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Abstract

We formulate indefinite integration with respect to an irregular function as an algebraic

problem which has a unique solution under some analytic constraints. This allows us to define

a good notion of integral with respect to irregular paths with Hölder exponent greater than

1=3 (e.g. samples of Brownian motion) and study the problem of the existence, uniqueness and

continuity of solution of differential equations driven by such paths. We recover Young’s

theory of integration and the main results of Lyons’ theory of rough paths in Hölder topology.
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1. Introduction

This work has grown out from the attempt of the author to understand the
integration theory of Lyons [7,8] which gives a meaning and nice continuity
properties to integrals of the formZ t

s

/jðXuÞ; dXuS; ð1Þ

where j a differential 1-form on some vector space V and t/Xt is a path in V not
necessarily of bounded variation. From the point of view of Stochastic Analysis
Lyons’ theory provide a path-wise formulation of stochastic integration and
stochastic differential equations. The main feature of this theory is that a path in a
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vector space V should not be considered determined by a function from an interval
ICR to V but, if this path is not regular enough, some additional information is
needed which would play the rôle of the iterated integrals for regular paths: e.g.
quantities like the rank two tensor:

X
2;mn
st ¼

Z t

s

Z u

s

dXm
v dX n

u ð2Þ

and its generalizations (see the works of Chen [10] for applications of iterated
integrals to Algebraic Geometry and Lie Group Theory). For irregular paths the
r.h.s. of Eq. (2) cannot in general be understood as a classical Lebesgue–Stieltjes
integral. However if we have any reasonable definition for this integral then (under
some mild regularity conditions) all the integrals of the form given in Eq. (1) can be

defined to depend continuously on X ;X2 and j ( for suitable topologies). A rough

path is the original path together with its iterated integrals of low degree. The theory
can then be extended to cover the case of more irregular paths (with Hölder
exponents less than 1=3) by generalization of the arguments (the more the path is
irregular the more iterated integrals are needed to characterize a rough path).
With this work we would like to provide an alternative formulation of integration

over rough paths which leads to the same results of that of Lyons’ but to some extent
is simpler and more straightforward. We will encounter an algebraic structure which
is interesting by itself and corresponds to a kind of finite-difference calculus. In the
original work of Lyons [7] roughness is measured in p-variation norm, instead here
we prefer to work with Hölder-like (semi)norms, in Section 6 we prove that
Brownian motion satisfy our requirements of regularity. In a recent work Friz [3] has
established Hölder regularity of Brownian rough paths (according to Lyons’ theory)
and used this result to give an alternative proof of the support theorem for
diffusions. This work has been extended later by Friz and Victoir [4] by interpreting
Brownian rough paths as suitable processes on the free nilpotent group of step 2:
regularity of Brownian rough paths can then be seen as a consequence of standard
Hölder regularity results for stochastic processes on groups.
We will start by reformulating in Section 2 the classical integral as the unique

solution of an algebraic problem (adjoined with some analytic condition to enforce
uniqueness) and then generalizing this problem and building an abstract tool for its
solution. As a first application we rediscover in Section 3 the integration theory of
Young [11] which was the prelude to the more deep theory of Lyons. Essentially,
Young’s theory define the integral Z t

s

fu dgu

when f is g-Hölder continuous, g is r-Hölder continuous and gþ r41 (actually, the
original argument was given in terms of p-variation norms). This will be mainly an
exercise to familiarize with the approach before discussing the integration theory for
more irregular paths in Section 4. We will define integration for a large class of paths
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whose increments are controlled by a fixed reference rough path. This is the main
difference with the approach of Lyons. Next, to illustrate an application of the
theory, we discuss the existence and uniqueness of solution of ordinary differential
equation driven by irregular paths (Section 5). In particular, sufficient conditions will
be given for the existence in the case of g-Hölder paths with g41=3 which are weaker
than those required to get uniqueness. This point answer a question raised in Lyons
[7]. In Section 6 we prove that Brownian motion and the second iterated integral
provided by Itô or Stratonovich integration are Hölder regular rough paths for
which the theory outlined above can be applied. Finally we show how to prove the
main results of Lyons’ theory (extension of multiplicative paths and the existence of
a map from almost-multiplicative to multiplicative paths) within this approach. This
last section is intended only for readers already acquainted with Lyons’ theory
(extensive accounts are present in literature, see e.g. [7,8]).
In Appendix A we collect some lengthy proofs.

2. Algebraic prelude

Consider the following observation. Let f be a bounded continuous function on R

and x a function on R with continuous first derivative. Then there exists a unique

couple ða; rÞ with aAC1ðRÞ; a0 ¼ 0 and rACðR2Þ such that

fsðxt � xsÞ ¼ at � as � rst ð3Þ

and

lim
t-s

jrstj
jt � sj ¼ 0: ð4Þ

This unique couple ða; rÞ is given by

at ¼
Z t

0

fu dxu; rst ¼
Z t

s

ð fu � fsÞ dxu:

The indefinite integral
R

f dx is the unique solution a of the algebraic problem (3)

with the additional requirement (4) on the remainder r: Since Eq. (3) make sense for
arbitrary functions f ; x it is natural to investigate the possible existence and
uniqueness of regular solutions. This will lead to the generalization of the integralR

f dx for functions x not necessarily of finite variation.

2.1. Framework

Let C be the algebra of bounded continuous functions from R to R and

OCn ðn40Þ the subset of bounded continuous functions from Rnþ1 to R which are
zero on the main diagonal where all the arguments are equal, i.e. RAOCn implies
Rt1ytn

¼ 0 if t1 ¼ t2 ¼ ? ¼ tn: In this paper we will call elements from OCn ( for any
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n40) processes to distinguish them from paths which are elements of C: The vector
spaces OCn are C-bimodules with left multiplication ðABÞt1?tnþ1

:¼ At1Bt1?tnþ1 and

right multiplication ðBAÞt1?tnþ1
:¼ Atnþ1Bt1?tnþ1 for all ðt1;y; tnþ1ÞARnþ1; AAC and

BAOCn: Moreover if AAOCn and BAOCm their external product ABAOCmþn�1 is
defined as ðABÞt1?tmþn�1

¼ At1?tn
Btn?tnþm�1 : In the following we will write OC for

OC1:
The application d : C-OC defined as

ðdAÞst :¼ At � As ð5Þ

is a derivation on C since dðABÞ ¼ AdB þ dAB ¼ BdA þ dBA:
Let OC g be the subspace of elements XAOC such that

jjX jjg :¼ sup
t;sAR2

jXstj
jt � sjg oN

and let C g be the subspace of the elements AAC such that jjdAjjgoN:

Define OCr;g
2 as the subspace of elements X of OC2 such that

jjX jjr;g :¼ sup
ðs;u;tÞAR3

jXsutj
ju � sjrjt � ujg oN

Let OCz
2 :¼ "r40OC

r;z�r
2 : an element AAOCz

2 is a finite linear combination of

elements AiAOCri ;z�ri

2 for some riAð0; zÞ:
Define the linear operator N : OC-OC2 as

ðNRÞsut :¼ Rst � Rut � Rsu:

and let Z2 :¼ NðOCÞ and Zz
2 :¼ OCz

2-Z2:
We have that Ker N ¼ Im d: Indeed NdA ¼ 0 for all AAC and it is easy to see that

for each RAOC such that NR ¼ 0 we can let At ¼ Rt0 to obtain that dA ¼ R:
If FAC and RAOC then a straightforward computation shows that

NðFRÞsut ¼ FsNðRÞsut � dFsuRut ¼ ðFNðRÞ � dFRÞsut;

NðRFÞsut ¼ FtNðRÞsut þ RsudFut ¼ ðNðRÞF þ RdFÞsut: ð6Þ

These equations suggest that the operators d and N enjoy remarkable algebraic
properties. Indeed they are just the first two members of a family of linear operators
which acts as derivations on the modules OCk; k ¼ 0; 1;y and which can be
characterized as the coboundaries of a cochain complex which we proceed to define.

2.2. A cochain complex

Consider the following chain complex: a simple chain of degree n is a string
½t1t2?tn� of real numbers and a chain of degree n is a formal linear combination of
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simple chains of the same degree with coefficients in Z: The boundary operator @ is
defined as

@½t1?tn� ¼
Xn

i¼1
ð�1Þi½t1?t̂i?tn�; ð7Þ

where t̂i means that this element is removed from the string. For example

@½st� ¼ �½t� þ ½s�; @½sut� ¼ �½su� þ ½ts� � ½ut�:

It is easy to verify that @@ ¼ 0: To this chain complex is adjoined in a standard way a
complex of cochains (which are linear functionals on chains). A cochain A of degree
n is such that, on simple chains of degree n; act as

/½t1?tn�;AS ¼ At1?tn
:

The coboundary @	 acts on cochains of degree n as

ð@	AÞt1?tnþ1
¼/½t1?tnþ1�; @	AS ¼ /@½t1?tnþ1�;AS

¼
Xnþ1
i¼1

ð�1Þi/@½t1?t̂i?tnþ1�;AS ¼
Xnþ1
i¼1

ð�1Þi
At1?t̂i?tnþ1 ð8Þ

e.g. for cochains A;B of degree 1 and 2 respectively, we have

ð@	AÞst ¼ As � At; ð@	BÞsut ¼ Bst � But � Bsu

so that we have natural identifications of @	 with �d when acting on 1-cochains and
with N when acting on 2-cochains. We recognize also that elements of
OCn�1 ðOC0 ¼ C) are n-cochains and that we have the following complex of
modules:

0-R-C !@
	
OC !@

	
OC2 !@

	
OC3-?

As usual @	@	 ¼ 0 which means that the image of @	jOCn
is in the kernel of @	jOCnþ1

:

Since Ker N ¼ Im d the above sequence is exact at OC: Actually, the sequence is
exact at every OCn: let A be an n þ 1-cochain such that @	A ¼ 0: Let us show that
there exists an n-cochain B such that A ¼ @	B: Take

Bt1?tn
¼ ð�1Þnþ1

At1?tns;
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where s is an arbitrary reference point. Then compute

ð@	BÞt1?tnþ1
¼ � Bt2?tnþ1 þ Bt1 t̂2?tnþ1 þ?þ ð�1Þnþ1

Bt1?tn

¼ð�1Þnþ1½�At2?tnþ1s þ At1 t̂2?tnþ1s þ?þ ð�1Þnþ1
At1?tns�

¼ ð�1Þnþ1½ð@	AÞt1t2?tnþ1s � ð�1Þnþ2
At1?tnþ1 � ¼ At1?tnþ1 :

As an immediate corollary we can introduce the operator N2 : OC2-OC3 such
that N2 :¼ @	jOC2

to characterize the image of N as the kernel of N2: Note that, for

example, N2 satisfy a Leibnitz rule: if A;BAOC2;

N2ðABÞsuvt ¼ @	ðABÞsuvt ¼ �ðABÞuvt þ ðABÞsvt � ðABÞsut þ ðABÞsuv

¼ � AuvBvt þ AsvBvt � AsuBut þ AsuBuv

¼ðNAÞsuvBvt � AsuðNBÞuvt

¼ðNAB � ANBÞsuvt: ð9Þ

To understand the relevance of this discussion to our problem let us reformulate
the observation at the beginning of this section as follows:

Problem 1. Given two paths F ;XAC is it possible to find a (possibly) unique

decomposition

FdX ¼ dA � R; ð10Þ

where AAC and RAOC?

