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SUMMARY

Nucleosome occupancy is fundamental for estab-
lishing chromatin architecture. However, little is
known about the relationship between nucleosome
dynamics and initial cell lineage specification. Here,
we determine the mechanisms that control global
nucleosome dynamics during embryonic stem (ES)
cell differentiation into endoderm. Both nucleosome
depletion and de novo occupation occur during the
differentiation process, with higher overall nucleo-
some density after differentiation. The variant his-
tone H2A.Z and the winged helix transcription factor
Foxa2 both act to regulate nucleosome depletion
and gene activation, thus promoting ES cell differen-
tiation, whereas DNA methylation promotes nucleo-
some occupation and suppresses gene expression.
Nucleosome depletion during ES cell differentia-
tion is dependent on Nap1l1-coupled SWI/SNF and
INO80 chromatin remodeling complexes. Thus,
both epigenetic and genetic regulators cooperate
to control nucleosome dynamics during ES cell fate
decisions.

INTRODUCTION

Next-generation sequencing technology has enabled the

construction of genome-wide high-resolution maps for nucleo-

somes in human, rodent, nematode, and yeast genomes (Li

et al., 2011; Schones et al., 2008; Shivaswamy et al., 2008;

Valouev et al., 2008). Despite these advances, to date, the

molecular mechanisms that drive nucleosome dynamics have

not been fully elucidated. In addition, it is still debatable whether

nucleosome occupancy changes during differentiation (Ho and

Crabtree, 2010; Jiang and Pugh, 2009; Schones et al., 2008).

Chromatin remodeling complexes and chaperones maintain

the balance between nucleosome disassembly and assembly

during transcriptional elongation (Clapier and Cairns, 2009),
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but it remains to be determined whether existing nucleo-

somes disappear or new nucleosomes assemble during cellular

differentiation.

Directed differentiation of pluripotent embryonic stem (ES)

cells into tissue-specific progenitor cells provides a valuable

tool to dissect cell lineage decisions and to answer the

questions raised above. By comparing undifferentiated with

differentiated ES cells, genome-wide alterations in DNA meth-

ylation and histone modifications have been shown to accom-

pany the differentiation process (Meissner et al., 2008;

Mikkelsen et al., 2007). However, the impact of the funda-

mental architecture of chromatin, that is the nucleosome, on

differentiation has not been determined at the genome-wide

level.

The vertebrate forkhead box A (Foxa) factors, Foxa1, Foxa2,

and Foxa3, have been suggested to act as ‘‘pioneer’’ factors in

liver development based on in vitro studies demonstrating that

Foxa proteins decompact chromatin and reposition nucleo-

somes at an Albumin enhancer construct in vitro (McPherson

et al., 1993; Zaret, 1999). Interestingly, genetic studies have

shown that no liver forms in mice when both Foxa1 and Foxa2

are ablated in the foregut endoderm following gastrulation (Lee

et al., 2005). However, deletion of the two genes after liver

specification does not affect chromatin structure and organ

expansion (Li et al., 2011). These data suggest that Foxa1/2

act in chromatin remodeling only during early development. In

addition, the variant histone H2A.Z has been suggested to be

involved in histone exchange, and possibly in nucleosome evic-

tion, and to be critical for ES cell differentiation (Lee et al., 2006;

Mavrich et al., 2008; Mizuguchi et al., 2004).

Thus, we hypothesize that both Foxa2 and H2A.Z regulate

nucleosome dynamics during ES cell differentiation. To test

this hypothesis, we applied genome-wide high-resolution nucle-

osome mapping and chromatin immunoprecipitation sequenc-

ing (ChIP-Seq) to identify nucleosome dynamic regions and their

correlation with Foxa2, H2A.Z, and chromatin remodeler occu-

pancy during ES cell differentiation. Furthermore, we used

gene suppression by RNAi to address the requirement of

specific factors in the process of nucleosome dynamics and

ES cell differentiation.
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Figure 1. Nucleosome Dynamics during ES

Cell Differentiation

(A) Schematic view of our computational analysis

of nucleosome occupancy changes between

undifferentiated ES and lineage-committed EHP

cells. Red and blue lines represent nucleosome

occupancy in undifferentiated and differentiated

ES cells, respectively. The nucleosome-bound

and dynamic regions were identified computa-

tionally by the algorithm DANPOS (Figure S1B).

