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Abstract

We explore the dark matter and LHC implications of t −b−τ quasi Yukawa unification in the framework 
of supersymmetric models based on the gauge symmetry G = SU(4)c × SU(2)L × SU(2)R . The deviation 
from exact Yukawa unification is quantified by a dimensionless parameter C (|C| � 0.2), such that the 
Yukawa couplings at MGUT are related by yt : yb : yτ = |1 + C| : |1 − C| : |1 + 3C|. In contrast to earlier 
studies which focused on universal gaugino masses, we consider non-universal gaugino masses at MGUT
that are compatible with the gauge symmetry G. Our results reveal a variety of neutralino dark matter 
scenarios consistent with the observations. These include stau and chargino coannihilation scenarios, the 
A-resonance scenario, as well as Higgsino dark matter solutions which are more readily probed by direct 
detection searches. The gluino mass is found to be � 4 TeV, the stop mass is � 2 TeV, while the first two 
family squarks and sleptons are of order 4–5 TeV and 3 TeV respectively.
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1. Introduction

In an earlier paper [1], we have explored the LHC implications of imposing t − b − τ Quasi-
Yukawa Unification (QYU) at the grand unification scale (MGUT ∼ 2 ×1016 GeV). This modified 
approach to the third family (t − b − τ ) YU [2] can be motivated by the desire to construct re-
alistic supersymmetric models of grand unified theories (GUTs) which also incorporate realistic 
masses and mixings observed in the matter sector. For instance, the desired quark and charged 
lepton masses for the second family fermions can be incorporated, following [3], by includ-
ing Higgs fields in H ′(15, 1, 3) representation of G = SU(4)c × SU(2)L × SU(2)R (hereafter 
4-2-2) [4], which develops a non-zero GUT scale vacuum expectation values (VEVs). The third 
family Yukawa couplings receive, in this case, sizable new contributions, and the deviations from 
exact YU can be stated as follows [1]:

yt : yb : yτ =| 1 + C |:| 1 − C |:| 1 + 3C | (1)

where C measures the deviation from the exact YU. Restricting the deviation to | C |� 0.2 we 
refer Eq. (1) to QYU condition. Note that C can be taken positive by appropriately adjusting the 
phases of the Higgs fields H and H ′ [3].

The 4-2-2 model has many salient features distinguishing it from other high scale theories [5]. 
The discrete left–right (LR) symmetry reduces the number of gauge couplings from three to 
two with gL = gR . It also requires gaugino masses of SU(2)L and SU(2)R to be equal at MGUT. 
Furthermore, if 4-2-2 breaks into MSSM at around the GUT scale, the threshold corrections to the 
gauge couplings become negligible and unification of MSSM gauge couplings is approximately 
maintained. If one assumes the underlying GUT symmetry is SO(10), in the breaking pattern, the 
16-plet of SO(10) splits into ψ(4, 2, 1) and ψc(4, 2, 1) under 4-2-2. Using left–right symmetry, 
the soft masses associated with ψ and ψc are equal. In addition, the LR symmetry requires the 
existence of right-handed neutrino. However, if the Dirac Yukawa coupling associated with the 
right-handed neutrino is adequately small [6], its contribution to the low scale supersymmetric 
phenomenology is negligible, and hence we do not include it in our study.

In this paper we reconsider QYU in the framework of 4-2-2 defined above, taking into account 
the fact that the MSSM gaugino masses M1,2,3 at MGUT can be non-universal. In particular, we 
assume the following asymptotic relation [7]

M1 = 3

5
M2 + 2

5
M3 , (2)

which follows from the assumption of left–right symmetry at MGUT and the fact that U(1)Y
derived from 4-2-2 is given as follows:

Y =
√

3

5
I3R +

√
2

5
(B − L). (3)

