Oscillation of second order self-conjugate differential equation with impulses

Qiaoluan $\mathrm{Li}^{\mathrm{a}, *, 1}$, Haiyan Liang ${ }^{\mathrm{a}, 1}$, Zhenguo Zhang ${ }^{\mathrm{a}, 1}$, Yuanhong Yu^{b}
${ }^{\text {a }}$ College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050016, China
${ }^{\mathrm{b}}$ Institute of Applied Mathematics, Academic Sinica, Beijing 100080, China

Received 11 September 2005; received in revised form 21 October 2005

Abstract

In this paper, we investigate the oscillation of second-order self-conjugate differential equation with impulses

$$
\begin{align*}
& \left(a(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime}+q(t) x(t-\sigma)=0, \quad t \neq t_{k}, t \geqslant t_{0}, \tag{1}\\
& x\left(t_{k}^{+}\right)=\left(1+b_{k}\right) x\left(t_{k}\right), \quad k=1,2, \ldots, \tag{2}\\
& x^{\prime}\left(t_{k}^{+}\right)=\left(1+b_{k}\right) x^{\prime}\left(t_{k}\right), \quad k=1,2, \ldots, \tag{3}
\end{align*}
$$

where a, p, q are continuous functions in $\left[t_{0},+\infty\right), q(t) \geqslant 0, a(t)>0, \int_{t_{0}}^{\infty}(1 / a(s)) \mathrm{d} s=\infty, \tau>0, \sigma>0, b_{k}>-1,0<t_{0}<t_{1}$ $<t_{2}<\cdots<t_{k}<\cdots$ and $\lim _{k \rightarrow \infty} t_{k}=\infty$. We get some sufficient conditions for the oscillation of solutions of Eqs. (1)-(3). © 2005 Elsevier B.V. All rights reserved.

MSC: 34c 10; 34k11
Keywords: Self-conjugate differential equation; Impulses; Oscillation

1. Introduction

Consider the impulsive differential equation

$$
\begin{align*}
& \left(a(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime}+q(t) x(t-\sigma)=0, \quad t \neq t_{k}, k=1,2, \ldots, t \geqslant t_{0} \tag{1}\\
& x\left(t_{k}^{+}\right)=\left(1+b_{k}\right) x\left(t_{k}\right), \quad k=1,2, \ldots \tag{2}\\
& x^{\prime}\left(t_{k}^{+}\right)=\left(1+b_{k}\right) x^{\prime}\left(t_{k}\right), \quad k=1,2, \ldots \tag{3}
\end{align*}
$$

[^0]where a, p, q are continuous functions in $\left[t_{0},+\infty\right), q(t) \geqslant 0, a(t)>0, \int_{t_{0}}^{\infty}(1 / a(s)) \mathrm{d} s=\infty, \tau>0, \sigma>0, b_{k}>-1$, $0<t_{0}<t_{1}<t_{2}<\cdots<t_{k}<\cdots$ and $\lim _{k \rightarrow \infty} t_{k}=\infty$. Suppose that
$$
x^{\prime}\left(t_{k}\right)=x^{\prime}\left(t_{k}^{-}\right)=\lim _{h \rightarrow 0-} \frac{x\left(t_{k}+h\right)-x\left(t_{k}\right)}{h}, \quad x^{\prime}\left(t_{k}^{+}\right)=\lim _{h \rightarrow 0+} \frac{x\left(t_{k}+h\right)-x\left(t_{k}^{+}\right)}{h} .
$$

It is well known that ordinary differential equations with impulses and delay differential equations have been considered by many authors. The theory of impulsive differential equations is emerging as an important area of investigation, since it is much richer than the corresponding theory of differential equations without impulsive effects. Moreover, such equations may exhibit several real world phenomena, such as rhythmical beating, merging of solutions, and noncontinuity of solutions.

In the recent years, there is increasing interest on the oscillation/nonoscillation of impulsive delay differential equations, and numerous papers have been published on this class of equations and good results have been obtained (see [1,2,4-8] etc. and the references therein). For example, in [4], Luo researched the equation

$$
\begin{aligned}
& \left(r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime}+f(t, x(t))=0, \quad t \geqslant t_{0}, t \neq t_{k}, k=1,2, \ldots, \\
& x\left(t_{k}^{+}\right)=g_{k}\left(x\left(t_{k}\right)\right), \quad x^{\prime}\left(t_{k}^{+}\right)=h_{k}\left(x^{\prime}\left(t_{k}\right)\right), \quad k=1,2, \ldots, \\
& x\left(t_{0}^{+}\right)=x_{0}, \quad x^{\prime}\left(t_{0}^{+}\right)=x^{\prime}\left(t_{0}\right) .
\end{aligned}
$$

He obtained sufficient conditions for oscillation of all solutions of the equation.
In [6], Wu et al. discussed the equation

$$
\begin{aligned}
& {\left[r(t) x^{\prime}(t)\right]^{\prime}+p(t) x^{\prime}(t)+Q(t, x(t))=0, \quad t \geqslant t_{0}, t \neq t_{k}, k=1,2, \ldots,} \\
& x\left(t_{k}^{+}\right)=g_{k}\left(x\left(t_{k}\right)\right), \quad x^{\prime}\left(t_{k}^{+}\right)=h_{k}\left(x^{\prime}\left(t_{k}\right)\right), \\
& x\left(t_{0}^{+}\right)=x_{0}, \quad x^{\prime}\left(t_{0}^{+}\right)=x_{0}^{\prime} .
\end{aligned}
$$

They also investigated the oscillation of the above equation.
Though there have been many papers about them, fewer papers are on neutral differential equations with impulses. Hence we study Eqs. (1)-(3) and we get some sufficient conditions for the oscillation of solutions of Eqs. (1)-(3).