Complete and partial nucleosome depletion

regions (NucDep and pNucDep) and complete and

partial nucleosome occupation regions (NucOccu

and pNucOccu) were further defined following

the DANPOS analysis. ‘‘Complete’’ means no

sequencing tags found in either ES or EHP cells;

‘‘partial’’ means sequencing tags found in both cell

types, but with at least a 4-fold difference.

(B) Percentage of dynamic nucleosome regions in

the whole genome during ES cell differentiation.

(C) Distribution of nucleosome dynamic regions in

the genome is normalized to the genomic distri-

bution of all regions. 1 equals the genomic distri-

bution of each region. Genome, the whole mouse

genome (mm8).

(D) Nucleosome distribution near TSS of the 2,000

most activated (by mRNA level) genes during ES

cell differentiation. Genes with increased ex-

pression after differentiation exhibit nucleosome

depletion near their TSS. The gene list includes key

hepatic differentiation markers, and the green

shading indicates the degree of gene activation as

measured by fold change of mRNA levels (up to

200) between EHP and ES cells.

See also Figures S1 and S2.
RESULTS

Nucleosome Occupancy Is Dynamic during ES Cell
Differentiation
We investigated nucleosome dynamics during differentiation of

ES cells into the endoderm/hepatic fate, which can be directed

in vitro using a cocktail of growth factors including BMP-4 and

Activin A (Gadue et al., 2006; Gouon-Evans et al., 2006; Nostro

et al., 2008) and tracked using a Foxa2 promoter-driven CD4

replacement allele (Gadue et al., 2006). By combining selection

for the Foxa2/CD4 marker and an endoderm-specific antibody

(ENDM1) (Gadue et al., 2009), we sorted lineage-committed

endoderm/hepatic progenitor (EHP) cells. Next, we mapped

nucleosome positions genome-wide in ES and EHP cells by

micrococcal nuclease (MNase) digestion followed by next-
Cell 151, 1608–1616, De
generation sequencing (MNase-Seq; see

experimental setup outlined in Figure S1A

available online). In total, �150 million

uniquely aligned sequence reads were

obtained for each cell type (Table S1).

We identified dynamic features in the

genome where nucleosome occupancy

differed between ES and EHP cells using

the DANPOS algorithm (see Experimental

Procedures and Figure S1B). We found
‘‘complete nucleosome depletion regions’’ (NucDep, changing

from nucleosome occupied to nucleosome free during the

course of differentiation), ‘‘complete nucleosome occupation

regions’’ (NucOccu, changing from nucleosome free to nucleo-

some occupied), and partial nucleosome dynamic regions (Fig-

ure 1A). The remainder of the genome was defined as ‘‘static’’

(always bound by nucleosomes), ‘‘nucleosome free’’ (never

occupied by nucleosomes), and ‘‘uncertain’’ (weakly bound by

nucleosomes). Both nucleosome depletion and occupation

occurred during the differentiation from ES to EHP cells, but

nucleosomeoccupationwas themore frequent event (Figure 1B),

indicating that more nucleosomes bind the genome after ES cell

differentiation. Regions of dynamic nucleosome were enriched

at exon and promoter regions as compared to the whole mouse

genome (Figure 1C).
cember 21, 2012 ª2012 Elsevier Inc. 1609



To investigate the impact of nucleosome dynamics on gene

regulation, we determined gene expression profiles for both ES

and EHP cells. For genes that were activated during ES cell

differentiation, we observed nucleosome depletion mainly

between the transcriptional start site (TSS) and 1 kb downstream

(Figure S2A). Consistent with previous studies (Jiang and Pugh,

2009; Schones et al., 2008), nucleosome deficiency at TSSs of

highly expressed genes in each cell type correlated with gene

activation in general (Figure S2A). To investigate the impact of

nucleosome dynamics on ES cell differentiation, we plotted

nucleosome occupancy near TSSs (Figure 1D): Clear nucleo-

some depletion was observed near TSSs for genes activated

during the differentiation process, including endoderm

and hepatic differentiation markers such as Foxa2, alpha-

fetoprotein, and albumin. Thus, nucleosome depletion at TSSs

correlates with activation of endoderm/hepatic genes during

ES cell differentiation.

Foxa2 and H2A.Z Mediate Nucleosome Depletion during
ES Cell Differentiation
To investigate the mechanisms involved in nucleosome deple-

tion during ES cell differentiation, we analyzed the distribution

of nucleosome depletion regions surrounding relevant histone

variants and Foxa2 binding sites. Using ChIP-seq, we deter-

mined genome-wide locations of H2A.Z andH2A.X in undifferen-

tiated ES cells, and of Foxa2 in fully differentiated EHP cells.