To have uniqueness of this decomposition we should require that dA should be (in
some sense) orthogonal to R: So we are looking to a canonical decomposition of
OCCdC"B where B is a linear subspace of OC which should contain the remained
R: This decomposition is equivalent to the possibility of splitting the short exact
sequence

0-C=R !d OC !N Z2-0:

We cannot hope to achieve the splitting in full generality and we must resort to
consider an appropriate linear subspace E of OC which contains dC and for which
we can show that there exists a linear function LE : NE-E such that

NLE ¼ 1NE:
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Then LE splits the short exact sequence

0-C=R !d E!N NE-0

which implies ECdC"NE:
In this case, if FdXAE we can recover dA as

dA ¼ FdX � LENðFdX Þ: ð11Þ

To identify a subspace E for which the splitting is possible we note that

Im d-OCz ¼ f0g

for all z41; indeed, if X ¼ dA for some AAC and XAOCz then AACz which implies
A ¼ const if z41:
Then we can reformulate the algebraic characterization of integration at the

beginning of this section as the following problem:

Problem 2. Given two paths F ;XAC is it possible to find AAC and RAOCz for some

z41 such that the decomposition

FdX ¼ dA � R ð12Þ

holds?

Note that if such a decomposition exists then it is automatically unique since if
FdX ¼ dA0 � R0 is another we have that R � R0 ¼ dðA � A0Þ but since R �
R0AOCz-ker N we get R ¼ R0 and thus A ¼ A0 modulo a constant.
That Problem 2 cannot always be solved is clear from the following consideration:

let F ¼ X and apply N to both sides of Eq. (12) to obtain

dXsudXut ¼ �NRsut

for all ðs; u; tÞAR3: Then

dXstdXst ¼ �NRtst ¼ Rst þ Rst

for all ðt; sÞAR2: Now, if RAOCz with z41 then

jdXstj jdXstjp2jjRjjzjt � sjz ð13Þ

which implies that XACz=2: So unless this last condition is fulfilled we cannot solve
Problem (12) with the required regularity on R:
A sufficient condition for a solution to Problem 2 to exists is given by

the following result which states sufficient conditions on AAOC2 for which the
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algebraic problem

NR ¼ A

has a unique solution RAOC=dC:

2.3. The main result

For every AAZz
2 with z41 there exists a unique RAOCz such that NR ¼ A:

Proposition 1. If z41 there exists a unique linear map L : Zz
2-OCz such that NL ¼

1Z2
and such that for all AAZz

2 we have

jjLAjjzp
1

2z � 2

Xn

i¼1
jjAijjri ;z�ri

if A ¼
Pn

i¼1Ai with nX1; 0orioz and AiAOCri ;z�ri

2 for i ¼ 1;y; n:

2.4. Localization

If ICJ denote with AjI the restriction on I of the function A defined on J:
The operator L is local in the following sense:

Proposition 2. If ICR is an interval and A;BAZz
2 with z41 then

AjI3 ¼ BjI3 ) LAjI2 ¼ LBjI2 :

Proof. This follows essentially from the same argument which gives the uniqueness
of L: Indeed if Q ¼ LA � LB we have that NQ ¼ A � B which vanish when

restricted to I2: So for ðt; sÞAI2; tpups we have

Qut ¼ Qst � Qsu

but since QAOCz with z41 we get QjI2 ¼ 0: &

Given an interval I ¼ ½a; b�CR and defining in an obvious way the corresponding
spaces C gðIÞ; OCg

nðIÞ; etc. we can introduce the operator LI : Z
z
2ðIÞ-OCzðIÞ as

LI A :¼ LÃjI2 where ÃAZz
2 is any arbitrary extension of the element AAZz

2ðIÞ: By
the locality of L any choice of the extension Ã will give the same result, moreover the

specific choice Ãsut :¼ AtðtÞ;tðuÞ;tðsÞ where tðtÞ :¼ ðt4bÞ3a has the virtue to satisfy the

following bound:

jjÃijjri ;z�ri
pjjAijjri ;z�ri ;I

;
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where jj � jjri ;z�ri ;I
is the norm on OCz

2ðIÞ and A ¼
P

iAi is a decomposition of A in

OCz
2ðIÞ so that we have

jjLI Ajjz;Ip
1

2z � 2

X
i

jjAijjri ;z�ri ;I
:

We will write L instead of LI whenever the interval I can be deduced from the
context.

2.5. Notations

In the following we will have to deal with tensor products of vector spaces and we
will use the ‘‘physicist’’ notation for tensors. We will use V ;V1;V2;y to denote
vector spaces which will be always finite dimensional.1 Then, if V is a vector space,
AAV will be denoted by Am; where m is the corresponding vector index (in an
arbitrary but fixed basis), ranging from 1 to the dimension of V ; elements in V 	 (the
linear dual of V ) are denoted by Am with lower indexes, elements in V#V will be

denoted by Amn; elements of V#2#V	 as Amn
k ; etc. Summation over repeated indexes

is understood whenever not explicitly stated otherwise: AmBm is the scalar obtained

by contracting AAV 	 with BAV :
Symbols like %m; %n;y (a bar over a greek letter) will be vector multi-indexes, i.e. if

%m ¼ ðm1;y; mnÞ then A %m is the element Am1;y;mn of V#n: Given two multi-indexes %m
and %n we can build another multi-index %m%n which is composed of all the indices of %m
and %n in sequence. With j %mj we denote the degree of the multi-index %m; i.e. if %m ¼
ðm1;y; mnÞ then j %mj ¼ n: Then for example j %m%nj ¼ j %mj þ j%nj: By convention we

introduce also the empty multi-index denoted by | such that %m| ¼ | %m ¼ %m and

j|j ¼ 0:
Symbols like CðVÞ; OCðVÞ; CðI ;VÞ; etc. (where I is an interval) will denote

paths and processes with values in the vector space V :
Moreover the symbol K will denote arbitrary strictly positive constants, maybe

different from equation to equation and not depending on anything.

3. Young’s theory of integration

Proposition 1 allows to solve Problem 2 when FACr; XAC g with gþ r41: in
this case

NðFdXÞsut ¼ �dFsudXut
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so that NðFdXÞAZ
gþr
2 : Then since NðFdX � LNðFdX ÞÞ ¼ 0 there exists a unique

AAC (modulo a constant) such that

dA ¼ FdX � LNðFdXÞ:

Proposition 3 (Young). Fix an interval IDR: If FACrðIÞ and XAC gðIÞ with gþ
r41 define Z t

s

Fu dXu :¼ ½FdX � LNðFdX Þ�st; s; tAI : ð14Þ

Then we haveZ t

s

ðFu � FsÞ dXu

���� ����p 1

2gþr � 2
jt � sjgþrjjF jjr;I jjX jjg;I ; s; tAI : ð15Þ

Proof. Is immediate observing that by definitionZ t

s

ðFu � FsÞ dXs ¼ �½LNðFdXÞ�st ¼ ½LðdFdXÞ�st

and using the previous results. &

Another justification of this definition of the integral comes from the following
convergence of discrete sums which also establish the equivalence of this theory of
integration with that of Young.

Corollary 1. In the hypothesis of the previous proposition we haveZ t

s

Fu dXu ¼ lim
jPj-0

X
ftigAP

Fti
ðXtiþ1 � Xti

Þ; s; tAI ;

where the limit is taken over partitions P ¼ ft0; t1;y; tng of the interval ½s; t�DI such

that t0 ¼ s; tn ¼ t; tiþ14ti; jPj ¼ supijtiþ1 � tij:

Proof. For any partition P write

SP ¼
Xn�1
i¼0

Fti
ðXtiþ1 � Xti

Þ ¼
Xn�1
i¼0

ðFdX Þtitiþ1
¼
Xn�1
i¼0

ðdA þ RÞti tiþ1

with RAOC gþrðIÞ given by R ¼ LðdFdX Þ and such that (cf. Proposition 3):

jjRjjgþr;Ip
1

2gþr � 2
jjF jjr;I jjX jjg;I :
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Then

SP ¼ At � As �
Xn�1
i¼0

Rtitiþ1 ¼
Z t

s

Fu dXu �
Xn�1
i¼0

Rtitiþ1 : ð16Þ

But now, since gþ r41;

Xn�1
i¼0

jRtitiþ1 jpjjRjjgþr;I

Xn�1
i¼0

jtiþ1 � tijgþrpjjRjjgþr;I jPjgþr�1jt � sj-0

as jPj-0: &

4. More irregular paths

In order to solve Problem 1 for a wider class of F and X we are led to dispense
with the condition RAOCz with z41 and thus loose the uniqueness of the
decomposition: if the couple ðA;RÞ solve the problem, then also ðA þ B;R þ dBÞ
solve the problem with a nontrivial BACz: So our aim is actually to find a
distinguished couple ðA;RÞ which will be characterized by some additional
conditions.
Up to now we have considered only paths with values in R; since the general case

of vector-valued paths can be easily derived; however, in the case of more irregular
paths the vector features of the paths will play a prominent role so from now on we
will consider paths with values in ( finite-dimensional) Banach spaces V ;V1;y :
Let XAC gðVÞ a path with values in the Banach space V for some g40 and assume

that we are given a tensor process X2 in OC2gðV#2Þ such that

NðX2;mnÞ ¼ dXmdX n: ð17Þ

If gp1=2 we cannot obtain this process using Proposition 1 but (as we will see in
Section 6) there are other natural ways to build such a process for special paths X :

We can think at the arbitrary choice of X2 among all the possible solutions (with
given regularity 2g) of Eq. (17) as a way to resolve the ambiguity of the
decomposition in Problem 1, since in this case

XmdX n ¼ dImn �X2;mn

and so we are able to integrate any component of X with respect to each other and
we can write Z t

s

X m
u dX n

u ¼ dI
mn
st
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meaning that the integral on the l.h.s. is defined by the r.h.s., definition which

depends on our choice of X2: Of course in this case Corollary 1 does not hold

anymore and discrete sums of XdX are not guaranteed to converge to
R

X dX :

Note that in the scalar case the equation

XdX ¼ dI � R

with XAC g has always a solution given by It ¼ X 2
t =2þ const for which

dIst ¼
1

2
X 2

t � 1

2
X 2

s ¼ 1

2
XtðXt � XsÞ þ

1

2
XsðXt � XsÞ ¼ XsdXst þ

1

2
ðdXstÞ2

giving the decomposition dI ¼ XdX þ R with RAOC2g: The same argument works

for the symmetric part of the two-tensor X2: If XAC gðVÞ there exists a two-tensor
SAOC2gðV#VÞ given by

