRAS 9 (3) (2011) 427-433.