H2A.Z was previously reported to mark the 50 end of transcribed

regions (Raisner et al., 2005). We found that H2A.Z flanked TSSs

in a bimodal distribution, in contrast to H2A.X, which is depleted

near TSSs (Figure S2B). Genome-wide location analysis also

showed that H2A.Z and Foxa2, but not H2A.X, were enriched

at exons and promoter regions (Figure S2C). By comparing

nucleosome maps in ES and EHP cells, we found strong nucle-

osome depletion near Foxa2 binding sites during ES cell differ-

entiation (Figure 2A). Nucleosome depletion, but not occupation,

regions were enriched near H2A.Z binding sites in ES cells and

Foxa2 binding sites in EHP cells, but not at H2A.X-enriched

regions (Figures 2B and 2C), which suggests that nucleosomes

containing H2A.Z in ES cells were preferentially lost during differ-

entiation as compared to non-H2A.Z nucleosomes.

To investigate this dynamic process, we collected partially

differentiated EHP (pEHP) cells (Figure S3A). We analyzed

Foxa2 and H2A.Z occupancy in ES, pEHP, and EHP cells by

ChIP-seq. The comparison of H2A.Z binding sites (pooled from

ES and pEHP cells) with Foxa2 binding sites (pooled from

pEHP and EHP cells) revealed that 2,412 Foxa2 binding sites

colocalized with H2A.Z sites. Remarkably, of these 2,412 sites,

84% occurred at nucleosome depletion regions (Figure 2D).

Further analysis showed that Foxa2 binding was strong at

regions depleted of nucleosomes in EHP cells and to a lesser

extent in pEHP cells (Figure 2E). It is important to note that

H2A.Z binding near nucleosome depletion regions was reduced

in pEHP cells and diminished in fully differentiated (EHP) cells

(Figures 2F and 2G).

Genome-wide location analysis demonstrated a close cor-

relation between Foxa2 in EHP and H2A.Z binding in ES cells

(Figure 2G; Figure S2D). These findings suggested that co-

occupancy of Foxa2 andH2A.Z at relevant nucleosomes occurrs
1610 Cell 151, 1608–1616, December 21, 2012 ª2012 Elsevier Inc.
in the transition between undifferentiated and differentiated ES

cells. In fact, using pEHP cells, we could capture this transition

state by sequential chip for Foxa2 and H2A.Z (Figure S2E). It is

interesting that, in contrast to a previous report that loss of

H2A.Z-containing nucleosomes occurs mainly at the�1 nucleo-

some relative to TSSs in human CD4+ T cells (Schones et al.,

2008), we found that Foxa2/H2A.Z-enriched nucleosomes

were depleted preferentially at promoter, exonic, and 50UTR
regions during ES cell differentiation (Figure S2F). Neither

Foxa2 nor H2A.Z were found enriched at partial nucleosome

dynamic regions (Figures S2G and S2H). We also analyzed

nucleosome depletion and occupation regions surround-

ing histone H3 methylation sites including H3K4me1,

H3K4me2, H3K4me3, H3K9me3, H3K27me3, H3K36me3, and

H3K79me3. ChIP-seq data for these markers in undifferentiated

mouse ES cells were obtained from the GEO database. We did

not find significant correlations between these markers and

nucleosome dynamic regions, except for a minor enrichment

of nucleosome depletion at H3K4me2 and H3K4me3 sites

(data not shown).

Next, we investigated whether Foxa2 and H2A.Z function in

nucleosome dynamics is required for the differentiation process.

Suppression of either H2A.Z or Foxa2 by RNAi resulted in atten-

uated nucleosome depletion and impaired ES cell differentiation

(Figures 2H and 4A–4E; Figure S3B), suggesting that both H2A.Z

and Foxa2 regulate nucleosome depletion during ES cell

differentiation and, furthermore, that this process is essential

for the differentiation from ES to EHP cells. In addition, overex-

pression of Foxa2 in undifferentiated ES cells promoted nucleo-

some depletion (Figures S3C and S3D). Furthermore, to address

the causal relationship between nucleosome depletion and

Foxa2/H2A.Z binding, we sorted Foxa2+;ENDM1� cells, in which

the Foxa2 gene had been activated but where ES cells had not

yet differentiated. In these cells, we indeed found that nucleo-

somedepletion had begun near Foxa2 binding sites (Figure S3E),

although nucleosome depletion was partial as compared to fully

differentiated cells (Figure 2H). These data suggest that Foxa2/

H2A.Z-driven nucleosome depletion occurs prior to ES cell

differentiation, a process that is impaired by suppression of

either Foxa2 or H2A.Z (Figures 2H and 4). Thus, Foxa2/H2A.Z

binding initiates and is required for nucleosome depletion and

ES cell differentiation toward endoderm.