Definition 1. For $\phi \in C\left(\left[t_{0}-\gamma, t_{0}\right], R\right), \gamma=\max \{\tau, \sigma\}$, a function $x:\left[t_{0}-\gamma, \infty\right) \rightarrow R$ is called a solution of Eqs. (1)-(3) satisfying the initial value condition

$$
x(t)=\phi(t), \quad t \in\left[t_{0}-\gamma, t_{0}\right]
$$

if the following conditions are satisfied:
(i) $x(t)=\phi(t)$ for $t \in\left[t_{0}-\gamma, t_{0}\right], x(t)$ is continuous for $t \in\left[t_{0}, \infty\right) /\left\{t=t_{k}, k=1,2, \ldots\right\}$;
(ii) $x(t)+p(t) x(t-\tau)$ is continuously differentiable for $t \geqslant t_{0}, t \neq t_{k}, t \neq t_{k}+\tau, t \neq t_{k}+\sigma, k=1,2, \ldots$ and $x(t)$ satisfies Eq. (1);
(iii) $x\left(t_{k}^{+}\right), x\left(t_{k}^{-}\right), x^{\prime}\left(t_{k}^{+}\right), x^{\prime}\left(t_{k}^{-}\right)$exist and $x\left(t_{k}^{-}\right)=x\left(t_{k}\right), x^{\prime}\left(t_{k}^{-}\right)=x^{\prime}\left(t_{k}\right), k=1,2, \ldots$ and Eqs. (2), (3) are satisfied.

Definition 2. A solution of Eqs. (1)-(3) is said to be nonoscillatory if the solution is eventually positive or eventually negative; otherwise, the solution is said to be oscillatory.

2. Main results

Throughout the paper, let $u(t)=x(t)+p(t) x(t-\tau)$, we obtain some conclusions as follows:
Theorem 1. Assume $0 \leqslant \prod_{t-\tau \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1} p(t) \leqslant 1$, there exists a differentiable function $\psi(t)>0$ such that

$$
\begin{align*}
& \int_{t_{0}}^{\infty}\left(\psi(s) \prod_{s-\sigma \leqslant t_{k}<s}\left(1+b_{k}\right)^{-1} q(s)\left(1-\prod_{s-\sigma-\tau \leqslant t_{k}<s-\sigma}\left(1+b_{k}\right)^{-1} p(s-\sigma)\right)\right. \\
& \left.\quad-\frac{a(s-\sigma)\left(\psi^{\prime}(s)\right)^{2}}{4 \psi(s)}\right) \mathrm{d} s=\infty \tag{4}
\end{align*}
$$

then every solution of Eqs. (1)-(3) is oscillatory.
Theorem 2. Assume $p(t) \equiv p, 0<p<1, \gamma=\max \{\tau, \sigma\}, b_{k}=b>0, t_{k+1}-t_{k}=\tau$,

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \prod_{t_{0}<t_{0, n}<s} \frac{1}{t_{k, \sigma}}(1-p) q(s) \mathrm{d} s=\infty, \tag{5}
\end{equation*}
$$

where

$$
t_{k, \sigma}= \begin{cases}\frac{1}{1+b}, & t_{0, n}=t_{k}+\sigma \neq t_{m}(m>k) \\ 1+b, & t_{0, n}=t_{k} \\ 1, & t_{0, n}=t_{k}+\sigma=t_{m}\end{cases}
$$

and $t_{0, n}=t_{k}$ or $t_{0, n}=t_{k}+\sigma\left(t_{1}=t_{0,1}<t_{0,2}<\cdots\right)$, then every solution of Eqs. (1)-(3) is oscillatory.
Corollary 1. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty}(1-p) q(s) \mathrm{d} s=\infty \tag{6}
\end{equation*}
$$

replaces (5), and $2 \sigma>\tau>\sigma$, other conditions in Theorem 2 hold, then every solution of Eqs. (1)-(3) is oscillatory.
Corollary 2. If $\sigma=k_{0} \tau$, k_{0} is a positive integer, (5) is replaced by that there exists a constant $\alpha>0$, such that

$$
\begin{align*}
& \frac{1}{1+b} \geqslant\left(1+\frac{\tau}{t_{1}}\right)^{\alpha}, \tag{7}\\
& \int_{t_{0}}^{\infty} s^{\alpha} q(s) \mathrm{d} s=\infty \tag{8}
\end{align*}
$$

other conditions in Theorem 2 hold, then every solution of Eqs. (1)-(3) is oscillatory.
Theorem 3. Assume that

$$
\begin{align*}
& -1 \leqslant \prod_{t-\tau \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1} p(t)<0, \quad 0<c_{1} \leqslant \prod_{k=1}^{\infty}\left(1+b_{k}\right) \leqslant c_{2}, \tau>\sigma, \\
& \liminf _{t \rightarrow \infty} \int_{t}^{t+\tau-\sigma} \prod_{s-\sigma \leqslant t_{k}<s}\left(1+b_{k}\right)^{-1} q(s)\left(1-\prod_{s-\sigma-\tau \leqslant t_{k}<s-\sigma}\left(1+b_{k}\right)^{-1} p(s-\sigma)\right) \mathrm{d} s>0, \tag{9}
\end{align*}
$$

then every unbounded solution of Eqs. (1)-(3) is oscillatory.

Theorem 4. Assume that $a(t) \equiv 1, p(t)$ is oscillatory, $\lim _{t \rightarrow \infty} p(t)=0,0<c_{1} \leqslant \prod_{k=1}^{\infty}\left(1+b_{k}\right) \leqslant c_{2}$, there exists a differential function $\psi(t)>0$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t} \psi(s) Q(s) \mathrm{d} s=\infty, \quad \limsup _{t \rightarrow \infty} \int_{t_{0}}^{t} \frac{\left(\psi^{\prime}(s)\right)^{2}}{\psi(s)} \mathrm{d} s<\infty \tag{10}
\end{equation*}
$$

where $Q(t)=\prod_{t-\sigma \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1} q(t)$, then every bounded solution of Eqs. (1)-(3) is oscillatory.
In order to prove these theorems, we need the following lemmas.
We introduce the notation as follows: $P C^{1}\left[R^{+}, R\right]=\left\{x: R^{+} \rightarrow R ; x(t)\right.$ is continuous and continuously differentiable everywhere except at some t_{k} where $x\left(t_{k}^{+}\right), x\left(t_{k}^{-}\right), x^{\prime}\left(t_{k}^{+}\right)$and $x^{\prime}\left(t_{k}^{-}\right)$exist and $\left.x\left(t_{k}^{-}\right)=x\left(t_{k}\right), x^{\prime}\left(t_{k}^{-}\right)=x^{\prime}\left(t_{k}\right)\right\}$.