S
mn
st ¼ 1

2
dX

m
stdX n

st

for which

NSmn ¼ 1

2
ðdX mdX n þ dX ndXmÞ:

of course S is not unique as soon as gp1=2:
Since one of the feature of the integral we wish to retain is linearity we must agree

that if A is a linear application from V to V and Y
m
t ¼ Am

nX n
t then the integral

dI ¼
R

Y dX must be such that

Y mdX n ¼ Am
kX kdX n ¼ dImn � Am

kX
2;kn

so

dImn ¼ Y mdX n þ Am
kX

2;kn

and we have fixed at once the values of all the integrals of linear functions of the path
X w.r.t. X : Then consider a path Y which is only locally a linear function of X ; i.e.
such that

dYm ¼ Gm
n dX n þ Qm; ð18Þ

where Q is a ‘‘remainder’’ in OCðVÞ and G is a path in CðV#V 	Þ: In order to be
able to show that Y is integrable w.r.t. X we must find a solution R of the equation

NRmn ¼ dY mdX n:
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but then, using the local expansion given in Eq. (18),

NRmn ¼Gm
kdX kdX n þ QmdX n

¼Gm
kNðX2;knÞ þ QmdX n

¼NðGm
kX

2;knÞ þ dGm
kX

2;kn þ QmdX n;

where we have used Eq. (6) (the Leibnitz rule for N). To find a solution R is then
equivalent to let

eRRmn ¼ Rmn � Gm
kX

2;kn

and solve

N eRR ¼ dGm
kX

2;kn þ QmdX n: ð19Þ

Sufficient conditions to apply Proposition 1 to solve Eq. (19) are that
GACZ�gðV#V 	Þ; QAOCZðVÞ with Zþ g ¼ z41: In this case there exists a uniqueeRRAOCz solving (19) and we have obtained the distinguished decomposition

YmdX n ¼ dImn � Gm
kX

2;kn � eRRmn: ð20Þ

Note that the path Y lives a priori only in C g and this implies that uniqueness of the
solution of Problem 2 can be achieved only if g41=2: On the other hand the request
that Y can be decomposed as in Eq. (18) with prescribed regularity on G and Q has
allowed us to show that the ambiguity in the solution of Problem 1 can be reduced to

the choice of a process X2 satisfying Eq. (17). Of course if g41=2 there is only one
solution to (17) with the prescribed regularity and decomposition (20) (into a
gradient and a remainder) coincides with the unique solution of Problem 2.
Another way to look at this result is to consider the ‘‘non-exact’’ differential

FdX þ GX2;

where F ;G are arbitrary paths and ask in which case it admits a unique
decomposition

FdX þ GX2 ¼ dA þ R

as a sum of an exact differential plus a remainder term. Of course to have uniqueness
is enough that RAOCz; z41: Compute

NðFdX þ GX2Þ ¼ �dFdX � dGX2 þ GdXdX ¼ ð�dF þ GdX ÞdX � dGX2;

so in order to have RAOCz; z41 condition (18) and suitable regularity of G and Q;
are sufficient to apply Proposition 1.
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4.1. Weakly controlled paths

The analysis laid out above leads to the following definition.

Definition 1. Fix an interval IDR and let XAC gðI ;VÞ: A path ZAC gðI ;VÞ is said
to be weakly controlled by X in I with a remainder of order Z if there exists a path
Z0ACZ�gðI ;V#V 	Þ and a process RZAOCZðI ;VÞ with Z4g such that

dZm ¼ Z0mndX n þ R
m
Z:

If this is the case we will write ðZ;Z0ÞAD
g;Z
X ðI ;VÞ and we will consider on the linear

space D
g;Z
X ðI ;VÞ the semi-norm

jjZjjDðX ;g;ZÞ;I :¼ jjZ0jj
N;I þ jjZ0jjZ�g;I þ jjRZjjZ;I þ jjZjjg;I :

(The last contribution is necessary to enforce ZAC gðI ;VÞ when I is unbounded).
The decomposition dZm ¼ Z0mndX n þ Rm is a priori not unique, so a path in

Dg;ZðI ;X Þmust be understood as a pair ðZ;Z0Þ since then RZ is uniquely determined.

However we will often omit to specify Z0 when it will be clear from the context.
The term weakly controlled is inspired by the fact that paths which are solution of

differential equations controlled by X (see Section 5) belongs to the class of weakly
controlled paths (w.r.t. X ). In general, however, a weakly controlled path Z is
uniquely determined knowing X and the ‘‘derivative’’ Z0 only when Z41:
Weakly controlled paths enjoy a transitivity property:

Lemma 1. If ZAD
g;Z
Y ðI ;VÞ and YADg;s

X ðI ;VÞ then ZAD
g;minðs;ZÞ
X ðI ;VÞ and

jjðZ;Z0ÞjjDðX ;g;dÞ;IpK jjZjjDðY ;g;ZÞ;I ð1þ jjY jjDðX ;g;sÞ;I Þð1þ jjX jjg;I Þ

where K is some fixed constant.

Proof. The proof is in Appendix A, Section A.2.1. &

Another important property of the class of weakly controlled paths is that

it is stable under smooth maps. Let Cn;dðV ;V1Þ the space of n-times differentiable
maps from V to the vector space V1 with d-Hölder nth derivative and consider the
norm

jjjjj0;d ¼ jjjjj
N

þ jjjjjd; jjjjjn;d ¼ jjjjj
N

þ
Xn

k¼1
jj@kjjj

N
þ jj@ njjjd;
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where jACn;dðV ;V1Þ; @kj is the kth derivative of j seen as a function with values in

V1#V	#k and

jjjjj
N

¼ sup
xAV

jjðxÞj;

jj@ njjjd ¼ sup
x;yAV

j@ njðxÞ � @ njðyÞj
jx � yjd

:

Proposition 4. Let YAD
g;Z
X ðI ;VÞ and jAC1;dðV ;V1Þ; then the path Z such that Z

m
t ¼

jðYtÞm is in Dg;s
X ðI ;V1Þ with s ¼ minðgðdþ 1Þ; ZÞ: Its decomposition is

dZm ¼ @njðYÞmY 0n
k dX k þ R

m
Z

with RZAOCsðI ;V1Þ and

jjZjjDðX ;g;sÞ;IpK jjjjj1;dðjjY jjDðX ;g;ZÞ;I þ jjY jj1þd
DðX ;g;ZÞ;I þ jjY jjs=g

DðX ;g;ZÞ;IÞ: ð21Þ

If jAC2;dðV ;V1Þ we have also

jjjðYÞ � jð eYY ÞjjDðX ;g;ð1þdÞgÞ;IpCjjY � eYY jjDðX ;g;ð1þdÞgÞ;I ð22Þ

for Y ; eYYAD
g;ð1þdÞg
X ðI ;VÞ with

C ¼ K jjjjj2;dð1þ jjX jjg;I Þð1þ jjY jjDðX ;g;ð1þdÞgÞ;I þ jj eYY jjDðX ;g;ð1þdÞgÞ;I Þ
1þd:

Moreover if eYYAD
g;ð1þdÞgeX ðI ;VÞ; eZZ ¼ jð eYYÞ and

dY m ¼ Y 0m
n dX n þ R

m
Y ; d eYYm ¼ eYY 0;m

n d eXX n þ R
meY ;

dZm ¼ Z0m
n dX n þ R

m
Z; d eZZm ¼ eZZ0m

n d eXX n þ R
meZ;

with Z
0m
n;t ¼ @kjðYtÞmY 0k

n;t;
eZZ0m
n;t ¼ @kjð eYYtÞm eYY 0k

n;t then

jjZ0 � eZZ0jj
N

þ jjZ0 � eZZ0jjdg;I þ jjRZ � ReZjjð1þdÞg;I þ jjZ � eZZjjg;I

pCðjjX � eXX jjg;I þ eIÞ ð23Þ

with

eI ¼ jjY 0 � eYY 0jj
N;I þ jjY 0 � eYY 0jjdg;I þ jjRY � ReY jjð1þdÞg;I þ jjY � eYY jjg;I :

Proof. The proof is given in Appendix A, Section A.2.2. &
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4.2. Integration of weakly controlled paths

Let us give a reference path XAC gðI ;VÞ and an associated process

X2AOC2gðI ;V#VÞ satisfying the algebraic relationship

NX
2;mn
sut ¼ dX m

sudX n
ut s; u; tAI : ð24Þ

Following Lyons we will call the couple ðX ;X2Þ a rough path (of roughness 1=g).
We are going to show that weakly controlled paths can be integrated one against

the other.
Take two paths Z;W in V weakly controlled by X with remainder of order Z: By

an argument similar to that at the beginning of this section we can obtain a unique
decomposition of ZdW as

ZmdW n ¼ dAmn � Fmm0Gnn0X2;m0n0 þ LNðZmdW n þ Fmm0Gnn0X2;m0n0 Þ

and we can state the following theorem:

Theorem 1. For every ðZ;Z0ÞAD
g;Z
X ðI ;VÞ and ðW ;W 0ÞAD

g;Z
X ðI ;VÞ with Zþ g ¼ d41

define

Z t

s

Zm
u dW n

u :¼ Zm
s dW n

st þ Z
0m
m0;sW

0n
n0;sX

2;m0n0
st � ½LNðZmdW n þ Z

0m
m0 W

0n
n0 X

2;m0n0 Þ�st;

s; tAI ð25Þ

then this integral extends that defined in Proposition 3 and the following bound

holds:

Z t

s

ðZm
u � Zm

s ÞdW n
u � Z

0m
m0;sW

0n
n0;sX

2;m0n0
st

���� ����
p

1

2d � 2
jt � sjdjjðZ;Z0ÞjjDðX ;g;ZÞjjðW ;W 0ÞjjDðX ;g;ZÞ; ð26Þ

which implies the continuity of the bilinear application

ððZ;Z0Þ; ðW ;W 0ÞÞ/
Z �

0

ZdW ;ZW 0
� �

from D
g;Z
X ðVÞ �D

g;Z
X ðVÞ to D

g;minð2g;ZÞ
X ðV#VÞ:

ARTICLE IN PRESS
M. Gubinelli / Journal of Functional Analysis 216 (2004) 86–140 101



Proof. Compute

Q
mn
sut ¼NðZmdW n þ Z

0m
m0 W

0n
n0 X

2;m0n0 Þsut

¼ � dZm
sudW n

ut þ ðZ0m
m0 W

0n
n0 ÞsNX

2;m0n0
sut � dðZ0m

m0 W
0n
n0 ÞsuX

2;m0n0
ut

¼ � Z
0m
m0;sdX m0

su W 0n
n0;udX n0

ut � R
m
Z;sudW n

ut � Z
0m
m0;sdXm0

su Rn
W ;ut

� dðZ0m
m0 W

0n
n0 ÞsuX

2;m0

n0;ut þ ðZ0m
m0 W

0n
n0 ÞsNX

2;m0n0
sut

¼ � R
m
Z;sudW n

ut � Z
0m
m0;sdXm0

su Rn
W ;ut

� dðZ0m
m0 W

0n
n0 ÞsuX

2;m0n0
ut � Z

0m
m0;sdXm0

sudW 0n
n0;sudX n0

ut

and observe that all the terms are in OCd
2ðI ;V#2Þ so that QAZd

2ðI ;V#2Þ is in the

domain of L; then

jjLQjjd;Ip
1

2d � 2
½jjRZjjZ;I jjW jjg;I þ jjZ0jj

N;I jjX jjg;I jjRW jjZ;I

þ jjX2jj2g;I ðjjZ0jj
N;I jjW 0jjZ�g;I þ jjW 0jj

N;I jjZ0jjZ�g;IÞ

þ jjZ0jj
N;I jjW 0jjZ�g;I jjX jj2g;I �

p
1

2d � 2
ð1þ jjX jj2g;I þ jjXjj22g;IÞjjðZ;Z0ÞjjDðX ;g;ZÞ;I jjðW ;W 0ÞjjDðX ;g;ZÞ;I

and bound (26) together with the stated continuity easily follows.
To prove that this new integral extends the previous definition note that when