Next, we questioned which chromatin remodeling complexes

and chaperones might mediate the Foxa2/H2A.Z-dependent

nucleosome depletion process. Four ATP-dependent chromatin

remodeling complexes, termed SWI/SNF, ISWI, CHD, and

INO80/SWR1, have been reported to be involved in embryonic

development (Clapier and Cairns, 2009; Kiefer, 2007); and

SWR1, together with the chaperone NAP1, mediates the ex-

change of canonical H2A to the H2A.Z variant in yeast (Mizugu-

chi et al., 2004). We performed ChIP assays to determine the

enrichment of 12 key proteins representing these four com-

plexes in partially differentiated EHP cells (Figure S4). We found

that only the nucleosome disassembly/assembly chaperone

protein Nap1l1 (the mouse homolog of NAP1), the SWI/SNF

complex component Smarca4, and the SWR1 component

Kat5 were enriched at nucleosome depletion regions (Fig-

ure S4A), whichwas confirmed byChIP-seq analysis for Smarc4,
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Figure 2. H2A.Z and Foxa2 Are Required for Nucleosome Depletion during ES Cell Differentiation
(A) Nucleosome distribution surrounding Foxa2 binding sites in ES and EHP cells. Note the decrease in nucleosome occupancy at Foxa2 sites in differentiated

cells.

(B and C) Genome-wide distribution of nucleosome depletion or occupation regions near H2A.Z, H2A.X, and Foxa2 binding sites.

(D) Cobinding regions of Foxa2 and H2A.Z overlap with nucleosome depletion regions. Foxa2 binding sites were pooled from EHP and pEHP (partially differ-

entiated; see Figure S3A) cells; H2A.Z binding sites were pooled from ES and pEHP cells.

(E and F) Foxa2 and H2A.Z tag density near Foxa2/H2A.Z-associated nucleosome depletion regions.

(G) Colocalization of Foxa2/H2A.Z and nucleosome depletion regions in the intron of the Foxa1 gene.

(H) Nucleosome depletion during ES cell differentiation is dependent on Foxa2 and H2A.Z. Nucleosome occupancy was determined by qPCR at 10 nucleosome

depletion regions that are bound by both H2A.Z and Foxa2 in differentiated ES cells. Relative nucleoscome occupancy is shown for ES cells, sorted EHP cells,

unsorted EHP [siRNA (-), scramble siRNA control] cells, and unsorted EHP cells transfected with siRNAs for H2afz (H2A.Z) or Foxa2. Error bars, SEM.

See also Figures S2, S3, S4, and S5.
Kat5, and Nap1l1 (Figures 3A–3C). To investigate whether Foxa2

and H2A.Z form a complex with these chromatin remodelers, as

suggested by our genome-wide location analysis, we performed

coimmunoprecipitation experiments using differentiated EHP

cells. As shown in Figure 3D, all five proteins tested (i.e.,

Foxa2, H2A.Z, Nap1l1, Kat5, and Smarca4) were found to

interact in differentiated EHP cells. In addition, we found that

the occupancy of both Smarca4 and Nap1l1 at nucleosome
C

depletion regions was impaired when Foxa2 expression was

suppressed by RNAi during ES cell differentiation, whereas the

occupancy of Kat5 at nucleosome depletion regions was

impaired by H2A.Z suppression (Figure S4C), suggesting that

the recruitment of Nap1l1 and Smarca4 relies on Foxa2, whereas

that of Kat5 depends on H2A.Z. Suppression of both Foxa2 and

H2A.Z simultaneously did not decrease occupancy of Smarca4/

Kat5/Nap1l1 at nucleosomedepletion regions further but caused
ell 151, 1608–1616, December 21, 2012 ª2012 Elsevier Inc. 1611
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Figure 3. Foxa2/H2A.Z-Driven Nucleo-

some Depletion complexes during ES cell

Differentiation

(A–C) Smarca4 (Brg1), Kat5 (Tip60), and Nap1l1

are enriched at nucleosome depletion regions.