Lemma 1 (Chan and Ke [1]). Assume that

$\left(A_{0}\right) v \in P C^{1}\left[R^{+}, R\right]$ and $v(t)$ is left-continuous at $t_{k}, k=1,2, \ldots$
(A_{1}) for $k=1,2, \ldots, t \geqslant t_{0}$,

$$
\begin{aligned}
& v^{\prime}(t) \leqslant p(t) v(t)+q(t), \quad t \neq t_{k}, \\
& v\left(t_{k}^{+}\right) \leqslant d_{k} v\left(t_{k}\right)+b_{k},
\end{aligned}
$$

where $v^{\prime}(t)=(\mathrm{d} / \mathrm{d} t) v(t), p, q \in C\left(R^{+}, R\right), d_{k} \geqslant 0$ and b_{k} are real constants. Then

$$
\begin{aligned}
v(t) \leqslant v\left(t_{0}\right) & \prod_{t_{0}<t_{k}<t} d_{k} \exp \left(\int_{t_{0}}^{t} p(s) \mathrm{d} s\right)+\sum_{t_{0}<t_{k}<t}\left(\prod_{t_{k}<t_{j}<t} d_{j} \exp \left(\int_{t_{k}}^{t} p(s) \mathrm{d} s\right)\right) b_{k} \\
& +\int_{t_{0}}^{t} \prod_{s<t_{k}<t} d_{k} \exp \left(\int_{s}^{t} p(\sigma) \mathrm{d} \sigma\right) q(s) \mathrm{d} s, \quad t \geqslant t_{0} .
\end{aligned}
$$

Lemma 2. Assume that $p(t) \equiv p \geqslant 0, \gamma=\max \{\tau, \sigma\}, b_{k}=b, t_{k+1}-t_{k}=\tau$. Let $x(t)$ be a solution of Eqs. (1)-(3) and there exists $T \geqslant t_{0}$ such that $x(t)>0, t \geqslant T-\gamma$. Then $u^{\prime}\left(t_{k}^{+}\right) \geqslant 0$, and $u^{\prime}(t) \geqslant 0$ for $t \in\left(t_{k}, t_{k+1}\right]$, where $t_{k} \geqslant T, k=1,2, \ldots$.

Proof. Since $x(t)>0$ for $t \geqslant T-\gamma$, then $x(t-\sigma)>0, x(t-\tau)>0, u(t)>0, t \geqslant T$.

$$
\begin{aligned}
u\left(t_{k}^{+}\right) & =x\left(t_{k}^{+}\right)+p x\left(t_{k-1}^{+}\right)=(1+b) x\left(t_{k}\right)+p(1+b) x\left(t_{k-1}\right) \\
& =(1+b)\left[x\left(t_{k}\right)+p x\left(t_{k-1}\right)\right]=(1+b) u\left(t_{k}\right) \\
u^{\prime}\left(t_{k}^{+}\right) & =x^{\prime}\left(t_{k}^{+}\right)+p x^{\prime}\left(t_{k-1}^{+}\right)=(1+b) x^{\prime}\left(t_{k}\right)+p(1+b) x^{\prime}\left(t_{k-1}\right) \\
& =(1+b) u^{\prime}\left(t_{k}\right)
\end{aligned}
$$

We first prove $u^{\prime}\left(t_{k}\right) \geqslant 0$ for $t_{k} \geqslant T$. If not, there exists $j \in N$ such that $u^{\prime}\left(t_{j}\right)<0$ for $t_{j} \geqslant T$, and $u^{\prime}\left(t_{j}^{+}\right)=(1+b) u^{\prime}\left(t_{j}\right)<0$. From (1), for $t \in\left(t_{j+i-1}, t_{j+i}\right], i=1,2, \ldots$, we get $\left(a(t) u^{\prime}(t)\right)^{\prime}=-q(t) x(t-\sigma) \leqslant 0$. So

$$
\begin{aligned}
a\left(t_{j+1}\right) u^{\prime}\left(t_{j+1}\right) & \leqslant a\left(t_{j}^{+}\right) u^{\prime}\left(t_{j}^{+}\right)=a\left(t_{j}\right)(1+b) u^{\prime}\left(t_{j}\right) \\
a\left(t_{j+2}\right) u^{\prime}\left(t_{j+2}\right) & \leqslant a\left(t_{j+1}^{+}\right) u^{\prime}\left(t_{j+1}^{+}\right)=a\left(t_{j+1}\right)(1+b) u^{\prime}\left(t_{j+1}\right) \\
& \leqslant(1+b)^{2} a\left(t_{j}\right) u^{\prime}\left(t_{j}\right)<0
\end{aligned}
$$

By induction, we know $a(t) u^{\prime}(t) \leqslant(1+b)^{n} a\left(t_{j}\right) u^{\prime}\left(t_{j}\right) \triangleq(1+b)^{n}(-\beta)<0$ for $t \in\left(t_{j+n-1}, t_{j+n}\right.$]. So $u^{\prime}(t) \leqslant-$ $(\beta / a(t)) \prod_{t_{j} \leqslant t_{k}<t}(1+b)$. By Lemma 1, we get

$$
u(t) \leqslant u\left(t_{j}^{+}\right) \prod_{t_{j}<t_{k}<t}(1+b)-\beta(1+b) \int_{t_{j}}^{t} \prod_{s<t_{k}<t}(1+b) \prod_{t_{j}<t_{l}<s}(1+b) \frac{1}{a(s)} \mathrm{d} s, \quad t>t_{j} .
$$