Here M1, M2 and M3 are the asymptotic gaugino masses for U(1)Y , SU(2)L and SU(3)c , and 
I3R and (B − L) are diagonal generators of SU(2)R and SU(4)c respectively. Note that either 
M2 or M3 can have a positive sign by convention, while the other has a freedom to be negative. 
Previous studies [8,9] have shown that the 4-2-2 setup with opposite sign gaugino masses leads 
to a fairly rich phenomenology even if exact Yukawa unification (i.e. C = 0) is imposed. For 
instance, Yukawa unification can be achieved at low values of m16 (∼ 800 GeV) in contrast to 
other Yukawa unified models which predict Yukawa unification for m16 � 8 TeV [7]. Besides, 
there are a variety of coannihilation channels consistent with Yukawa Unification which reduce 
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the LSP neutralino relic density to the ranges consistent with the WMAP bound. Considering 
QYU in this case does not significantly change the low scale phenomenology. On the other 
hand, the case of 4-2-2 with positive gaugino masses provides a very stringent framework if 
exact Yukawa unification is imposed. Despite a variety of coannihilation channels [10], only 
the gluino–neutralino coannihilation can survive under the Yukawa unification condition [7]. 
Relaxing t − b − τ Yukawa Unification to b − τ Yukawa Unification allows, in addition, the 
stop–neutralino coannihilation channel [11]. In this respect, QYU leads to a very different low 
scale phenomenology with all gaugino masses positive. Therefore we restrict ourselves in our 
study to the case in which the gauginos all have positive masses.

The setup of our paper is as follows. In Section 2 we briefly explain our scanning procedure 
and list the experimental constraints that we impose on the data obtained from our scans. In Sec-
tion 3 we show the fundamental parameter space that is allowed by the experimental constraints 
and QYU. Section 4 provides the implications for dark matter sector such as coannihilation chan-
nels and the resonance solution. Section 5 considers a Higgsino-like LSP and we emphasize the 
implications for direct detection experiments. We also present the benchmark points to exemplify 
our results. We conclude our study in Section 6.

2. Scanning procedure and experimental constraints

In our scan, we employ ISAJET 7.84 [12] to calculate the low scale observables. The gauge 
and Yukawa couplings are first estimated at the low scale. ISAJET evolves the gauge couplings 
and the Yukawa couplings of the third family up to MGUT. We do not strictly enforce the gauge 
unification condition g1 = g2 = g3, since a few percent deviation from the gauge coupling uni-
fication can be generated by unknown GUT-scale threshold corrections [13]. Hence, MGUT is 
calculated to be the scale where g1 = g2 and g3 deviates a few percent. After MGUT is de-
termined, the soft supersymmetry breaking (SSB) parameters determined with the boundary 
conditions defined at MGUT are evolved together with the gauge and Yukawa couplings from 
MGUT to the weak scale MZ.

The SUSY threshold corrections to the Yukawa couplings [14] are taken into account at the 
common scale MSUSY = √

mt̃L
mt̃R

. The entire parameter set is iteratively run between MZ and 
MGUT using full 2-loop RGEs, and the SSB parameters are extracted from RGEs at the appro-
priate scales mi = mi(mi).

We have performed random scans over the following parameter space:

0 ≤ m16 ≤ 10 000 GeV

0 ≤ M2 ≤ 2000 GeV

0 ≤ M3 ≤ 2000 GeV

−3 ≤ A0/m16 ≤ 3

40 ≤ tanβ ≤ 60

0 ≤ m10 ≤ 10 000 GeV

μ > 0, mt = 173.3 GeV. (4)

Considering the similarities between SO(10) and the Pati–Salam gauge group with imposed LR 
symmetry discussed above, we use the SO(10) notation to describe the boundary conditions com-
patible with 4-2-2. In this context, m16 defines the universal SSB terms for the matter fields, and 
m10 stands for the universal SSB mass term for the MSSM Higgs doublets. M2, M3 are the SSB 
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mass terms for the gauginos of SU(2)L and SU(3)c respectively, and M1 is determined asymp-
totically in terms of M2 and M3 as given in Eq. (2). A0 is the universal SSB term for trilinear 
scalar interactions, tanβ is the ratio of VEVs of the MSSM Higgs doublets, μ is coefficient of 
the bilinear Higgs mixing term, and mt is the top quark mass. Note that we set the top quark mass 
to 173.3 GeV [15,16], and our results are not too sensitive to a 1σ − 2σ variation in mt [17].