The tag density was normalized to 10 million

sequencing tags for each sample; bin = 1 bp.

(D) Immunoprecipitation (IP) experiments were

performed with differentiated EHP cells using anti-

H2A.Z or anti-Foxa2 antibodies, and IP complexes

were detected using western blotting with anti-

bodies against Foxa2, H2A.Z, Smarca4, Kat5, and

Nap1l1. Anti-igG antibodies were used as negative

IP controls.

See also Figures S2, S3, S4, and S5.
a decrease in cell viability (Figures S4C and S5A–S5F). Suppres-

sion of Smarca4, Kat5, or Nap1l1, like suppression of Foxa2 and

H2A.Z, by RNAi resulted in increased nucleosome occupancy at

nucleosome depletion regions and impaired ES cell differentia-

tion (Figures S4D and S5A–S5F). These data suggest that SWI/

SNF and INO80 chromatin remodeling complexes cooperate

with the chaperone Nap1l1 to enable nucleosome depletion

during ES cell differentiation. In summary, our findings support

a three-step model for ES cell differentiation into EHP cells: (1)

Growth factor-induced cell differentiation initiates Foxa2 expres-

sion; (2) Foxa2 binds to nucleosomal DNA on H2A.Z-containing

nucleosomes; and (3) Foxa2 and H2A.Z recruit nucleosome

disassembly complexes (Nap1l1/SWI/SNF/INO80), enabling

nucleosome depletion and cell differentiation (see model in

Figure 5E).

DNA Methylation Regulates Nucleosome Occupation
during ES Cell Differentiation
DNA methylation at promoters is related to gene silencing, and

nucleosomal DNA is relatively more methylated (Chodavarapu

et al., 2010). When comparing published DNA methylation

profiles of undifferentiated ES cells with our nucleosome maps,

we found that nucleosomal DNA fated for disassembly during

the differentiation process (i.e., nucleosome depletion regions)

was, on average, more methylated than ‘‘potential nucleosomal

DNA’’ (i.e., the DNA present in nucleosome occupation regions)

(Figures 5A and 5B). However, this correlation was not observed

for partial nucleosome dynamic regions (Figure 5B). Using ChIP-

quantitative real-time PCR (qPCR) analysis for methylated cyto-

sine, we further showed that nucleosome occupation regions

were enriched for methylated DNA in differentiated but not in
1612 Cell 151, 1608–1616, December 21, 2012 ª2012 Elsevier Inc.
undifferentiated cells (Figure 5C), indi-

cating that DNA methylation occurred at

nucleosome occupation regions during

the ES cell differentiation process. To

further investigate this notion, we added

the DNA methylation inhibitor RG108 to

the medium during ES cell differentiation.

Inhibition of DNA methylation led not only

to reduced nucleosome occupancy but

also to impaired ES cell differentiation

(Figures 5D and 4F). Together with our
gene expression data (Figure 5C; Figure S2A), these findings

suggest that DNA methylation is essential for nucleosome occu-

pation and gene silencing during the differentiation from ES to

EHP cells. Finially, we examined if chromatin remodelers were

also involved in the process of nucleosome occupation during

ES cell differentiation. However, none of the twelve chromatin re-

modeling proteins that we tested was found enriched at nucleo-

some occupation regions (Figure S4B), suggesting that other

mechanisms are involved in this process.

DISCUSSION

Chromatin remodeling plays essential roles in embryonic devel-

opment. Our findings of epigenetic regulation of H2A.Z occu-

pancy and DNA methylation in nucleosome dynamics during

ES cell differentiation provide insights into the dynamics of chro-

matin structure (Figure 5E). Foxa2, as a ‘‘pioneer’’ factor, is

involved in epigenetic regulation of nucleosome remodeling,

suggesting the importance of coordinated modulation of epige-

netic and genetic regulators in cell fate determination during

development. Both nucleosome depletion and occupation occur

during ES cell differentiation, indicating that fine-tuning of chro-

matin structure contributes to lineage-specific gene regulation.

Compared to undifferentiated cells, increased nucleosome

occupancy in differentiated cells results in a more compact

genome and accompanies the switch frompluripotency to differ-

entiated cell functions.