Since

$$
\int_{t_{j}}^{t} \prod_{t_{j}<t_{k}<t}(1+b) \frac{1}{a(s)} \mathrm{d} s=\int_{t_{j}}^{t} \prod_{t_{j}<t_{l}<s}(1+b) \prod_{s<t_{k}<t}(1+b) \frac{1}{a(s)} \mathrm{d} s
$$

we get

$$
\begin{equation*}
u(t) \leqslant\left(u\left(t_{j}^{+}\right)-\beta(1+b) \int_{t_{j}}^{t} \frac{\mathrm{~d} s}{a(s)}\right) \prod_{t_{j}<t_{k}<t}(1+b), \quad t>t_{j} . \tag{11}
\end{equation*}
$$

From $u(t)>0$, we see (11) contradicts to $\int_{t_{0}}^{\infty}(1 / a(s)) \mathrm{d} s=\infty$. So $u^{\prime}\left(t_{k}\right) \geqslant 0$ for $t_{k} \geqslant T$, and $u^{\prime}\left(t_{k}^{+}\right)=(1+b) u^{\prime}\left(t_{k}\right) \geqslant 0$. Since $\left(a(t) u^{\prime}(t)\right)^{\prime} \leqslant 0$, i.e. $a(t) u^{\prime}(t)$ is not increasing in $\left(t_{j+i-1}, t_{j+i}\right]$, we know $a(t) u^{\prime}(t) \geqslant 0$, for $t \in\left(t_{j+i-1}, t_{j+i}\right]$, i.e. $u^{\prime}(t) \geqslant 0$. This completes Lemma 2 .

Lemma 3. Let $R(t)=\prod_{t-\tau \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1} p(t), Q(t)=\prod_{t-\sigma \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1} q(t)$, then all solutions of Eqs. (1)-(3) are oscillatory if and only if all solutions of

$$
\begin{equation*}
\left(a(t)(y(t)+R(t) y(t-\tau))^{\prime}\right)^{\prime}+Q(t) y(t-\sigma)=0 \quad \text { a.e. } t \geqslant \gamma \tag{12}
\end{equation*}
$$

are oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of Eqs. (1)-(3), i.e. $x(t) \neq 0$ holds for $t \geqslant T \geqslant t_{0}$. Define $y(t)=$ $\prod_{T \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1} x(t)$. Since $b_{k}>-1$, we get $y(t) \neq 0$. From $x\left(t_{k}^{+}\right)=\left(1+b_{k}\right) x\left(t_{k}\right), x^{\prime}\left(t_{k}^{+}\right)=\left(1+b_{k}\right) x^{\prime}\left(t_{k}\right)$, we get

$$
\begin{aligned}
& y\left(t_{k}^{+}\right)=\prod_{T \leqslant t_{j} \leqslant t_{k}}\left(1+b_{j}\right)^{-1} x\left(t_{k}^{+}\right)=\prod_{T \leqslant t_{j}<t_{k}}\left(1+b_{j}\right)^{-1} x\left(t_{k}\right)=y\left(t_{k}\right), \\
& y\left(t_{k}^{-}\right)=\prod_{T \leqslant t_{j}<t_{k}^{-}}\left(1+b_{j}\right)^{-1} x\left(t_{k}^{-}\right)=\prod_{T \leqslant t_{j}<t_{k}}\left(1+b_{j}\right)^{-1} x\left(t_{k}\right)=y\left(t_{k}\right) .
\end{aligned}
$$

So $y(t)$ is continuous in $[T, \infty)$.

$$
\begin{aligned}
& y^{\prime}\left(t_{k}^{+}\right)=\prod_{T \leqslant t_{j} \leqslant t_{k}}\left(1+b_{j}\right)^{-1} x^{\prime}\left(t_{k}^{+}\right)=\prod_{T \leqslant t_{j}<t_{k}}\left(1+b_{j}\right)^{-1} x^{\prime}\left(t_{k}\right)=y^{\prime}\left(t_{k}\right), \\
& y^{\prime}\left(t_{k}^{-}\right)=\prod_{T \leqslant t_{j}<t_{k}^{-}}\left(1+b_{j}\right)^{-1} x^{\prime}\left(t_{k}^{-}\right)=\prod_{T \leqslant t_{j}<t_{k}}\left(1+b_{j}\right)^{-1} x^{\prime}\left(t_{k}\right)=y^{\prime}\left(t_{k}\right),
\end{aligned}
$$

and

$$
\prod_{T \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1}\left(a(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime}+\prod_{T \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1} q(t) x(t-\sigma)=0, \quad t \neq t_{k}
$$

So

$$
\left(a(t)(y(t)+R(t) y(t-\tau))^{\prime}\right)^{\prime}+Q(t) y(t-\sigma)=0 \quad \text { a.e. }
$$

Conversely, suppose $y(t)$ is a nonoscillatory solution of Eq. (12), i.e. $y(t) \neq 0$ holds for $t \geqslant T \geqslant t_{0}$. Let $x(t)=$ $\prod_{T \leqslant t_{k}<t}\left(1+b_{k}\right) y(t)$, from (12), we get

$$
\begin{aligned}
& \prod_{T \leqslant t_{k}<t}\left(1+b_{k}\right)\left(a(t)(y(t)+R(t) y(t-\tau))^{\prime}\right)^{\prime}+\prod_{T \leqslant t_{k}<t}\left(1+b_{k}\right) Q(t) y(t-\sigma)=0 \quad \text { a.e., } \\
& \left(a(t)\left(\prod_{T \leqslant t_{k}<t}\left(1+b_{k}\right) y(t)+\prod_{T \leqslant t_{k}<t}\left(1+b_{k}\right) R(t) y(t-\tau)\right)^{\prime}\right)^{\prime} \\
& \quad+q(t) \prod_{T \leqslant t_{k}<t-\sigma}\left(1+b_{k}\right) y(t-\sigma)=0 \quad \text { a.e., } \\
& \left(a(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime}+q(t) x(t-\sigma)=0 \quad \text { a.e. }
\end{aligned}
$$

and

$$
x\left(t_{k}^{+}\right)=\lim _{t \rightarrow t_{k}^{+}} \prod_{T \leqslant t_{j}<t}\left(1+b_{j}\right) y(t)=\prod_{T \leqslant t_{j} \leqslant t_{k}}\left(1+b_{j}\right) y\left(t_{k}\right), \quad x\left(t_{k}\right)=\prod_{T \leqslant t_{j}<t_{k}}\left(1+b_{j}\right) y\left(t_{k}\right),
$$

then $x\left(t_{k}^{+}\right)=\left(1+b_{k}\right) x\left(t_{k}\right)$.