We employ the Metropolis–Hastings algorithm as described in [18], and require all collected 
points to satisfy radiative electroweak symmetry breaking (REWSB) with LSP neutralino. The 
REWSB gives a crucial theoretical constraint on the parameter space [19]. After collecting data, 
we impose constraints from the mass bounds [20], rare decays of B-meson such as Bs → μ+μ−
[21], b → sγ [22], and Bu → τντ [23]. After obtaining the region allowed by the LHC con-
straints, we also apply the WMAP bound [24] on the relic abundance of LSP neutralino. ISAJET 
interfaces with IsaTools [25,26] for B-physics and relic density observables. The experimental 
constraints imposed in our data can be summarized as follows:

mh = (123 − 127) GeV

mg̃ ≥ 1.4 TeV

0.8 × 10−9 ≤ BR(Bs → μ+μ−) ≤ 6.2 × 10−9 (2σ)

2.99 × 10−4 ≤ BR(b → sγ ) ≤ 3.87 × 10−4 (2σ)

0.15 ≤ BR(Bu → τντ )MSSM

BR(Bu → τντ )SM
≤ 2.41 (3σ)

0.0913 ≤ �CDMh2 ≤ 0.1363 (5σ). (5)

We emphasize here the mass bounds on the Higgs boson [27,28] and gluino [29]. We allow 
a few percent deviation from the observed mass of the Higgs boson, since there exist about a 
2 GeV error in estimation of its mass arising due to theoretical uncertainties in the calculation of 
the minimum of the scalar potential, and experimental uncertainties in mt and αs [30]. Besides 
these constraints, we require our solutions to do no worse than the SM in comparing predictions 
for the muon anomalous magnetic moment. Note that the WMAP bound on the DM relic density 
provides a very stringent constraint, since the relic density of LSP neutralino as a candidate for 
the DM can be very large over the parameter space. Moreover, as a solution of the Boltzmann 
equation, the relic density is in exponential form [31,32], and so even small deviations in model 
parameters can exponentially affect the results in calculation of the relic density. Additionally, 
one can also assume a multi-component DM scenario, and consider the LSP neutralino as one of 
the components. Such an assumption can relax the lower bound on the relic density which can 
alter the DM phenomenology, especially for the cases in which the LSP neutralino is Higgsino-
like, or formed by bino–wino mixing. Even though we do not exclude such viable DM scenarios, 
we assume the DM relic density is saturated only by the LSP neutralino.

3. Fundamental parameter space of Quasi Yukawa Unification and sparticle mass 
spectrum

In this section we highlight the allowed regions in the fundamental parameter space of 4-2-2 
given in Eq. (4) and present the results for the mass spectrum of colored supersymmetric parti-
cles. Fig. 1 shows the plots in C–m16, C–m10, C–M2 and C–M3 planes. All points are compati-
ble with REWSB and LSP neutralino. Green points satisfy the mass bounds on the sparticles and 
the Higgs boson, and the constraints from rare B-decays. Blue points form a subset of green and 
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Fig. 1. Plots in C–m16, C–m10, C–M2 and C–M3 planes. All points are compatible with REWSB and LSP neutralino. 
Green points satisfy the mass bounds on the sparticles and the Higgs boson, and the constraints from rare B-decays. Blue 
points form a subset of green and they are compatible with the QYU condition. Note that we allow the solutions also for 
C > 0.2, since the vertical axis represents C itself. A dashed line indicating C = 0.2 has been used in these plots. Points 
in red form a subset of blue and satisfy the WMAP constraint on relic abundance of LSP neutralino. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