We identified three key chromatin remodeling components,

Nap1l1, Smarca4, and Kat5, which were involved in the Foxa2/

H2A.Z-mediated process of nucleosome depletion. However,

the detailed mechanism of how these components of chromatin



Figure 4. Nucleosome Dynamics and ES

Cell Differentiation

Flow cytometry analysis with dual cell surface

markers of Foxa2/CD4 and ENDM1 for the

assessment of the extent of differentiation.

(A) Control, differentiated ES cells sorted without

incubation with primary antibodies.

(B) Undifferentiated ES cells sorted with both

antibodies. Less than 1% of the cells are double

positive.

(C) Differentiated ES cells, with more than 40%

double-positive cells.

(D) ES cells treated with siRNA to H2afz show

decreased differentiation potential.

(E) ES cells treated with siRNA to Foxa2 show

decreased differentiation potential.

(F) ES cells treated with 100 mM RG108, a DNA

methyltransferase inhibitor, exhibit decreased

differentiation.

See also Figure S5.
remodeling complexes coordinate to regulate nucleosome

disassembly needs to be addressed in future studies. It is inter-

esting that we have not identified any chromatin remodelers that

participate in the process of nucleosome occupation, suggest-

ing that nucleosome occupation either is an autonomous

process or requires other auxiliary factors. In summary, our

detailed genome-wide maps of nucleosome occupancy demon-

strate that nucleosomes are dynamic during the differentiation

process and that in the case of differentiation toward the endo-

derm/hepatic fate, nucleosome repositioning is dependent on
Cell 151, 1608–1616, De
Foxa2 and H2A.Z. The epigenomic

maps reported here constitute an impor-

tant resource for further integration with

additional epigenetic marks and pro-

cesses that likely contribute to ES cell

differentiation.

EXPERIMENTAL PROCEDURES

Mouse ES Cell Differentiation

Undifferentiated mouse ES cells (E14) were differ-

entiated into the EHP fate, as described previously

(Gadue et al., 2005; Gadue et al., 2006; Nostro

et al., 2008). After 6 days of induction, cells were

sorted by flow cytometry with the ENDM1 anti-

body (an endoderm-specific antibody recognizing

a cell-surface protein in endodermal cells) and an

engineered cell surface marker, CD4, which is

driven by the Foxa2 promoter. RNA was isolated

from these sorted cells. mRNA levels of several

marker genes analyzed by qPCR were used to

further validate the stage of cell differentiation,

including Foxa2, Sox17, HNF4a and HNF6.

Sequencing Nucleosomal and ChIP DNA

Nucleosome and ChIP experiments were carried

out as detailed elsewhere (Li et al., 2011). Nuclei

were isolated from ES and EHP cells by gradient

ultracentrifugation (Greenbaum et al., 1998).

Native chromatin without crosslinking was
released from nuclei by incubation in a buffer containing 0.1 N CaCl2 and

then digested with MNase for 15 min (partial digestion) and 30 min (full diges-

tion) (Morrison et al., 2002). Mononucleosomal DNA was collected and pooled

from both partial and full digestion of chromatin. Mononucleosomal and

undigested genomic DNA were purified with the QIAGEN PCR purification

kit after the digestion with protease K. Sequencing libraries were generated

from nucleosomal or ChIP DNA, and sequencing was carried out using the

Illumina/Solexa system according to the manufacturer’s specifications. For

qPCR, undigested genomic DNA was used as input control. Nucleosome

occupancy was calculated using 2^ � (Ctnucleosome
� Ct

input).

ChIP was performed as described previously (Rubins et al., 2005). For

ChIP-seq, after crosslinking, chromatin was sonicated to reduce the size of
cember 21, 2012 ª2012 Elsevier Inc. 1613



Figure 5. DNA Methylation Promotes Nucleosome Occupation

during ES Cell Differentiation

(A) Cytosine DNA methylation profiles in undifferentiated ES cells were

obtained fromGEO (GSE11304), and compared to our nucleosomemaps. The

percentage of DNAmethylation sites in ES cells is much higher at nucleosome-

bound than at nucleosome free regions.

(B) Genome-wide distribution of dynamic nucleosome regions surrounding

DNA methylation sites (m5C) in undifferentiated ES cells.

(C) Nucleosomal DNA in ES and EHP cells was immunoprecipitated with an

antibody against methylated cytosine (m5C), and DNA methylation was

determined by qPCR at genomic regions near key pluripotency maker genes,

which are silenced during ES cell differentiation. DNA at these loci is

unmethylated in undifferentiated ES cells but shows increased methylation

after differentiation. The fold enrichment was normalized to genomic DNA.