$$
x^{\prime}\left(t_{k}^{+}\right)=\lim _{t \rightarrow t_{k}^{+}} \prod_{T \leqslant t_{j}<t}\left(1+b_{j}\right) y^{\prime}(t)=\prod_{T \leqslant t_{j} \leqslant t_{k}}\left(1+b_{j}\right) y^{\prime}\left(t_{k}\right), \quad x^{\prime}\left(t_{k}\right)=\prod_{T \leqslant t_{j}<t_{k}}\left(1+b_{j}\right) y^{\prime}\left(t_{k}\right),
$$

then $x^{\prime}\left(t_{k}^{+}\right)=\left(1+b_{k}\right) x^{\prime}\left(t_{k}\right)$. So $x(t)$ is a nonoscillatory solution of Eqs. (1)-(3).
Corollary 3. Suppose that the conditions in Lemma 3 hold:
(i) If $x(t)$ is a solution of Eqs. (1)-(3) in $\left[t_{0}, \infty\right)$, then $y(t)=\prod_{t_{0} \leqslant t_{k}<t}\left(1+b_{k}\right)^{-1} x(t)$ is a solution of Eq. (12).
(ii) If $y(t)$ is a solution of Eq. (12) in $\left[t_{0}, \infty\right)$, then $x(t)=\prod_{t_{0} \leqslant t_{k}<t}\left(1+b_{k}\right) y(t)$ is a solution of Eqs. (1)-(3).

Now, we begin to prove our theorems.
Proof of Theorem 1. Suppose $x(t)$ is an eventually positive solution of Eqs. (1)-(3). By Corollary 3, Eq. (12) has an eventually positive solution $y(t)$. That is, $y(t)>0, y(t-\sigma)>0, y(t-\tau)>0$ for $t \geqslant T \geqslant t_{0}$. Let $z(t)=y(t)+$ $R(t) y(t-\tau)$, then $z(t)>0$ for $t \geqslant T$. From Eq. (12), we have $\left(a(t) z^{\prime}(t)\right)^{\prime}=-Q(t) y(t-\sigma) \leqslant 0$, a.e. So $a(t) z^{\prime}(t)$ is not increasing. We can prove $z^{\prime}(t) \geqslant 0$ holds eventually.

If not, for any $t>T$, there exists $t_{1}>t$ such that $z^{\prime}\left(t_{1}\right)<0$.

$$
\begin{aligned}
& a(t) z^{\prime}(t) \leqslant a\left(t_{1}\right) z^{\prime}\left(t_{1}\right)=-\beta<0, \quad t \geqslant t_{1} \text {, a.e., } \\
& z^{\prime}(t) \leqslant \frac{-\beta}{a(t)} \quad \text { a.e. }
\end{aligned}
$$

Integrating it from t_{1} to ∞, from conditions, we know $\lim _{t \rightarrow \infty} z(t)=-\infty$, this contradicts with $z(t)>0$. So $z^{\prime}(t) \geqslant 0$ for some $t_{2} \geqslant T$. By Eq. (12),

$$
\begin{aligned}
& \left(a(t) z^{\prime}(t)\right)^{\prime}+Q(t)(z(t-\sigma)-R(t-\sigma) y(t-\sigma-\tau))=0 \quad \text { a.e., } \\
& \left(a(t) z^{\prime}(t)\right)^{\prime}+Q(t)(1-R(t-\sigma)) z(t-\sigma) \leqslant 0, t \geqslant t_{2}, \text { a.e. }
\end{aligned}
$$

Let

$$
w(t)=\frac{\psi(t) a(t) z^{\prime}(t)}{z(t-\sigma)}>0, \quad t \geqslant t_{2}
$$

then

$$
w^{\prime}(t) \leqslant-\psi(t) Q(t)(1-R(t-\sigma))+\frac{a(t) z^{\prime}(t) \psi^{\prime}(t)}{z(t-\sigma)}-\frac{a(t) \psi(t) z^{\prime}(t-\sigma) z^{\prime}(t)}{z^{2}(t-\sigma)} .
$$

Notice that

$$
\frac{a(t) \psi(t) z^{\prime}(t-\sigma) z^{\prime}(t)}{z^{2}(t-\sigma)} \geqslant \frac{a^{2}(t) \psi(t)\left(z^{\prime}(t)\right)^{2}}{z^{2}(t-\sigma) a(t-\sigma)} .
$$

We have

$$
w^{\prime}(t) \leqslant-\psi(t) Q(t)(1-R(t-\sigma))+\frac{a(t-\sigma)\left(\psi^{\prime}(t)\right)^{2}}{4 \psi(t)}-\left(a(t) \sqrt{\frac{\psi(t)}{a(t-\sigma)}} \frac{z^{\prime}(t)}{z(t-\sigma)}-\frac{\psi^{\prime}(t)}{2 \sqrt{\psi(t) / a(t-\sigma)}}\right)^{2},
$$

i.e. $w^{\prime}(t) \leqslant-\psi(t) Q(t)(1-R(t-\sigma))+a(t-\sigma)\left(\psi^{\prime}(t)\right)^{2} / 4 \psi(t)$ holds for $t \geqslant t_{2}$. Integrating it from t_{2} to t, we get

$$
w(t) \leqslant w\left(t_{2}\right)-\int_{t_{2}}^{t}\left(\psi(s) Q(s)(1-R(s-\sigma))-\frac{a(s-\sigma)\left(\psi^{\prime}(s)\right)^{2}}{4 \psi(s)}\right) \mathrm{d} s .
$$