2g41 Eq. (24) has a unique solution and since Z;WAC gðI ;VÞ let Ãst ¼
R t

s
Z dW

where the integral is understood in the sense of Proposition 3. Then we have

ZmdW n ¼ dÃmn � R̃mn

with R̃AOC2gðI ;V#VÞ; at the same time

ZmdW n ¼ dAmn � Z
0m
m0 W

0n
n0 X

2;m0n0 � Rmn

with RAOCdðI ;V#2Þ: Comparing these two expressions and taking into account

that 2g41 we get dA ¼ dÃ and R̃mn ¼ Z
0m
m0 W

0n
n0 X

2;m0n0 � Rmn proving the equivalence of

the two integrals. &

Note that, in the hypothesis of Theorem 1, we have

X
2;mn
st ¼

Z t

s

ðX m
u � Xm

s Þ dX n
u :
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Even if the notation does not make it explicit it is important to remark that the

integral depends on the rough path ðX ;X2Þ; however if there is another rough path

ðY ;Y2Þ and XAD
g;Z
Y ðI ;VÞ we have shown that Dg;Z

X ðI ;VÞDD
g;Z
Y ðI ;VÞ (see Lemma 1)

and the integral defined according to ðX ;X2Þ is equal to that defined according to

ðY ;Y2Þ if and only if we have

X2;mn ¼
Z t

s

dXm
su dX n

u ;

where this last integral is understood based on ðY ;Y2Þ: Necessity is obvious, let us
prove sufficiency. Let the decomposition of X according to Y be

dXm ¼ Am
n dY n þ R

m
X

and write

dZm ¼ Z0m
n dX n þ R

m
Z; dWm ¼ W 0m

n dW n þ R
m
W

then if

dI
mn
st ¼

Z t

s

ZmdðX ;X2ÞW
n

is the integral based on ðX ;X2Þ;

deIImnst ¼
Z t

s

ZmdðY ;Y2ÞW
n

the one based on ðY ;Y2Þ; we have by definition of integral

dImn ¼ ZmdW n þ Z0m
k W 0;n

r X2;kr þ R
mn
I ;

deIImn ¼ ZmdW n þ Z0;m
k Ak

k0W
0n
r A

r
r0Y

2;k0r0 þ R
mneI

and

X2;kr ¼ Ak
k0A

r
r0Y

2;k0r0 þ R
kr
X2 ;

where RI ;ReI ;RX2AOC gþZðV#2Þ: Then

dðImn � eIImnÞ ¼Z0m
k W 0;n

r ðX2;kr � Ak
k0A

r
r0Y

2;k0r0 Þ þ R
mn
I � R

mneI
¼Z0m

k W 0n
r R

kr
X2 þ R

mn
I � R

mneI
but then dðI � eIIÞAOC gþZðI ;V#2Þ with gþ Z41 so it must be dI ¼ deII :
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Given another rough path ð eXX ; eXX2Þ and paths eWW ; eZZAD
g;ZeX ðI ;VÞ then it takes not so

much effort to show that the difference

Dst :¼
Z t

s

Z dW �
Z t

s

eZZ d eWW
(where the first integral is understood with respect to ðX ;X2Þ and the second w.r.t.

ð eXX ; eXX2Þ) can be bounded as

jjD� ZdW þ eZZd eWW þ eWW 0 eZZ0 eXX2 � W 0Z0X2jjd;Ip
1

2z � 2
ðD1 þ D2 þ D3Þ; ð27Þ

where

D1 ¼ ð1þ jjX jj2g;I þ jjX2jj2g;I ÞðjjðZ;Z0ÞjjDðX ;g;ZÞ;I þ jjð eZZ; eZZ0Þjj
DðeX ;g;ZÞ;IÞeW ;

D2 ¼ ð1þ jjX jj2g;I þ jjX2jj2g;I ÞðjjðW ;W 0ÞjjDðX ;g;ZÞ;I þ jjð eWW ; fW 0W 0Þjj
DðeX ;g;ZÞ;I ÞeZ;

D3 ¼ðjjðW ;W 0ÞjjDðX ;g;ZÞ;I þ jjð eWW ; fW 0W 0Þjj
DðeX ;g;ZÞ;I Þ

� ðjjðZ;Z0ÞjjDðX ;g;ZÞ;I þ jjð eZZ; eZZ0Þjj
DðeX ;g;ZÞ;I ÞðjjX � eXX jjg;I þ jjX2 � eXX2jj2g;IÞ

and

eZ ¼ jjZ0 � eZZ0jj
N;I þ jjZ0 � eZZ0jjZ�g;I þ jjRZ � eRRZjjZ;I þ jjZ � eZZjjg;I ;

eW ¼ jjW 0 � eWW 0jj
N;I þ jjW 0 � eWW 0jjZ�g;I þ jjRW � eRRW jjZ;I þ jjW � eWW jjg;I

so that the integral possess reasonable continuity properties also with respect to the

reference rough path ðX ;X2Þ:

Remark 1. It is trivial but cumbersome to generalize the statement of Theorem 1 in
the case of inhomogeneous degrees of smoothness, i.e. when we have

ZAD
g;Z
X ðVÞ; WAD

r;Z0

Y ðVÞ with XAC gðVÞ; YACrðVÞ and there is a process

HAOC gþrðV#2Þ which satisfy

NHmn ¼ dXmdY n:

In this case the condition to be satisfied in order to be able to define the integral is
minðgþ Z0; rþ ZÞ ¼ d41:

As in Section 3 we can give an approximation result of the integral defined in
Theorem 1 as a limit of sums of increments:
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Corollary 2. In the hypothesis of the previous proposition we haveZ t

s

Zm
u dW n

u ¼ lim
jPj-0

Xn�1
i¼0

ðZm
ti
dW n

ti ;tiþ1
þ Z

0m
m0;ti

W 0n
n0;ti

X
2;m0n0
ti ;tiþ1Þ

where the limit is taken over partitions P ¼ ft0; t1;y; tng of the interval ½s; t� such that

t0 ¼ s; tn ¼ t; tiþ14ti; jPj ¼ supijtiþ1 � tij:

Proof. The proof is analogous to that of Corollary 1. &

Simpler bounds can be stated in the case where we are integrating a path
controlled by X against X itself

Corollary 3. When WAD
g;Z
X ðI ;V1#V	Þ the integral

dA
m
st ¼

Z t

s

Wm
n;u dX n

u

belongs to Dg;2g
X ðI ;V1Þ and satisfy

jjdA � WndX n � W 0
nkX

2;nkjjDðX ;g;ZþgÞ;Ip
1

2Zþg � 2
ðjjX jjg;I þ jjX2jj2g;I ÞjjW jjDðX ;g;ZÞ;I

ð28Þ

Moreover if ð eXX ; eXX2Þ is another rough path and eWWAD
g;ZeX ðI ;V1#V 	Þ then

dB
m
st ¼

Z t

s

Wm
n;u dX n

u �
Z t

s

eWWm
n;u d eXX n

u

and

dBm ¼ Wm
n dX n � eWWm

n d eXX n � W 0m
nkX

2;nk � eWW 0m
nk
eXX2;nk þ R

m
B

with RB satisfying the bound

jjRBjjZþg;Ip
1

2Zþg � 2
½CX ;I eW ;I þ ðjjW jjDðX ;g;ZÞ;I þ jj eWW jj

DðeX ;g;ZÞ;IÞrI � ð29Þ

with

eW ;I ¼ jjRW � ReW jjZ;I þ jjW 0 � eWW 0jjZ�g;I

and

rI ¼ jjX � eXX jjg þ jjX2 � eXX2jj2g;I

CX ;I ¼ jjX jjg;I þ jjX2jj2g;I þ jj eXX jjg;I þ jjeXX2jj2g;I :
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Proof. The integral path dA has the following decomposition:

dAm ¼ Wm
n dX n þ W 0m

nkX
2;nk þ R

m
A

with RA satisfying

NR
m
A ¼ dW 0m

nkX
2;nk þ R

m
W ;ndX n

then Eq. (28) follows immediately from the properties of L: Next, let d eAA ¼
R eWW d eXX

and

d eAAm ¼ eWWm
n d eXX n þ eWW 0m

nk
eXX2;nk þ R

meA
then

NR
m
B ¼ dW 0m

nkX
2;nk þ R

m
W ;ndX n � d eWW 0m

nk
eXX2;nk þ R

meW ;n
d eXX n

and

jjRBjjZþg;Ip
1

2Zþg � 2
½jjW 0 � eWW 0jjZ�g;I jjX2jj2g;I þ jj eWW 0jjZ�g;I jjX2 � eXX2jj2g;I

þ jjX � eXX jjg;I jjRW jjZ;I þ jj eXX jjg;I jjRW � ReW jjZ;I �

p
1

2Zþg � 2
½CX ;I eW ;I þ ðjjW jjDðX ;g;ZÞ;I þ jj eWW jjDðX ;g;ZÞ;IÞrI �: &

5. Differential equations driven by paths in C cðVÞ

The continuity of the integral defined in Eq. (14) allows to prove existence and
uniqueness of solutions of differential equations driven by paths in C gðVÞ for g not
too small.
Fix an interval JDR and let us given XAC gðJ;VÞ and a function

jACðV ;V#V	Þ: A solution Y of the differential equation

dY
m
t ¼ jðYtÞmn dX n

t ; Yt0 ¼ y; t0AJ ð30Þ

in J will be a continuous path YAC gðV ; JÞ such that

Y
m
t ¼ y þ

Z t

t0

jðYuÞmn dX n
u : ð31Þ
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for every tAJ: If g41=2 sufficient conditions must be imposed on j such that the
integral in (31) can be understood in the sense of Proposition 3. If 1=3ogp1=2 the
integral must be understood in the sense of Theorem 1. Then in this case we want to

show that, given a driving rough path ðX ;X2Þ it is possible to find a path

YADg;2g
X ðV ; JÞ that satisfy Eq. (31).