*p < 0.05; all others, p < 0.01. Error bars, SEM.

(D) Nucleosome occupancy at nucleosome occupation regions of pluri-

potencey marker genes (the same regions assayed in Figure 5C) in ES cells,

sorted EHP cells, unsorted control EHP (RG(�)) cells, and unsorted EHP cells

treated with RG108 (RG (+)), a DNA methyltransferase inhibitor. Nucleosome

1614 Cell 151, 1608–1616, December 21, 2012 ª2012 Elsevier Inc.
DNA to 100 to �1,000 base pairs (bp), which was further modified for Illumina

sequencing. Sequential ChIP for Foxa2 and H2A.Z was performed in both

orders. Antibodies used were: Foxa2 (a kind gift of J. Whitsett, Cincinnati,

OH, USA), H2A.Z (Abcam, ab4174), H2A.X (Abcam, ab11175), Brg1 (Santa

Cruz, sc-8749 and Abcam, ab4081), Tip60 (Santa Cruz, sc-5725 and Abcam,

ab23886), and Nap1l1 (Santa Cruz, sc-292698 and Abcam, ab33076). For

regular ChIP assays, input and precipitated DNA fragments were subjected

to qPCRwith primer sets for putative binding sites of Foxa2 andH2A.Z. Enrich-

ment of the targets was calculated using the 28S rRNA locus as a reference

and is shown relative to the input chromatin. Three biological replicates for

ChIP-qPCR, two biological replicates for ChIP-seq, and pooled three biolog-

ical replicates for MNase-Seq were analyzed.

Computational Analysis

Nucleosome Occupancy Calculation

Short sequencing reads were mapped to the mouse reference genome (mm8)

by ELAND and then subjected to analysis based on Dynamic Analysis of

Nucleosome Position and Occupancy by Sequencing (DANPOS; K.C.,

Yuanxin Xi, Xuewen Pan, Z.L., K.H.K., Jessica Tyler, Sharon Dent, Xiangwei

He, and W.L., unpublished data; http://code.google.com/p/DANPOS/). The

average size of DNA fragments in each sample was estimated by cross-strand

Pearson correlation. The 50 end of each uniquely mapped and high-quality

read was shifted half the fragment size toward the 30 end, and then extended

50 bp in both directions. Nucleosome occupancy at each base pair was

calculated as read coverage. After calculating occupancy for each sample,

we performed quantile normalization among all samples.

Nucleosome Calling

Nucleosome positions were first called by using a sliding window of 40 bp to

identify a bell-shaped curve supported by at least five reads, with the occu-

pancy summit in the middle of the sliding window. Neighboring bell-shaped

curves less than 110 bp distant were merged into one. Each nucleosome

was then determined by the summit and neighboring edges of the bell-shaped

curve. The edges were determined by searching for the lowest flanking occu-

pancy valleys. We required that the nucleosome edges should be at least

40 bp but no more than 100 bp away from the summit.

Detecting Nucleosome Changes

Sequencing reads were aligned to the mouse reference genome (mm8). Total

uniquely aligned reads for each experiment are listed in Table S1. We detected

nucleosome occupancy changes based on DANPOS. With the current

genome coverage, tag distribution along the genome could be modeled by

a Poisson distribution, with one parameter, l, for both the mean and the vari-

ance of the distribution. To estimate the significance of observing nucleosome

occupancy at each base pair in a treatment sample, we calculated the p-value-

based Poisson distribution, with l defined by the nucleosome occupancy at

the same base pair in a control sample. Then, the Poisson-based p value at

each base pair was transformed to a score as �log10 (p value). Differential

nucleosome peaks were called from the score data based on the same

method used for nucleosome calling.

After nucleosome occupancy was called by DANPOS, the exact nucleo-

some positions were retrieved from the extended BED files based on the

average size of DNA fragments for all nucleosome reads. We identified two

dynamic features in the genome where nucleosome positions differed

between ES and EHP cells using DANPOS: nucleosome depletion and occu-

pation regions, which were further categorized into four groups: complete

nucleosome depletion regions (cNucDep, changing from nucleosome occu-

pied to nucleosome free during the course of differentiation), complete nucle-

osome occupation regions (cNucOccu, changing from nucleosome free to

nucleosome occupied), partial nucleosome depletion regions (pNucDep,

changing from high to low tag density at nucleosome positions), and partial

nucleosome occupation regions (pNucOccu, changing from low to high tag
occupancy is severely blunted when DNA methylation is inhibited. Error

bars, SEM.