We get a contradiction as $t \rightarrow \infty$.
Proof of Theorem 2. Suppose that $x(t)$ is a nonoscillatory solution of Eqs. (1)-(3), without loss of generality; we assume that $x(t)>0$ for $t \geqslant T \geqslant t_{0}$. From the proof of Lemma 2, we know Eqs. (1)-(3) can be written as

$$
\begin{align*}
& \left(a(t) u^{\prime}(t)\right)^{\prime}+q(t) x(t-\sigma)=0, \quad t \neq t_{k}, k=1,2, \ldots, t \geqslant t_{0}, \\
& u\left(t_{k}^{+}\right)=(1+b) u\left(t_{k}\right), \\
& u^{\prime}\left(t_{k}^{+}\right)=(1+b) u^{\prime}\left(t_{k}\right) . \tag{13}
\end{align*}
$$

From Lemma 2, $u^{\prime}\left(t_{k}^{+}\right) \geqslant 0, u^{\prime}(t) \geqslant 0$ hold for $t \in\left(t_{k}, t_{k+1}\right]$ and $t_{k} \geqslant T$. Eq. (13) is

$$
\begin{aligned}
& \left(a(t) u^{\prime}(t)\right)^{\prime}+q(t)(u(t-\sigma)-p x(t-\sigma-\tau))=0, \quad t \neq t_{k}, \\
& \left(a(t) u^{\prime}(t)\right)^{\prime}+q(t)(1-p) u(t-\sigma) \leqslant 0, \quad t \neq t_{k}, t_{k} \geqslant T .
\end{aligned}
$$

Let $w(t)=a(t) u^{\prime}(t) / u(t-\sigma), t \geqslant T$. By Lemma 2, we have $w\left(t_{k}^{+}\right) \geqslant 0, w(t) \geqslant 0$ hold for $t \in\left(t_{k}, t_{k+1}\right]$ and $t_{k} \geqslant T, k=$ $1,2, \ldots$.

$$
\begin{equation*}
w^{\prime}(t)=\frac{\left(a(t) u^{\prime}(t)\right)^{\prime}}{u(t-\sigma)}-\frac{a(t) u^{\prime}(t) u^{\prime}(t-\sigma)}{u^{2}(t-\sigma)} \leqslant-q(t)(1-p), \quad t \neq t_{0, n}, \tag{14}
\end{equation*}
$$

where $t_{0, n}=t_{k}$ or $t_{k}+\sigma$. Notice that $a(t)$ is continuous, $1+b>1$, we have

$$
\begin{align*}
w\left(t_{k}^{+}\right)= & \frac{a\left(t_{k}^{+}\right) u^{\prime}\left(t_{k}^{+}\right)}{u\left(t_{k}^{+}-\sigma\right)} \\
& \leqslant \begin{cases}\frac{a\left(t_{k}\right)(1+b) u^{\prime}\left(t_{k}\right)}{u\left(t_{k}-\sigma\right)}=(1+b) w\left(t_{k}\right), & t_{k}-\sigma \neq t_{m}, \quad 0<m<k, \\
\frac{a\left(t_{k}\right)(1+b) u^{\prime}\left(t_{k}\right)}{(1+b) u\left(t_{k}-\sigma\right)}=w\left(t_{k}\right), & t_{k}-\sigma=t_{m}, \quad 0<m<k,\end{cases} \tag{15}\\
w\left(t_{k}^{+}+\sigma\right) & =\frac{a\left(t_{k}^{+}+\sigma\right) u^{\prime}\left(t_{k}^{+}+\sigma\right)}{u\left(t_{k}^{+}\right)} \\
& \leqslant \begin{cases}\frac{a\left(t_{k}+\sigma\right) u^{\prime}\left(t_{k}+\sigma\right)}{(1+b) u\left(t_{k}\right)}=\frac{1}{(1+b)} w\left(t_{k}+\sigma\right), & t_{k}+\sigma \neq t_{m}, m>k \\
\frac{a\left(t_{k}+\sigma\right)(1+b) u^{\prime}\left(t_{k}+\sigma\right)}{(1+b) u\left(t_{k}\right)}=w\left(t_{k}+\sigma\right), & t_{k}+\sigma=t_{m}, m>k\end{cases} \tag{16}
\end{align*}
$$

From Eqs. (14)-(16), there are $w^{\prime}(t) \leqslant(p-1) q(t), t \neq t_{0, n}, w\left(t_{0, n}^{+}\right) \leqslant t_{k, \sigma} w\left(t_{0, n}\right)$. By Lemma 1 , there is

$$
\begin{equation*}
w(t) \leqslant \prod_{t_{0}<t_{0}, n} t_{k, \sigma}\left(w\left(t_{0}\right)-\int_{t_{0}}^{t} \prod_{t_{0}<t_{0}, n} \frac{1}{t_{k, \sigma}}(1-p) q(s) \mathrm{d} s\right) . \tag{17}
\end{equation*}
$$

In view of (5) and (17), we get a contradiction as $t \rightarrow \infty$. This completes the proof.
Proof of Corollary 1. For $t \in\left(t_{n}, t_{n+1}\right]$, we have

$$
\begin{aligned}
& \int_{t_{0}}^{t} \quad \prod_{t_{0}<t_{0, n}<s} \frac{1}{t_{k, \sigma}}(1-p) q(s) \mathrm{d} s \\
& \quad=(1+b) \int_{t_{0}}^{t_{1}}(1-p) q(s) \mathrm{d} s+(1+b) \int_{t_{1}}^{t_{2}}(1-p) q(s) \mathrm{d} s+\cdots+(1+b) \int_{t_{n}}^{t}(1-p) q(s) \mathrm{d} s \\
& \quad=(1+b) \int_{t_{0}}^{t}(1-p) q(s) \mathrm{d} s .
\end{aligned}
$$

From (6), we get

$$
\int_{t_{0}}^{\infty} \prod_{t_{0}<t_{0}, n<s} \frac{1}{t_{k, \sigma}}(1-p) q(s) \mathrm{d} s=\infty .
$$