The strategy of the proof will consist in introducing a map Y/GðY Þ on suitable

paths YACðJ;VÞ depending implicitly on X (and eventually on X2) such that

GðYÞt ¼ Yt0 þ
Z t

t0

jðYuÞmn dX n
u : ð32Þ

Existence of solutions will follow from a fixed-point theorem applied to G acting on
a suitable compact and convex subset of the Banach space of Hölder continuous
functions on J (this require V to be finite dimensional). To show uniqueness we will
prove that under stronger conditions on j the map G is locally a strict contraction.
Next we show also that the Itô map (in the terminology of Lyons [7]) Y ¼ Fðy;j;XÞ
(or Y ¼ Fðy;j;X ;X2Þ) which sends the data of the differential equation to the
corresponding solution Y ¼ GðY Þ; is a Lipschitz continuous map (in compact

intervals J) in each of its argument, where on X and X2 we are considering the

norms of C gðJ;VÞ and OC2gðJ;V#2Þ; respectively.
Note that, in analogy with the classical setting, the solution of the differential

equation is ‘‘smooth’’ in the sense that it will be of the form

dY ¼ jðY ÞdX þ RY ð33Þ

with RYAOCzðV ; JÞ with z41 in the case of g41=2 and of the form

dY ¼ jðY ÞdX þ @jðYÞjðY ÞX2 þ QY ð34Þ

with RYAOCzðV ; JÞ with z41 in the case of 1=3ogp1=2:

Natural conditions for existence of solutions will be jACdðV ;V#V 	Þ if g41=2

and ð1þ dÞg41; while jAC1;dðV ;V#V 	Þ if 1=3ogp1=2 where dAð0; 1Þ such that

ð2þ dÞg41 while uniqueness will hold if jAC1;dðV ;V#V 	Þ or jAC2;dðV ;V#V 	Þ
respectively with analogous conditions on d:

Remark 2. Another equivalent approach to the definition of a differential equation
in the non-smooth setting is to say that Y solves a differential equation driven by X

if Eq. (33) or (34) is satisfied with remainders RY or QY in OCzðVÞ for some z: This
would have the natural meaning of describing the local dynamical behaviour of Yt as
the parameter t is changed in terms of the control X : This point of view has been
explored previously in an unpublished work by Davie [1] which also gives some
examples showing that the conditions on the vector field j cannot be substantially
relaxed.
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Remark 3. In a recent work [6] Li and Lyons show that, under natural hypotesis on
j; the Itô map F can be differentiated with respect to the control path X (when
extended to a rough path).

5.1. Some preliminary results

In the proofs of the propositions below it will be useful the following comparison
of norms which holds for locally Hölder continuous paths:

Lemma 2. Let Z4g; b4a then OCZð½a; b�ÞDOC gð½a; b�Þ and

jjX jjg;½a;b�pjb � ajZ�gjjX jjZ;½a;b�

for any XAOCZð½a; b�Þ:

Proof. Easy:

jjX jjg;½a;b� ¼ sup
t;sA½a;b�

jXstj
jt � sjg ¼ sup

t;sA½a;b�

jXstj
jt � sjZ jt � sjZ�gpjb � ajZ�g sup

t;sA½a;b�

jXstj
jt � sjZ: &

Moreover we will need to patch together local Hölder bounds for different
intervals:

Lemma 3. Let I ; J be two adjacent intervals on R (i.e. I-Ja0) then if

XAOC gðI ;VÞ; XAOC gðJ;VÞ and NXAOC g1;g2ðI,J;VÞ with g ¼ g1 þ g2; then we

have XAOC gðI,J;VÞ with

jjX jjg;I,Jp2ðjjX jjg;I þ jjX jjg;JÞ þ jjNX jjg1;g2;I,J : ð35Þ

Proof. See Appendix A, Section A.3.1. &

5.2. Existence and uniqueness when g41=2

First we will formulate the results for the case g41=2 since they are simpler and
require weaker conditions.

Proposition 5 (Existence g41=2). If g41=2 and jACdðV ;V#V 	Þ with dAð0; 1Þ and

ð1þ dÞg41 there exists a path YAC gðVÞ which solves Eq. (30) (where the integral is

the one defined in Section 3).

Proof. Consider an interval I ¼ ½t0; t0 þ T �DJ; T40 and note that W ¼ jðYÞ is in
CdgðI ;V#V 	Þ with

jjW jjdg;I ¼ jjjðYÞjjdg;IpjjjjjdjjY jjdg;I
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so that if ð1þ dÞg41 it is meaningful, according to Proposition 3 to consider the
application C gðI ;VÞ-C gðI ;VÞ defined as in Eq. (32). Moreover the path Z ¼
GðYÞAC gðI ;VÞ satisfy

dZm ¼ jðY ÞmndX n þ Q
m
Z

with

jjQZjjð1þdÞg;Ip
1

2ð1þdÞg � 2
jjX jjg;I jjjðYÞjjdg;Ip

1

2ð1þdÞg � 2
jjjjjdjjX jjg;I jjY jjdg;I ;

then, using Lemma 2,

jjZjjg;Ip jjjðYÞdX jjg;I þ jjQZjjg;I

p jjjjj0;djjX jjg;I þ TgdjjQZjjð1þdÞg;I

pKCX ;I jjjjj0;dð1þ TdgjjY jjdg;I Þ

pKCX ;J jjjjj0;dð1þ TdgjjY jjdg;I Þ

with

CX ;I ¼ jjX jjg;I :

For any T let AT40 be the solution to

AT ¼ KCX ;J jjjjj0;dð1þ TdgAd
TÞ: ð36Þ

Then jjGðYÞjjg;IpAT whenever jjY jjg;IpAT and moreover GðY Þt0
¼ Yt0 : Then for

any yAV ; the application G maps the compact and convex set

Qy;½t0;t0þT � ¼ fYAC gð½t0; t0 þ T �;VÞ: Yt0 ¼ y; jjY jjg;½t0;t0þT �pATg ð37Þ

into itself. Let us show that G on Qy;½t0;t0þT � is at least Hölder continuous with respect

to the norm jj � jjg: This will allow us to conclude (by the Leray–Schauder–Tychonoff

theorem) the existence of a fixed-point in Qy;½t0;t0þT �: To prove continuity take

Y ; eYYAQy;I and denote eZZ ¼ Gð eYYÞ so that

d eZZm ¼ jð eYY ÞmndX n þ eQQm
Z

as for Z ¼ GðY Þ: Then

jjZ � eZZjjg;IpjjjðY Þ � jð eYYÞjj
N;I jjX jjg;I þ jjQZ � QeZjjg;I ð38Þ
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but now taking 0oao1 such that ð1þ adÞg41

jjQZ � QeZjjð1þadÞg;Ip
1

2ð1þadÞg � 2
jjX jjg;I jjjðYÞ � jð eYY Þjjadg;I :

To bound jjjðY Þ � jð eYYÞjjadg;I we interpolate between the following two bounds:

jjjðYÞ � jð eYY Þjj0;Ip2jjjðYÞ � jð eYYÞjj
N;Ip2jjjjjdjj eYY � Y jjd

N;I

and

jjjðY Þ � jð eYYÞjjdg;IpjjjðYÞjjdg;I þ jjjð eYYÞjjdg;IpjjjjjdðjjY jjdg;I þ jj eYY jjdg;I Þpjjjjjd2Ad
T

obtaining

jjjðYÞ � jð eYYÞjjadg;Ip2jjjjjdjj eYY � Y jjð1�aÞd
N;I Aad

T

Eq. (38) becomes

jjZ � eZZjjg;Ip jjjðYÞ � jð eYY Þjj
N;I jjX jjg;I þ TadgjjQZ � QeZjjð1þadÞg;I

pK jjjjjdjjX jjg;I ½jjY � eYY jjd
N;I þ jj eYY � Y jjð1�aÞd

N;I Aad
T �:

Since jjY � eYY jj
N;IpjjY � eYY jjg;I (recall that To1) we have that G is continuous on

Qy;I for the topology induced by the norm jj � jjg;I (the paths all have a common

starting point).
Since all these arguments does not depend on the location of the interval I we can

patch together local solutions to get the existence of a global solution on all J: &

Proposition 6 (Uniqueness g41=2). Assume jAC1;dðV ;V#V 	Þ with ð1þ dÞg41;
then there exists a unique solution of Eq. (30). The Itô map Fðy;j;X Þ is Lipschitz in

the sense that satisfy the following bound:

jjFðy;j;X Þ � Fðeyy; ejj; eXX Þjjg;JpMðjjX � eXX jjg;J þ jjj� ejjjj1;d þ jy � eyyjÞ
for some constant M depending only on jjX jjg;J ; jj eXX jjg;J ; jjjjj1;d; jjejjjj1;d and J:

Proof. Let us continue to use the notations of the previous proposition. Let Y ; eYY be

two paths in C gðJ;VÞ; and X ; eXXAC gðJ;VÞ: Let W ¼ jðY Þ; eWW ¼ jð eYY Þ; Z ¼
GðYÞ; eZZ ¼ eGGð eYYÞ where eGG is the map corresponding to the driving path eXX :

eYY/ eGGð eYYÞm :¼ eYY m
t0 þ

Z �

t0

jð eYYuÞmn d eXX n
u :
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Then

d eZZm ¼ jð eYYsÞmd eXX n þ Q
meZ:

Introduce the following shorthands:

eZ;I ¼ jjZ � eZZjjg;I ; e	W ;I ¼ jjW � eWW jjdg;I ; eY ;I ¼ jjY � eYY jjg;I ; e	Y ;I ¼ jjY � eYY jjdg;I ;

rI ¼ jjX � eXX jjg;I þ jY0 � eYY0j þ jjj� ejjjj1;d
CX ;I ¼ jjX jjg;I þ jj eXX jjg;I CY ;I ¼ jjY jjg;I þ jj eYY jjg;I :

With these notations, Lemma 5 states that, when To1:

eZ;IpKCX ;I Cd
Y ;I ½ð1þ jjjjj1;dÞrI þ jjjjj1;dT gdeY ;I �: ð39Þ

As we showed before in Proposition 5 there exists a constant AT such that the set

Qy;I :¼ fYACgðI ;VÞ: Yt0 ¼ y; jjY jjg;IpATg is invariant under G: Take Y ; eYYAQy;I

and X ¼ eXX : Then we have rI ¼ 0; CY ;Ip2AT and

eZ;IpK jjjjj1;dCX ;JAd
T TgdeY ;I :

Choosing T small enough such that K jjjjj1;dCX ;JAd
T Tgd ¼ ao1 implies

jjGðYÞ � Gð eYYÞjjg;I ¼ eZ;IpajjY � eYY jjg;I :

The map G is then a strict contraction on Qy;I and has a unique fixed-point. Again,

since the estimate does not depend on the location of ICJ we can extend the unique
solution to all J: &

5.3. Existence and uniqueness for g41=3

Proposition 7 (Existence g41=3). If g41=3 and jAC1;dðV ;VÞ with ð2þ dÞg41

there exists a path YADg;2g
X ðVÞ which solves Eq. (30) where the integral is understood

in the sense of Theorem 1 based on the couple ðX ;X2Þ:

Proof. By Proposition 4 for any YADg;2g
X ðJ;VÞ; the path W ¼ jðYÞ is in

D
g;ð1þdÞg
X ðJ;VÞ with

jjW jjDðX ;g;ð1þdÞgÞ;I ¼ jjjðY ÞjjDðX ;g;ð1þdÞgÞ;IpK jjjjj1;dðjjY jj	;I þ jjY jj1þd
	;I þ jjY jj2	;I Þ

p 3K jjjjj1;dð1þ jjY jj	;I Þ
2; ð40Þ

where we introduced the notation jj � jj	;I ¼ jj � jjDðX ;g;2gÞ;I :
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Then we can integrate W against X as soon as ð2þ dÞg41 and define the map G

as G : Dg;2g
X ðI ;VÞ-Dg;2g

X ðI ;VÞ with formula (32). Let Y be a path such that Y 0
t0
¼

jðYt0Þ:
The decomposition of Z (as above Z ¼ GðYÞ) reads

dZm ¼ Z0m
n dX n þ R

m
Z ¼ jðYÞmn dX n þ @kjðYÞmnY 0k

r X2;nr þ Q
m
Z

with (use Eq. (28))

jjQZjjð2þdÞg;IpKCX ;I jjjðY ÞjjDðX ;g;ð1þdÞgÞ;I ; ð41Þ

where

CX ;I ¼ 1þ jjX jjg;I þ jjX2jj2g;I :

Our aim is to bound Z in Dg;2g
X ðI ;VÞ: To achieve this we already have the good

bound (41) for QZ so we need bounds for jj@kjðYÞ�nY 0k
r X2;nrjj2g;I ; jjjðYÞjjg;I and

jjZjjg;I : To simplify the arguments assume that To1 since at the end we will need to

take T small anyway.