(E) Schematic view of nucleosome dynamics during ES cell differentiation. mC,

methylated cytosine. ES represents, specifically, undifferentiated ES cells.

See also Figure S4.

http://code.google.com/p/DANPOS/


density at nucleosome positions). The statistical significance of nucleosome

dynamic regions between ES and EHP cells was calculated using a p value

of 1e-5 as cutoff. The distribution of nucleosome dynamic regions was

analyzed with the BEDTools, HOMER, Cluster 3.0, and Java TreeView algo-

rithms (Quinlan and Hall, 2010). For nucleosome heatmaps near TSS, a data

matrix was generated by HOMER (bin = 1 bp), clustered with Cluster 3.0, and

visualized by Java TreeView. ChIP-seq data were analyzed with the GLITR

and HOMER algorithms using default parameters (Heinz et al., 2010; Tuteja

et al., 2009). All relative distributions between two peaks (nucleosome

dynamic regions versus binding sites or between two binding sites) and

tag density analysis were analyzed by HOMER (bin = 1 bp) (Heinz et al.,

2010), from which the relative occupancy was normalized to total reads.

The ChIP-seq data sets for histone modifications in undifferentiated

mouse ES cells were obtained from the National Center for Biotechnology

Information Gene Expression Omnibus (NCBI GEO) database (GSE15884,

GSE11724, GSE12241, GSE15814, and GSE11172) (Marks et al., 2009;

Marson et al., 2008; Meissner et al., 2008; Mikkelsen et al., 2007).

Gene Expression Microarray

RNA was isolated from ES and EHP cells and reverse transcribed and labeled

as described previously (Gao et al., 2009). Fluorescence-labeled cDNAs were

hybridized to theWholeMouse GenomeOligoMicroarray (Agilent). Thismicro-

array represents over 41,000 mouse gene transcripts. Genes displaying a fold

change over 1.5-fold between ES and EHP cells and a false discovery rate less

than 10%, calculated using significance analysis of microarray (SAM) analysis,

were selected.

Gene Suppression by siRNA

Three sets of siRNA oligos targeted to Foxa2, H2afz, Smarca4, Kat5, and

Nap1l1 were purchased from Integrated DNA Technologies. Gene suppres-

sion by siRNAwas carried out as described (Gadue et al., 2009), with themodi-

fication that a mixture of three siRNA oligos for each target was added before

inducing cell differentiation. In addition, antibiotics were not added during

gene suppression.

Combination Transfection Method for Mouse ES Cells

To improve the transfection efficiency of mouse ES cells, we combined both

electroporation and liposome fusion. First, cells were electroporated with

a kit specific for mouse ES cells electroporation (Lonza). Then, immediately

after electroporation, liposome fusionwas applied with the kit of Lipofectamine

LTX Plus (Invitrogen). An eGFP expression vector (Lonza) was cotransfected to

evaluate the transfection efficiency. Nucleosome occupancy was measured

by qPCR as described earlier. Mouse Foxa2 cDNA driven by a CMV promoter

was constructed into a pHD vector, which was used to overexpress Foxa2 in

mouse ES cells.

Immunoprecipitation of Methylated DNA

To investigate the methylation of nucleosomal DNA, an antimethylated cyto-

sine antibody kit (Epigenetics) was used to pull down methylated nucleosomal

DNA after micrococcal nuclease digestion.

Coimmunoprecipitation Experiment

Cell lysates from differentiated EHP cells were incubated with either anti-

Foxa2 or anti-H2A.Z antibodies at 4�C overnight. Protein G-coupled Dyna-

beads (Invitrogen) were used for purification. Proteins were eluted from beads

and analyzed by SDS-PAGE and immunoblotting with anti-Foxa2, anti-H2A.Z,

anti-Nap1l1, anti-Kat5 and anti-Smarca4 antibodies. Anti-immunoglobulin G

(IgG) antibodieswere usedas negative control in the immunoprecipitation step.

Inhibition of DNA Methylation

The DNAmethylation specific inhibitor RG108 (100 mM) (Stemgent) was added

to the culture medium during the entire process of ES cell differentiation

protocol.
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