they are compatible with the QYU condition. Note that we allow the solutions also for C > 0.2, 
since the vertical axis represents C itself. A dashed line indicating C = 0.2 has been used in 
these plots. Points in red form a subset of blue and satisfy the WMAP constraint on relic abun-
dance of LSP neutralino. As seen from the C–m16 panels, QYU (blue) requires m16 � 2 TeV. 
Even though it is possible to find solutions compatible with QYU for m16 ∼ 500 GeV [1], such 
solutions have been excluded by the constraint from the Higgs boson mass. In contrast to m16, 
m10 is only loosely constrained by QYU. As seen from the C–m10 panel, it is possible to find 
solutions compatible with QYU (blue region) at any scale of m10. However, it is constrained 
to m10 � 2 TeV by the WMAP bound on relic density of LSP neutralino (red region). We can 
see from the C–M2 panel that M2 can be as low as 300 GeV. Such light M2 solutions yield 
bino–wino mixing at the low scale which plays a role in reducing the relic abundance of LSP 
neutralino to the desired range. The C–M3 plane shows that M3 � 500 GeV is compatible with 
QYU. This lower bound on M3 is required by the heavy gluino mass constraint. Furthermore, 
solutions compatible with the WMAP require M3 � 1.2 TeV.

The results for the remaining parameters are shown in Fig. 2 with plots in C–tanβ and 
C–A0/m16 planes. Color coding is the same as in Fig. 1. The C–tanβ plane reveals that QYU 
requires rather high tanβ values (tanβ � 56), and the C–A0/m16 panel shows that A0/m16 can 
lie in the range (−2, 1).

We present the results for the mass spectrum of the colored sparticles and gluino in Fig. 3 in 
mq̃–mg̃ , where mq̃ denotes the masses of squarks of the first two families, and mt̃ –mχ̃0

1
planes. 

Color coding is the same as in Fig. 1. In addition, the blue points satisfy C ≤ 0.2 as well as QYU 
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Fig. 2. Plots in C–tanβ and C–A0/m16 planes. Color coding is the same as in Fig. 1. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Plots in mq̃ –mg̃ and mt̃ –m
χ̃0

1
planes. Color coding is the same as in Fig. 1. In addition, the blue points satisfy 

C ≤ 0.2 as well as QYU condition. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

condition. The gluino mass compatible with QYU and C ≤ 0.2 is found to be mg̃ � 1.5 TeV, and 
it can be tested in future experiments at the Large Hadron Collider (LHC). The squarks in QYU 
region are found to be of mass about 4 TeV. Similarly, the stop quarks satisfy mt̃ � 2 TeV.

4. LSP neutralino and coannihilation scenarios

In the previous section we have focused on the fundamental parameter space and the mass 
spectrum of the colored particles. Since we accept only those solutions which lead to LSP neu-
tralino, it is worth investigating the implications of 4-2-2 on the dark matter observables. In 
supersymmetric models with universal gaugino masses imposed at MGUT, the LSP neutralino 
mostly happens to be Bino, and its relic abundance is usually so high that it cannot be consis-
tent with the WMAP observation. However, one can identify various coannihilation channels 
that reduce the relic abundance of neutralino to the desired ranges. Since we allow nonuniversal 
gaugino masses determined by the 4-2-2 gauge group as given in Eq. (2), one can expect richer 
DM phenomenology. Indeed, 4-2-2 predicts various coannihilation channel scenarios at the low 
scale [10], but only the gluino–neutralino coannihilation scenario can survive if one imposes 
t − b − τ YU (C = 0) at MGUT with μ > 0 [7]. Relaxing this to b − τ YU opens up, in addition, 
the stop–neutralino channel [11]. In this section, we consider the phenomenological implica-
tions of QYU in 4-2-2 regarding the dark matter and the structure of LSP neutralino. Besides the 
bino-like LSP neutralino, it is possible to find solutions with bino–wino mixture, bino–higgsino 
mixture, or mostly higgsino LSP neutralino which leads to different phenomenology.
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Fig. 4. Plots in M2–M1 and μ–M1 planes. Color coding is the same as in Fig. 3. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Plots in m
χ̃±