Let us start with jj@kjðYÞ�nY 0k
r X2;nrjj2g;I :

jj@kjðY Þ�nY 0k
r X2;nrjj2g;Ip jj@kjðY Þ�njjN;I jjY 0k

r jj
N;I jjX2;nrjj2g;I

p jj@jjj
N
ðjY 0

t0
j þ T gjjY 0jjg;I ÞjjX2;nrjj2g;I

p jjjjj1;dðjjjjj1;d þ TgjjY 0jjg;IÞjjX2;nrjj2g;I : ð42Þ

Next, using the fact that

jj@jðYÞjj
N;Ip j@jðYt0Þj þ jj@jðYÞjj0;I

p jjjjj1;d þ Tdgjj@jðY Þjjdg;I

p jjjjj1;d þ TdgjjjðYÞjjDðX ;g;ð1þdÞgÞ;I

obtain

jjjðYÞjjg;Ip jjX jjg;I jj@jðY Þjj
N;I þ jjRjðYÞjjg;I

p jjjjj1;djjX jjg;I þ TdgðjjX jjg;I jj@jðYÞjjDðX ;g;ð1þdÞgÞ;I þ jjRjðYÞjjð1þdÞg;IÞ

pCX ;I ðjjjjj1;d þ TdgjjjðYÞjjDðX ;g;ð1þdÞgÞ;I Þ: ð43Þ
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To finish consider

jjZjjg;Ip jjZ0dX jjg;I þ jjRZjjg;I

p jjjðYÞjj
N;I jjX jjg;I þ jj@jðY ÞY 0X2jj2g;I þ jjQZjj2g;I : ð44Þ

Putting together the bounds given in Eqs. (41), (42), (43) and Eq. (44) we get

jjZjj	;I ¼ jjjðYÞjj
N

þ jjjðYÞjjg;I þ jj@kjðY Þ�nY 0k
r X2;nrjj2g;I þ jjQZjj2g;I þ jjZjjg;I

p 2ð1þ jjX jjg;I ÞjjjðY Þjj
N

þ jjjðYÞjjg;I þ 2jj@kjðY Þ�nY 0k
r X2;n

r jj2g;I

þ 2TdgjjQZjjð2þdÞg;I

pKCX ;I ðjjjjj1;d þ jjjjj21;d þ Tdgjjjjj1;djjY jj	;I þ TdgjjjðYÞjjDðX ;g;ð1þdÞgÞ;I Þ ð45Þ

Eq. (40) is used to conclude that

jjGðY Þjj	;IpK jjjjj1;dCX ;I ð1þ jjjjj1;d þ Tdgð1þ jjY jj	;IÞÞ
2

pK jjjjj1;dCX ;Jð1þ jjjjj1;d þ Tdgð1þ jjY jj	;I ÞÞ
2: ð46Þ

There exists T	 such that for any ToT	 the equation

AT ¼ K jjjjj1;dCX ;Jð1þ jjjjj1;d þ Tdgð1þ ATÞÞ2

has at least a solution AT40: Then we get that jjGðYÞjj	;IpAT whenever

jjY jj	;IpAT : Let us now prove that in the set

Q0
y;I ¼ fYADg;2g

X ðI ;VÞ: Yt0 ¼ y;Y 0
t0
¼ jðyÞ; jjY jj	;IpATg

the map G is continuous (in the topology induced by the jj � jj	;I norm). Take

Y ; eYYAQ0
y;I with Z ¼ GðYÞ; eZZ ¼ Gð eYYÞ and

d eZZm ¼ eZZ0m
n dX n þ R

meZ ¼ jð eYYÞmn dX n þ @kjð eYYÞmn eYY 0k
r X2;nr þ Q

meZ:
Take 0oao1 and ð2þ adÞg41: a bound similar to Eq. (45) exists for jjZ � eZZjj	;I :

jjZ � eZZjj	;Ip 2ð1þ jjX jjg;I ÞjjjðY Þ � jð eYYÞjj
N

þ jjjðYÞ � jð eYYÞjjg;I

þ 2jjð@kjðYÞ�nY 0k
r � @kjð eYYÞ�n eYY 0k

r ÞX2;n
r jj2g;I þ 2jjQZ � QeZjjð2þadÞg;I
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pKCX ;I ½jjjðYÞ � jð eYY Þjjg;I þ jj@jðYÞ þ @jð eYYÞjj
N;I AT þ jjY 0 � eYY 0jj

N;I jjjjjN�

þ 2jjQZ � QeZjjð2þadÞg;I

when jjY � eYY jj	;IpEo1 we have

jjjðYÞ � jð eYYÞjjg;I þ jj@jðYÞ þ @jð eYYÞjj
N;I AT þ jjY 0 � eYY 0jj

N;I jjjjjNpK jjjjj1;dð1þ ATÞEd;

moreover, we can bound jjQZ � QeZjjð2þadÞg;I as

jjQZ � QeZjjð2þadÞg;Ip
1

2ð2þadÞg � 2
CX ;I ½jjRW � ReW jjð1þadÞg;I þ jj@jðY Þ � @jð eYY Þjjadg;I �

with W ¼ jðYÞ; eWW ¼ jð eYY Þ: Both of the terms in the r.h.s. will be bounded by
interpolation: the first between

jjRW � ReW jjð1þdÞg;IpjjjðYÞjjDðX ;g;ð1þdÞgÞ þ jjjð eYYÞjjDðX ;g;ð1þdÞgÞ

and

jjRW � ReW jjg;I ¼ jjðdjðY Þ � djð eYYÞÞ � ð@jðY Þ � @jð eYY ÞÞdX jjg;I

p jjjðY Þ � jð eYYÞjjg;I þ CX ;I jj@jðY Þ � @jð eYY Þjj
N;I

p jjjjj1;dEþ CX ;I jjjjj1;dEd

while the second between

jj@jðYÞ � @jð eYYÞjjdg;Ipjj@jðYÞjjdg;Ipþ jj@jð eYY Þjjdg;I

and

jj@jðYÞ � @jð eYYÞjj0;Ip2jj@jðYÞ � @jð eYYÞjj
N;Ipjjjjj1;djjY � eYY jjd

N;Ipjjjjj1;dEd:

These estimates are enough to conclude that jjZ � eZZjj	;I goes to zero whenever

jj eYY � Y jj	;I does.
Reasoning as in Proposition 5 we can prove that a solution exists in Dg;2g

X ðI ;VÞ for
any IDJ such that jI j is sufficiently small. Cover J by a sequence I1;y; In of
intervals of size ToT	: Patching together local solutions we have a continuous

solution %Y defined on all J with

d %Y ¼ %Y0dX þ R %Y;

where R %YA
S

i OC
2gðIi;VÞ and %Y0A

S
i OC

gðIi;VÞ: It remains to prove that

%YADg;2g
X ðJ;VÞ: Since the restriction of %Y on Ii is in Qy;Ii

for some yAV we have

that (with abuse of notation) jj %Yjj	;Ii
pAT for any i:
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Using Lemma 3 iteratively we can obtain that

jj %Yjjg;Jp2nþ1 sup
i

jj %Yjjg;Ii
p2nþ1AT

and by the same token

jj %Y0jjg;Jp2nþ1AT :

Next consider R %Y: write Jk ¼
Sk

i¼1 Ii and by the very same lemma get ðJiþ1 ¼
Ji,Iiþ1Þ

jjR %Yjj2g;Jiþ1
p 2jjR %Yjj2g;Ji

þ 2jjR %Yjj2g;Iiþ1
þ jjd %Y0dX jjg;g;Jiþ1

p 2jjR %Yjj2g;Ji
þ 2jjR %Yjj2g;Iiþ1

þ jj %Y0jjg;J jjX jjg;J

since NR %Y ¼ �d %Y0dX : By induction over i we end up with

jjR %Yjj2g;Jp2nþ1 sup
i

jjR %Yjj2g;Ii
þ njj %Y0jjg;J jjX jjg;Jpð2nþ1 þ 22nþ2nÞAT

and this is enough to conclude that %YADg;2g
X ðJ;VÞ: &

Proposition 8 (Uniqueness g41=3). If g41=3 and jAC2;dðV ;VÞ with ð2þ dÞg41

there exists a unique path YADg;2g
X ðJ;VÞ which solves Eq. (30) based on the couple

ðX ;X2Þ: Moreover the Itô map Fðy;j;X ;X2Þ is Lipschitz continuous in the following

sense. Let Y ¼ Fðy;j;X ;X2Þ and eYY ¼ Fðeyy; ejj; eXX ; eXX2Þ where ðX ;X2Þ and ð eXX ; eXX2Þ are

two rough paths, then defining

eY ;I ¼ jjY 0 � eYY 0jj
N;I þ jjY 0 � eYY 0jjg;I þ jjRY � ReY jj2g;I þ jjj� ejjjj2;d

rI ¼ jYt0 � eYYt0 j þ jjX � eXX jjg;I þ jjX2 � eXX2jj2g;I

and

CX ;I ¼ ð1þ jjX jjg;I þ jj eXX jjg;I þ jjX2jj2g;I þ jjeXX2jj2g;IÞ

CY ;I ¼ ð1þ jjY jj	;I þ jj eYY jj	;I Þ:

We have that there exists a constant M depending only on CX ;J ; CY ;J ; jjjjj2;d and

jjejjjj2;d such that

eY ;JpMrJ :

Proof. The strategy will be the same as in the proof of Proposition 6. Take two paths