By Theorem 2, every solution of Eqs. (1)-(3) is oscillatory.
Proof of Corollary 2. For $t \in\left(t_{k_{0}}, t_{k_{0}+1}\right]$, we have

$$
\begin{align*}
& \int_{t_{0}}^{t} \prod_{t_{0}<t_{0}, n}<s \\
& \quad \geqslant \int_{t_{0}}^{t_{1}}(1-p) q(s) \mathrm{d} s+\frac{1}{(1+b)} \int_{t_{1}}^{t_{2}}(1-p) q(s) \mathrm{d} s+\cdots+\frac{1}{(1+b)^{k_{0}}} \int_{t_{k_{0}}}^{t}(1-p) q(s) \mathrm{d} s . \tag{18}
\end{align*}
$$

From (7), we know

$$
\begin{aligned}
\frac{1}{(1+b)} \geqslant\left(\frac{t_{2}}{t_{1}}\right)^{\alpha}, \\
\frac{1}{(1+b)} \geqslant\left(\frac{t_{3}}{t_{2}}\right)^{\alpha}, \\
\frac{1}{(1+b)} \geqslant\left(\frac{t_{k+1}}{t_{k}}\right)^{\alpha}, \\
\vdots \\
\frac{1}{(1+b)^{n}} \geqslant\left(\frac{t_{2}}{t_{1}} \frac{t_{3}}{t_{2}} \cdots \frac{t_{n+1}}{t_{n}}\right)^{\alpha}=\left(\frac{t_{n+1}}{t_{1}}\right)^{\alpha} .
\end{aligned}
$$

From (18), for $t \in\left(t_{n}, t_{n+1}\right]$,

$$
\begin{aligned}
& \int_{t_{0}}^{t} \prod_{t_{0}<t_{0}, n}<s \\
& \geqslant \int_{t_{0}}^{t_{1}}(1-p) q(s) \mathrm{d} s+\frac{1}{t_{k, \sigma}}(1-p) q(s) \mathrm{d} s \\
& \geqslant \frac{1}{t_{1}^{\alpha}} \int_{t_{0}}^{t_{1}} t_{1}^{t_{2}}(1-p) q(s) \mathrm{d} s+\frac{1}{t_{1}^{\alpha}} \int_{t_{1}}^{t_{2}} t_{2}^{\alpha}(1-p) q(s) \mathrm{d} s+\cdots+\frac{1}{t_{1}^{\alpha}} \int_{t_{n}}^{t} t_{n+1}^{\alpha}(1-p) q(s) \mathrm{d} s \\
& \geqslant \frac{1}{t_{1}^{\alpha}}\left(\int_{t_{0}}^{t_{1}} s^{\alpha}(1-p) q(s) \mathrm{d} s+\int_{t_{1}}^{t_{2}} s^{\alpha}(1-p) q(s) \mathrm{d} s+\cdots+\int_{t_{n}}^{t} s^{\alpha}(1-p) q(s) \mathrm{d} s\right) \\
& \quad=\frac{1}{t_{1}^{\alpha}} \int_{t_{0}}^{t} s^{\alpha}(1-p) q(s) \mathrm{d} s .
\end{aligned}
$$

From (8), we know (5) holds as $t \rightarrow \infty$. By Theorem 2, the conclusion is proved.
Proof of Theorem 3. Assume that $x(t)$ is an unbounded nonoscillatory solution of Eqs. (1)-(3), without loss of generality, we suppose $x(t)>0$ for $t \geqslant T_{1} \geqslant t_{0}$. From Corollary 3, we can see Eq. (12) has an unbounded nonoscillatory solution $y(t)>0, t \geqslant T_{1}$. Define $z(t)=y(t)+R(t) y(t-\tau)$, we will prove $z(t)>0$.

If not, $z(t) \leqslant 0$, then $y(t) \leqslant-R(t) y(t-\tau) \leqslant y(t-\tau)$, i.e. $y(t)$ is bounded, it is a contradiction. So $z(t)>0$. From Eq. (12), $\left(a(t) z^{\prime}(t)\right)^{\prime}=-Q(t) y(t-\sigma) \leqslant 0$, a.e. Similar to the proof of Theorem 1, we know that there exists $T_{2}>T_{1}$ such that $z^{\prime}(t) \geqslant 0$ for $t \geqslant T_{2}$, and

$$
\left(a(t) z^{\prime}(t)\right)^{\prime}+Q(t)(1-R(t-\sigma)) z(t-\sigma) \leqslant 0, \quad t \geqslant T_{2} \text {, a.e. }
$$

Let

$$
\begin{align*}
w(t) & =\frac{a(t) z^{\prime}(t)}{z(t-\sigma)} \geqslant 0, \quad t \geqslant T_{2} \\
w^{\prime}(t) & =\frac{\left(a(t) z^{\prime}(t)\right)^{\prime}}{z(t-\sigma)}-\frac{a(t) z^{\prime}(t) z^{\prime}(t-\sigma)}{z^{2}(t-\sigma)} \\
& \leqslant-Q(t)(1-R(t-\sigma))-\frac{a^{2}(t)\left(z^{\prime}(t)\right)^{2}}{a(t-\sigma) z^{2}(t-\sigma)} \\
& \leqslant-Q(t)(1-R(t-\sigma)) . \tag{19}
\end{align*}
$$

From (9) we have

$$
\int_{T_{2}}^{\infty} Q(t)(1-R(t-\sigma)) \mathrm{d} t=\infty
$$

Integrating (19) from T_{2} to t,

$$
w(t) \leqslant w\left(T_{2}\right)-\int_{T_{2}}^{t} Q(s)(1-R(s-\sigma)) \mathrm{d} s .
$$

So $\lim _{t \rightarrow \infty} w(t)=-\infty$. This is a contradiction. We completed the proof.
Proof of Theorem 4. Assume that $x(t)$ is a bounded nonoscillatory solution of Eqs. (1)-(3), then Eq. (12) has a bounded nonoscillatory solution $y(t)$. Without loss of generality, we suppose $y(t)>0, y(t-\sigma)>0$ for $t \geqslant T$. Let $z(t)=y(t)+R(t) y(t-\tau)$, then

$$
z^{\prime \prime}(t)=-Q(t) y(t-\sigma) \leqslant 0, \quad t \geqslant T .
$$

So $z^{\prime}(t)$ and $z(t)$ are constant sign eventually. Since $p(t)$ is oscillatory, we get $R(t)$ is oscillatory and there exists $T_{1}>T$, such that $z(t)>0$ holds for $t>T_{1}$. So $z^{\prime}(t) \geqslant 0$. Since $y(t)$ is bounded, $\lim _{t \rightarrow \infty} p(t)=0$, we get $\lim _{t \rightarrow \infty} R(t) y(t-\tau)=0$. Hence $y(t)=z(t)-R(t) y(t-\tau)>\frac{1}{2} z(t)$ for $t>T_{2} \geqslant T_{1}$.