1
–m

χ̃0
1

, mτ̃ –m
χ̃0

1
, and mA–m

χ̃0
1

planes. Color coding is the same as in Fig. 3. The solid lines in the 
plots correspond to the related coannihilation channel regions. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 4 displays the results in M2–M1 and μ–M1 planes. Color coding is the same as in Fig. 3. 
As stated in the previous section, M2 can be as low as 300 GeV. The line in M2–M1 plane indi-
cates solutions for which M1 = 2M2 and they yield bino–wino mixing at the low scale. Similarly, 
the line in μ–M1 plane corresponds to the solutions which have M1 = μ. These solutions can 
lead to very interesting implications, since LSP neutralino is bino–higgsino mixture near this 
line. Moreover, the LSP neutralino is found to be mostly higgsino below the line.

Fig. 5 summarizes our results for the coannihilation channels compatible with QYU in 
mχ̃±

1
–mχ̃0

1
, mτ̃ –mχ̃0

1
, and mA–mχ̃0

1
planes. Color coding is the same as in Fig. 3. The solid lines 

in the plots correspond to the related coannihilation channel regions. Even though solutions in 
blue represent the regions compatible with QYU along with other LHC constraints, we rather 
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Fig. 6. Plots in χ̃0
1 –nucleon σSI and χ̃0

1 –nucleon σSD planes. Color coding is the same as in Fig. 3. In χ̃0
1 –nucleon σSI

plane, the dashed (solid) red line represents the current (future) bound from the XENON1T experiment [33], the dashed 
(solid) black line shows the current (future) bound of the CDMS [34] experiment, and the dashed (solid) magenta line 
displays the current (future) bound of the LUX experiment [35]. In χ̃0

1 –nucleon σSD plane the dashed red line represents 
the bound from the Super K experiment, while the dashed (solid) black line shows the current (future) reach of the 
IceCube experiment. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

focus on the solutions in red, since these coannihilation channels reduce the relic density of LSP 
neutralino to the WMAP range such that the LSP neutralino can be identified as a pleasant can-
didate for the DM. The mχ̃±

1
–mχ̃0

1
panel shows that the neutralino and the lightest chargino of 

mass � 300 GeV can be nearly degenerate as expected from the M2–M1 planes of Fig. 4. Besides 
chargino–neutralino coannihilation, the stau–neutralino channel is found to be compatible with 
QYU as seen from the mτ̃ –mχ̃0

1
plane, and stau can be as light as 400 GeV in this region. Another 

solution allowed by QYU is the A-resonance shown in the mA–mχ̃0
1

planes. The diagonal line in 
this panel corresponds to regions with mA = 2mχ̃0

1
in which two LSP neutralinos annihilate via 

the A-boson. The A-resonance solutions can be found for mχ̃0
1
� 600 GeV and correspondingly 

mA � 1.2 TeV in the data set obtained.