Y ; eYYADg;2g
X ðJ;VÞ and let as above Z ¼ GðYÞ; eZZ ¼ eGGð eYYÞ: Write the decomposition
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for each of the paths Y ; eYY ;Z; eZZ as

dYm ¼ Y 0m
n dX n þ R

m
Y ; d eYY m ¼ eYY 0m

n d eXX n þ R
meY ;

and

dZ ¼ Z0dX þ RZ ¼ jðYÞdX þ @jðY ÞX2 þ QZ;

d eZZ ¼ eZZ0d eXX þ ReZ ¼ ejjð eYYÞd eXX þ @ejjð eYY ÞeXX2 þ QeZ:
The key point is to bound eZ;I defined as

eZ;I ¼ jjjðY Þ � ejjð eYYÞjj
N;I þ jjjðYÞ � ejjð eYY Þjjg;I þ jjRZ � ReZjj2g;I

and the result of Lemma 6 (in Appendix A) tells us that, when To1; eZ;I can be

bounded by

eZ;IpK ½ð1þ jjjjj2;dÞC2
X ;I C3

Y ;IrI þ jjjjj2;dTdgC3
X ;I C2

Y ;I eY ;I �: ð47Þ

Taking Y0 ¼ eYY0; eXX ¼ X ; eXX2 ¼ X2 and j ¼ ejj we have rI ¼ rJ ¼ 0: As shown in

the proof of Proposition 7 if ToT	 for any yAV there exists a set Qy;ICDg;2g
X ðI ;VÞ

invariant under G:Moreover if Y ; eYYAQy;I for some y then jjY jj	;IpAT ; jj eYY jj	;IpAT

and letting

%CY ;T ¼ 1þ 2AT

we can rewrite Eq. (47) as

eZ;IpK jjjjj2;dTdgC3
X ;J

%C2
Y ;T eY ;I :

So choosing T small enough such that

TdgC3
X ;J

%C2
Y ;T ¼ ao1 ð48Þ

we have

jjGðYÞ � Gð eYYÞjj	;I ¼ eZ;IpaeY ;I ¼ ajjY � eYY jj	;I :

Then G is a strict contraction inDg;2g
X ðI ;VÞ and thus has a unique fixed-point. Again,

patching together local solutions we get a global one defined on all J and belonging

to Dg;2g
X ðJ;VÞ:

Now let us discuss the continuity of the Itô map Fðy;j;X ;X2Þ: Let Y ; eYY be the

solutions based on ðX ;X2Þ and ð eXX ; eXX2Þ respectively. We have Y ¼ GðYÞ ¼ Z; eYY ¼eGGð eYYÞ ¼ eZZ so that eZ;I ¼ eY ;I for any interval ICJ and we can use Eq. (47)
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to write

eY ;I ¼ eZ;IpK ½ð1þ jjjjj2;dÞC2
X ;I C3

Y ;IrI þ jjjjj2;dTdgC3
X ;I C2

Y ;I eY ;I �:

Fix T small enough for (48) to hold so that

eY ;Ipð1� aÞ�1Kð1þ jjjjj2;dÞC2
X ;JC3

Y ;JrI ¼ M1rI :

Cover J with intervals I1;y; In of width T and let Jk ¼
Sk

i¼1 Ik with Jn ¼ J:

To patch together the bounds for different Ii into a global bound for eY ;J we use

again Lemma 3 to estimate

jjRY � ReY jj2g;Jiþ1
p jjRY � ReY jj2g;Ji

þ jjRY � ReY jj2g;Iiþ1
þ jjdY 0dX � d eYY 0d eXX jjg;g;Jiþ1

p jjRY � ReY jj2g;Ji
þ jjRY � ReY jj2g;Iiþ1

þ jjY 0 � eYY 0jj2g;Jiþ1
jjX jjg;J þ jj eYY 0jjg;J jjX � eXX jjg;Jiþ1

then we obtain easily that

eY ;Jiþ1pCX ;JðeY ;Ji
þ eY ;Iiþ1Þ þ CY ;JrJ :

Proceeding by induction we get

eY ;Jn
p ðCX ;Jn þ

Xn

k¼1
Ck

X ;JÞ sup
i

eY ;Ii
þ nCY ;JrJ

p 2
Xn

k¼1
Ck

X ;JM1 þ nCY ;J

" #
rJ

which implies that there exists a constant M depending only on CX ;J ; CY ;J ; jjjjj2;d
such that

eY ;JpMrJ : &

6. Some probability

So far we have developed our arguments using only analytic and algebraic
properties of paths. In this section we show how probability theory provides concrete
examples of non-smooth paths for which the theory outlined above applies.
Let ðO;F;PÞ be a probability space where is defined a standard Brownian motion

X with values in V ¼ Rn (endowed with the Euclidean scalar product). It is well
known that X is almost surely locally Hölder continuous for any exponent go1=2;
so that we can fix go1=2 and choose a version of X living in C gðI ;VÞ on any

bounded interval I : In this case solutions X2 of Eq. (17) can be obtained by
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stochastic integration: let

W
mn
It #o;st

:¼
Z t

s

ðXm
u � Xm

s Þ d̂X n
u ;

where the hat indicates that the integral is understood in Itô’s sense with respect to
the forward filtrationFt ¼ sðXs; sptÞ: Then it is easy to show that, for any s; u; tAR

W
mn
It #o;st

� W
mn
It #o;su

� W
mn
It #o;ut

¼ ðX m
u � X m

s ÞðX n
t � X n

u Þ ð49Þ

which means that

NW
mn
It #o ¼ dX mdX n:

Then we can choose a continuous version X2
It #o of ðt; sÞ/WIt #o;st for which Eq. (49)

holds a.s. for all t; u; sAR: It remains to show that X2
It #oAOC2gðI ;V#2Þ ( for any

go1=2 and bounded interval I).
To prove this result we will develop a small variation on a well-known argument

first introduced by Garsia, Rodemich and Rumsey (cf. [5,9]) to control Hölder-like
seminorms of continuous stochastic processes with a corresponding integral norm.

Fix an interval TCR: A Young function c on Rþ is an increasing, convex function
such that cð0Þ ¼ 0:

Lemma 4. For any process RAOCðTÞ let

U ¼
Z

T�T

c
jRstj

pðjt � sj=4Þ

� �
dt ds;

where p : Rþ-Rþ is an increasing function with pð0Þ ¼ 0 and c is a Young function.

Assume there exists a constant C such that

sup
ðu;v;rÞA½s;t�3

jNRuvrjpc�1 C

jt � sj2

 !
pðjt � sj=4Þ; ð50Þ

for any couple sot such that ½s; t�CT : Then

jRstjp16

Z jt�sj

0

c�1 U

r2

� �
þ c�1 C

r2

� �� �
dpðrÞ ð51Þ

for any s; tAT :

Proof. See Appendix A, Section A.4. &

Remark 4. Lemma 4 reduces to well-known results in the case NR ¼ 0 since we can
take C ¼ 0: Condition (50) is not very satisfying and we conjecture that an integral
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control over NR would suffice to obtain (51). However in its current formulation it is
enough to prove the following useful corollary.

Corollary 4. For any g40 and pX1 there exists a constant C such that for any RAOC

jjRjjg;TpCðUgþ2=p;pðR;TÞ þ jjNRjjg;TÞ; ð52Þ

where

Ug;pðR;TÞ ¼
Z

T�T

jRstj
jt � sjg
� �p

dt ds

� �1=p

:

Proof. In the previous proposition take cðxÞ ¼ xp; pðxÞ ¼ xgþ2=p; the conclusion
easily follows. &

In the case of X2 we have, fixed T ¼ ½t0; t1�AR; t0ot1; and using the scaling
properties of Brownian motion,

E½Ugþ2=p;pðX2
It #o;TÞp� ¼ E

Z
½t0;t1�2

jX2
It #o;uvj

p

ju � vjpgþ2
du dv

¼ EjX2
It #o;0 1j

p

Z
½t0;t1�2

ju � vjpð1�g�2=pÞ
du dvoN

for any go1 and p41=ð1� gÞ so that, a.s. Ugþ2=p;pðX2
It #o;TÞ is finite for any go1 and

p sufficiently large. Since

sup
ðu;v;wÞ:spupvpwpt

jðNX2
It #oÞuvwjp sup

ðu;v;wÞ:spupvpwpt

jdXuvjjdXvwjpjjX jj2g;T jt � sj2g

for any t0psptpt1; we have from (52) that for any go1=2; a.s.

jjX2
It #o;stðoÞjjpCg;TðoÞjt � sj2g

for any t; sAI ; where Cg;T is a suitable random constant. Then for any go1=2 and

bounded interval ICR we can choose a version such that X2
It #oAOC2gðI ;V#2Þ:

We can introduce

X
2;mn
Strat:;st :¼

Z t

s

ðXm
u � Xm

s Þ3d̂X n
u ;

where the integral is understood in Stratonovich sense, then by well-known results in
stochastic integration, we have

X
2;mn
Strat:;st ¼ X

2;mn
It #o;st

þ gmn

2
ðt � sÞ;
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where gmn ¼ 1 if m ¼ n and gmn ¼ 0 otherwise. It is clear that, also in this case, we can

select a continuous version of X2
Strat:;st which lives in OC2g and such that NX2

Strat: ¼
dXdX :
The connection between stochastic integrals and the integral we defined in

Section 4 starting from a couple ðX ;X2Þ is clarified in the next corollary:

Corollary 5. Let jAC1;dðV ;V#V	Þ with ð1þ dÞg41; then the Itô stochastic integral

dI
m
It #o;st

¼
Z t

s

jðXuÞmn d̂X n
u

has a continuous version which is a.s. equal to

dI
m
rough;st ¼

Z t

s

jðXuÞmn dX n
u

where the integral is understood in the sense of Theorem 1 based on the rough path

ðX ;X2
It #oÞ moreover the Stratonovich integral

dI
m
Strat:;st ¼

Z t

s

jðXuÞmn 3d̂X n
u

is a.s. equal to the integral

dJ
m
st ¼

Z t

s

jðXuÞmn dX n
u

defined based on the couple ðX ;X2
Strat:Þ and the following relation holds

dJ
m
st ¼ dI

m
rough;st þ

gnk

2

Z t

s

@kjðXuÞmn du

Proof. Recall that the Itô integral dIIt #o is the limit in probability of the discrete sums

S
m
P ¼

X
i

jðXti
Þmn ðX n

tiþ1
� X n

ti
Þ

while the integral dIrough is the classical limit as jPj-0 of

S
0m
P ¼

X
i

½jðXti
Þmn ðX n

tiþ1
� X n

ti
Þ þ @kjðXti

ÞmnX
2;kn
It #o;ti tiþ1

�

(cfr. Corollary 2). Then it will suffice to show that the limit in probability of

R
m
P ¼

X
i

@kjðXti
ÞmnX

2;kn
It #o;titiþ1

is zero. Since we assume @j bounded it will be enough to show that RP-0 in L2ðOÞ:
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By a standard argument, using the fact that RP is a discrete martingale, we have

EjRPj2 ¼
X

i

Ej@kjðXti
ÞnX

2;kn
It #o;ti tiþ1

j2pjjjjj1;d
X

i

EjX2
It #o;ti tiþ1

j2

¼ jjjjj1;dEjX2
It #o;01j

2
X

i

jtiþ1 � tij2pjjjjj1;dEjX2
It #o;01j

2jPjjt � sj

which implies that EjRPj2-0 as jPj-0:
As far as the integral dJ is concerned, we have that it is the classical limit of