Let

$$
h(t)=\frac{z^{\prime}(t)}{z((t-\sigma) / 2)} \geqslant 0,
$$

then

$$
\begin{aligned}
h^{\prime}(t) & =\frac{z^{\prime \prime}(t)}{z((t-\sigma) / 2)}-\frac{h(t) z^{\prime}((t-\sigma) / 2)}{2 z((t-\sigma) / 2)} \\
& \leqslant-\frac{Q(t) z(t-\sigma)}{2 z((t-\sigma) / 2)}-\frac{1}{2} h^{2}(t) \\
& \leqslant \frac{-Q(t)}{2}-\frac{h^{2}(t)}{2}
\end{aligned}
$$

holds for $t>T_{3} \geqslant T_{2}$, i.e.

$$
\frac{Q(t)}{2} \leqslant-h^{\prime}(t)-\frac{h^{2}(t)}{2}
$$

Multiplying $\psi(t)$ on both sides, and integrating it from T_{3} to t, we obtain

$$
\begin{aligned}
& \frac{1}{2} \int_{T_{3}}^{t} \psi(s) Q(s) \mathrm{d} s \\
& \quad \leqslant-\int_{T_{3}}^{t} \psi(s) h^{\prime}(s) \mathrm{d} s-\frac{1}{2} \int_{T_{3}}^{t} \psi(s) h^{2}(s) \mathrm{d} s \\
& \quad=-\psi(t) h(t)+\psi\left(T_{3}\right) h\left(T_{3}\right)+\int_{T_{3}}^{t} \psi^{\prime}(s) h(s) \mathrm{d} s-\frac{1}{2} \int_{T_{3}}^{t} \psi(s) h^{2}(s) \mathrm{d} s \\
& \quad \leqslant \psi\left(T_{3}\right) h\left(T_{3}\right)-\frac{1}{2} \int_{T_{3}}^{t} \psi(s)\left(h(s)-\frac{\psi^{\prime}(s)}{\psi(s)}\right)^{2} \mathrm{~d} s+\frac{1}{2} \int_{T_{3}}^{t} \frac{\left(\psi^{\prime}(s)\right)^{2}}{\psi(s)} \mathrm{d} s \\
& \quad \leqslant \psi\left(T_{3}\right) h\left(T_{3}\right)+\frac{1}{2} \int_{T_{3}}^{t} \frac{\left(\psi^{\prime}(s)\right)^{2}}{\psi(s)} \mathrm{d} s .
\end{aligned}
$$

From the conditions, we get

$$
\begin{aligned}
\infty & =\frac{1}{2} \limsup _{t \rightarrow \infty} \int_{T_{3}}^{t} \psi(s) Q(s) \mathrm{d} s \\
& \leqslant \psi\left(T_{3}\right) h\left(T_{3}\right)+\frac{1}{2} \limsup _{t \rightarrow \infty} \int_{T_{3}}^{t} \frac{\left(\psi^{\prime}(s)\right)^{2}}{\psi(s)} \mathrm{d} s<\infty .
\end{aligned}
$$

So the proof is completed.
Remark. Grace and Lalli [3] studied the differential equation

$$
\begin{equation*}
\left(r(t)[x(t)+p(t) x(t-\tau)]^{\prime}\right)^{\prime}+q(t) f(x(t-\sigma))=0 \tag{20}
\end{equation*}
$$

subject to

$$
\frac{f(x)}{x} \geqslant K \text { for some } K>0, \quad \int^{\infty} \frac{\mathrm{d} t}{r(t)}=\infty,
$$

and showed that if there exists a function $\rho \in C^{1}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ such that

$$
\begin{equation*}
\int^{\infty}\left[K \rho(s) q(s)(1-p(s-\sigma))-\frac{\left(\rho^{\prime}(s)\right)^{2} r(s-\sigma)}{4 \rho(s)}\right] \mathrm{d} s=\infty \tag{21}
\end{equation*}
$$

then (20) is oscillatory. In our paper, if we choose $b_{k}=0$, then (4) equals (21).

References

[1] C. Chan, L. Ke, Remarks on impulsive quenching problems, Proc. Dyn. Systems Appl. 1 (1994) 59-62.
[2] K. Gopalsamy, B.G. Zhang, On delay differential equations with impulses, J. Math. Anal. Appl. 139 (1989) 110-122.
[3] S.R. Grace, B.S. Lalli, Oscillation of nonlinear second order neutral differential equations, Rad. Math. 3 (1987) 77-84.
[4] J. Luo, Second-order quasilinear oscillation with impulses, J. Comput. Math. Appl. 46 (2003) 279-291.
[5] X. Tang, J. Shen, Oscillation of delay differential equations with variable coefficients, J. Math. Anal. Appl. 217 (1998) 32-42.
[6] X.-L. Wu, S.-Y. Chen, J. Hong, Oscillation of a class of second-order non linear ODE with impulses, Appl. Math. Comput. 138 (2003) 181-188.
[7] J. Yan, A. Zhao, Oscillation and stability of linear impulsive delay differential equations, J. Math. Anal. Appl. 227 (1998) 187-194.
[8] Y.H. Zhang, A.M. Zhao, J.R. Yan, Oscillation criteria for impulsive delay differential equations, J. Math. Anal. Appl. 205 (1997) 461-470.

[^0]: * Corresponding author.

 E-mail addresses: q1171125@163.com (Q. Li), Yu84845366@ 126.com (Y. Yu).
 ${ }^{1}$ Research are supported by the Natural Science Foundation of Hebei Province (103141) and Key Foundation of Hebei Normal University (1301808).