5. Higgsino(-like) LSP

In the previous section we have identified various coannihilation channels and a resonance so-
lution which reduce the relic abundance of LSP neutralino so that the dark matter phenomenology 
in the 4-2-2 framework can be consistent with the WMAP experiment. In this section we take 
a closer look at the structure of the LSP neutralino. Since the setup of 4-2-2 allows different 
kinds of LSP neutralinos such as bino–wino or bino–higgsino mixture, or mostly higgsino LSP, 
it opens up possibilities for direct detection experiments via relic LSP neutralino scattering on 
nuclei. When the LSP neutralino is mostly bino, it interacts with the quarks inside the nuclei 
only via the hypercharge, and hence the scattering crossection is too low to be tested in the direct 
detection experiments. On the other hand, the case with bino–wino mixture, or equivalently the 
one with chargino–neutralino coannihilation, yield moderate cross-sections in these scattering 
processes, since the LSP also interacts with quarks in the nucleon via SU(2) interactions. The 
scattering cross-section reaches its highest values when the LSP neutralino is a bino–higgsino 
mixture or mostly higgsino, since the Yukawa interactions between quarks and the higgsino 
component of LSP neutralino take part in the scattering processes.
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We present our results in Fig. 6 for neutralino–nucleon scattering for both the spin-
independent and spin-dependent cases in χ̃0

1 –nucleon σSI and χ̃0
1 –nucleon σSD planes respec-

tively. The color coding is the same as in Fig. 3. In the χ̃0
1 –nucleon σSI plane, the dashed 

(solid) red line represents the current (future) bound from the XENON1T experiment [33], 
the dashed (solid) black line shows the current (future) bound of the CDMS [34] experiment, 
and the dashed (solid) magenta line displays the current (future) bound of the LUX experiment 
[35]. In the χ̃0

1 –nucleon σSD plane, the dashed red line represents the bound from the Super 
K experiment, while the dashed (solid) black line shows the current (future) reach of the Ice-
Cube experiment. As seen from the χ̃0

1 –nucleon σSI plane, the spin-independent cross-section 
for the LSP neutralino with bino–wino mixture is of order 10−11 pb, while it rises by two or-
ders of magnitude for bino–higgsino mixture. Furthermore, the spin-independent cross-section 
lies between 10−10–10−8 pb if the LSP neutralino is mostly a higgsino, which is within reach 
of the direct detection experiments such as XENON1T, SuperCDMS and LUX. The red points 
placed between the dashed and solid lines of the same color are expected to be tested in the near 
future.

Before concluding, we want to highlight that the Higgsino(-like) dark matter can also be 
realized in the case of approximate universal gaugino masses. The plot in M2–M1 plane given 
in the left panel of Fig. 4 shows that the region with M2 ≈ M1 ≈ 1.5 TeV is consistent with 
the desired relic density of LSP neutralino. From the asymptotic gaugino mass relation given in 
Eq. (2), the approximate equality between M1 and M2 means M3 ≈ M1 ≈ M2, and hence this 
region has the CMSSM-like boundary conditions. One can also identify this region in the μ–M1
plane given in the right panel of Fig. 4. It can be seen that μ �M1 and hence this region predicts 
a Higgsino(-like) dark matter.

Finally, we present four benchmark points in Table 1 that exemplify the results obtained from 
our scans. The points are chosen to be consistent with the constraints mentioned in Section 2. 
Point 1 is an A-resonance solution, and point 2 depicts a solution with higgsino dark matter. 
Points 3 and 4 display stau–neutralino and chargino–neutralino coannihilation solutions respec-
tively.

6. Conclusion

We have employed ISAJET to explore the LHC implications of Quasi-Yukawa unified (QYU) 
supersymmetric models based on the gauge symmetry G = SU(4)c ×SU(2)L ×SU(2)R . In these 
QYU models, the third family Yukawa unification relations involving t , b and τ is quantified by 
a parameter C which takes values ∼ 0.1–0.2. In contrast to earlier studies, the MSSM gaugino 
masses at MGUT are non-universal but consistent with the gauge symmetry G. The thermal relic 
abundance of the LSP neutralino is compatible with the WMAP bounds through the chargino 
and stau coannihilation channels, as well as the A-resonance solution. These solutions predict 
stau mass(es) of about 400 GeV, and chargino mass of about 300 GeV which can be tested in 
colliders. We also identify solutions with Higgsino-like dark matter (μ � 1 TeV), which can 
be tested in the direct dark matter searches such as XENON1T, SuperCDMS and LUX. The 
predicted gluino mass ranges from ∼ 1.5–4 TeV, and the first two family squark masses are 
� 4 TeV, which is consistent with the current gluino mass bound mg̃ > 1.4 TeV [29]. Simi-
larly, one can consider the mass bounds on the stops which depend on the decay channels. If 
the stops decay into the LSP neutralino and the charm quark, the mass bound on the stop is 
about 270 GeV [36], and it rises to about 650 GeV if it decays into the LSP neutralino and bot-
tom quark [37]. The mass bound on the stop is most severe, about 750 GeV, if it decays into 



Q. Shafi et al. / Nuclear Physics B 900 (2015) 400–411 409
Table 1
Benchmark points exemplifying our findings. The points are chosen to be consistent with the constraints mentioned in 
Section 2. Point 1 is an A-resonance solution, Point 2 depicts a solution with the higgsino dark matter, the WMAP bound 
on relic abundance of LSP neutralino is satisfied through chargino–neutralino coannihilation for this point. Point 3 and 
Point 4 display stau–neutralino and chargino–neutralino coannihilation solutions respectively. Point 4 also exemplifies 
the solution with the heaviest CP-even Higgs boson mass we obtained.

Point 1 Point 2 Point 3 Point 4

m0 3362 3312 2905 3844
M1 1343 1615 1436 893
M2 1143 1407 1365 480.3
M3 1643 1929 1542 1512
m10 4058 4377 3332 4320
tanβ 57.1 57.2 57.4 59.7
A0/m0 −1.05 −0.94 −1.46 −1.74
mt 173.3 173.3 173.3 173.3
μ 1420 752 2477 1996

mh 123.1 123.4 123.8 124.7
mH 1205 1126 1330 1394
mA 1197 1118 1322 1385
mH± 1209 1130 1334 1397

m
χ̃0

1,2
595.8, 958.5 701, 766 639, 1150 397.2, 413.9

m
χ̃0

3,4
959.3, 1343 773, 1189 2000, 2003 2474, 2475

m
χ̃±

1,2
959.3, 1343 775, 1168 1151, 2003 414.5, 2476

mg̃ 3628 4174 3399 3408

mũL,R
4533, 4507 4860, 4816 4118, 4061 4726, 4737

mt̃1,2
2772, 3251 3044, 3517 2388, 2947 2395, 3053

m
d̃L,R

4534, 4501 4861, 4816 4119, 4054 4726, 4737

m
b̃1,2

3223, 3457 3489, 3670 2915, 3117 3028, 3459

mν̃e,μ
3441 3434 3036 3854

mν̃τ
2662 2647 2264 2750

mẽL,R
3441, 3395 3434, 3362 3037, 2951 3854, 3856

mτ̃1,2
1398, 2659 1293, 2644 650.7, 2263 405.6, 2748

σSI(pb) 0.13 × 10−9 0.23 × 10−7 0.26 × 10−10 0.86 × 10−11

σSD(pb) 0.43 × 10−7 0.94 × 10−5 0.56 × 10−8 0.27 × 10−8

�h2 0.108 0.104 0.128 0.106

yt,b,τ (MGUT) 0.56, 0.41, 0.70 0.56, 0.44, 0.70 0.55, 0.38, 0.72 0.54, 0.37, 0.70
C 0.15 0.13 0.18 0.18

a LSP neutralino and top quark [38]. Despite such stringent bounds on the stop mass, the re-
gions in which the stop is nearly degenerate with the top quark is not excluded. Moreover, these 
bounds are obtained with the assumption that the stop directly decays into the LSP neutralino 
and a quark. However, in our analysis the stop masses are heavier than 2 TeV, and they do not 
directly decay into LSP neutralino. In this sense, even if one does not impose the current LHC 
bounds on the mass spectrum by hand, the QYU condition automatically requires the current 
bounds.
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