S
00 m
P ¼

X
i

½jðXti
Þmn ðX n

tiþ1
� X n

ti
Þ þ @kjðXti

ÞmnX
2;kn
Strat:;titiþ1

�

¼
X

i

jðXti
Þmn ðX n

tiþ1
� X n

ti
Þ þ @kjðXti

ÞmnX
2;kn
It #o;titiþ1

þ gkn

2
@kjðXti

Þmn ðtiþ1 � tiÞ
� �

¼S
0m
P þ gkn

2

X
i

@kjðXti
Þmn ðtiþ1 � tiÞ

so that

dI
m
rough;st ¼ dJ

m
st �

gkn

2

Z t

s

@kjðXuÞmn du

as claimed and then, by the relationship between Itô and Stratonovich integration:

dI
m
It #o;st

¼ dI
m
Strat:;st �

gkn

2

Z t

s

@kjðXuÞmn du

we get dJ ¼ dIStrat:: &

7. Relationship with Lyons’ theory of rough paths

The general abstract result given in Proposition 1 can also be used to provide
alternative proofs of the main results in Lyons’ theory of rough paths [7], i.e. the
extension of multiplicative paths to any degree and the construction of a
multiplicative path from an almost-multiplicative one. The main restriction is that
we only consider control functions oðt; sÞ (cfr. Lyons [7] for details and definitions)
which are given by

oðt; sÞ ¼ K jt � sj

for some constant K :

Given an integer n; T ðnÞðVÞ denote the truncated tensor algebra up to degree

n : T ðnÞðVÞ :¼ "n
k¼0V

#k; V#0 ¼ R: A tensor-valued path Z : I2-T ðnÞðVÞ is of

finite p-variation if

jjZ %mjjj %mj=ppK j %mj; 8 %m : j %mjpn; ð53Þ
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where %m is a tensor multi-index. A path Z of degree n and finite p-variation is almost

multiplicative (of roughness p) if Z| � 1; nXIpm and

NZ %m ¼
X
%n %k¼ %m

Z %nZ %k þ R %m ð54Þ

with R %mAOCz
2ðI ;T ðnÞðVÞÞ for some z41 uniformly for all %m: By convention the

summation
P

%n %k¼ %m does not include the terms where either %n ¼ | or %k ¼ |:

A path Z is multiplicative if Z| � 1 and

NZ %m ¼
X
%n %k¼ %m

Z%nZ %k: ð55Þ

Then the key result is contained in the following proposition:

Proposition 9. If Z is an almost-multiplicative path of degree n and finite p-variation,

nXIpm; then there exists a unique multiplicative path eZZ in T ðIpmÞðVÞ with finite

p-variation such that

jjZ %m � eZZ %mjjzpK ð56Þ

for some z41 and all multi-index %m such that j %mjpIpm:

Proof. Let us prove that there exists a multiplicative path eZZ such that

Z ¼ eZZ þ Q ð57Þ

with QAOCz; z41: We proceed by induction: if j %mj ¼ 1:

NZ %m
sut ¼ R %m

sut

which, given that R %mAOCz
2; z41; implies that exists a unique eZZ %m such that N eZZ %m ¼ 0

and

Z %m ¼ eZZ %m þ LR %m ¼ eZZ %m þ Q %m

with Q %mAOCz: Then assume that Eq. (57) is true up to degree j � 1 and let us show
that it is true also for a multi-index %m of degree j:

NZ %m ¼
X
%n %k¼ %m

Z %nZ %k þ R %m

¼
X
%n %k¼ %m

ð eZZ%n þ Q%nÞð eZZ %k þ Q %kÞ þ R %m
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¼
X
%n %k¼ %m

eZZ%n eZZ %k þ
X
%n %k¼ %m

½Q%n eZZ %k þ eZZ%nQ %k þ Q%nQ %k� þ R %m

¼
X
%n %k¼ %m

eZZ%n eZZ %k þ eRR %m:

If we can prove that eRR %m is in the image of N; then writing

eZZ %m ¼ Z %m � L eRR %m ¼ Z %m þ Q %m

we obtain the multiplicative property for eZZ %m

N eZZ %m ¼
X
%n %k¼ %m

eZZ%n
ut
eZZ %k

su

with j %mj ¼ j; and we are done since uniqueness is obvious. To prove eRR %mAIm N we

must show that N2
eRR %m ¼ 0:

N2
eRR %m ¼N2 NZ %m �

X
%n %k¼ %m

eZZ%n eZZ %k

" #
¼ N2

X
%n %k¼ %m

eZZ%n eZZ %k

" #

¼
X
%n %k¼ %m

N eZZ%n eZZ %k �
X
%n %k¼ %m

eZZ%nN eZZ %k

¼
X
%n %k¼ %m

X
%s%t¼%n

eZZ %s eZZ%t eZZ %k �
X
%n %k¼ %m

X
%s%t¼ %k

eZZ%n eZZ %s eZZ%t ¼ 0;

where we used the Leibnitz rule for N2 (see Eq. (9)).
To finish we can take for the constant K in Eq. (56) the maximum of jjQ %mjjz for all

j %mjpIpm: &

Proposition 10. Let Z be a multiplicative path of degree n and finite p-variation such

that X
%m:j %mj¼k

jjZ %mjjk=ppC
ak

k!
ð58Þ

for all kpn and with a;C40; then if ðn þ 1Þ4p and C is small enough (see Eq. (60))
there exists a unique multiplicative extension of Z to any degree and Eq. (58) holds for

every k:

Proof. By induction we can assume that Z is a multiplicative path of degree k for
which Eq. (58) holds up to degree k and prove that it can be extended to degree k þ 1
with the same bound. Note that kXn and then ðk þ 1Þ4p: For j %mj ¼ k þ 1 we should
have

NZ %m ¼
X
%n %k¼ %m

Z%nZ %kAZ
ðkþ1Þ=p
2 : ð59Þ
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Since ðk þ 1Þ4p; this equation has a unique solution Z %mAOCðkþ1Þ=pðTkþ1ðVÞÞ: Then
observe that, from Eq. (59)

Z %m
st ¼ Z %m

ut þ Z %m
su þ

X
%n %k¼ %m

Z%n
suZ %k

ut

and taking as u the mid-point between t and s we can bound Z %m as follows:

X
j %mj¼kþ1

jjZ %m
stjjðkþ1Þ=pp

2

2ðkþ1Þ=p

X
j %mj¼kþ1

jjZ %m
stjjðkþ1Þ=p þ C2akþ1

Xk

i¼1

2�i=p

i!

2�ðkþ1�iÞ=p

ðk þ 1� iÞ!:

Now,

Xkþ1
i¼0

2�i=p

i!

2�ðkþ1�iÞ=p

ðk þ 1� iÞ!p
Xkþ1
i¼0

2�i

i!

2�ðkþ1�iÞ

ðk þ 1� iÞ!þ 2
XIpm

i¼0

ð2�ðkþ1�iÞ=p2�i=p � 2�ðkþ1�iÞ2�iÞ
i!ðk þ 1� iÞ!

¼ 1

ðk þ 1Þ! 1þ 2
XIpm

i¼0

ðk þ 1Þ!
i!ðk þ 1� iÞ! ð2

�ðkþ1Þ=p � 2�ðkþ1ÞÞ
" #

p
1þ DpkIpm2�ðkþ1Þ=p

ðk þ 1Þ!

which gives

X
j %mj¼kþ1

jjZ %m
stjjðkþ1Þ=ppC2ð2ðkþ1Þ=p � 2Þ

2ðkþ1Þ=p

ð1þ DpkIpm2�ðkþ1Þ=pÞakþ1

ðk þ 1Þ! pC
akþ1

ðk þ 1Þ!

whenever C is such that

0oCpmin
kXn

2ðkþ1Þ=p

ð2ðkþ1Þ=p � 2Þð1þ DpkIpm2�ðkþ1Þ=pÞ: ð60Þ

This concludes the proof of the induction step. &
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Appendix A. Some proofs

A.1. Proof of Proposition 1

The basic technique to prove the existence of the map L is borrowed form [2]. Let

ZðxÞ be a smooth function on R with compact support and ZaðxÞ :¼ a�1Zðx=aÞ:
Define

ðLbAÞst :¼ �
Z t

s

dx

Z Z
dt dsFbðx; s; t; sÞAtxs;

where

Fbðx; s; t;sÞ :¼ ½Zbðx � tÞ � Zbðs � tÞ�@xZbðx � sÞ

and the integrals in t and s are extended over all R:
Given that AAZ2 there exists RAOC such that NR ¼ A and

ðLbAÞst ¼ �
Z t

s

dx

Z Z
dt dsFbðx; s; t; sÞðRts � Rtx � RxsÞ

¼ �
Z t

s

dx

Z Z
dt dsFbðx; s; t; sÞRts

since the other terms vanish after the integrations in t or s: Then the following
decomposition holds:

LbA ¼ R̃b þ dFbðRÞ; ðA:1Þ

where

ðR̃bÞst :¼
Z Z

dt dsZbðs � tÞ½Zbðt � sÞ � Zbðs � sÞ�Rts

and

dFbðRÞst :¼ �
Z t

s

dx

Z Z
ds dtZbðx � tÞ@xZbðx � sÞRts:

In Eq. (A.1) the l.h.s. depends only on A ¼ NR while each of the terms in the r.h.s.

depends explicitly on R: We have NLbA ¼ NR̃b and since limb-0R̃b ¼ R pointwise

we have that limb-0NLbA ¼ NR ¼ A: So every accumulation point X of LbA will

solve the equation NX ¼ A: Moreover if it exists XAOCz with z41 and NX ¼ A

then it is unique and limb-0LbR ¼ X in OC1 since in this case

LbA ¼ R̃b þ dFbðRÞ ¼ X̃b þ dFbðXÞ

and it is easy to prove that FbðX Þ-0 in C1:
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Now we will prove that limb-0LbA exists when AAZz
2 with z41:

Define ft : R
2 � Rþ-V as ftðx; y; aÞ :¼ Zaðx � tÞ and gs : R

2 � Rþ-V as
gsðx; y; aÞ :¼ Zaðy � sÞ: Apply Stokes Theorem to the exact differential 2-form o :¼
dft4dgs ¼ dð ftdgsÞ on D :¼ Dt;s � ½b; b0� where Dt;s ¼ fðx; yÞAR2 : soxoyotg:
Then Z

@D

o ¼
Z

D

do ¼ 0;

where the boundary @D ¼ �c1 þ c2 þ c3 is composed of c1 ¼ Dt;s � fbg; c2 ¼ Dt;s �
fb0g; c3 ¼ @Dt;s � ½b; b0�: SoZ

Dt;s

oja¼b ¼
Z
Dt;s

oja¼b0 þ
Z
@Dt;s�½b;b0 �

o

givingZ t

s

Fbðx; s; t; sÞ dx ¼
Z t

s

Fb0 ðx; s; t; sÞ dx þ
Z b0

b
da
Z t

s

Kða; x; t; s; t; sÞ dx

with

Kða; x; t; s; t; sÞ ¼ @a½Zaðx � sÞ � Zaðs � sÞ�@xZaðx � tÞ

þ @a½Zaðt � tÞ � Zaðx � tÞ�@xZaðx � sÞ:

Then

LbAst ¼ Lb0Ast �
Z b0

b
da
Z t

s

dx

Z Z
dt dsKða; x; t; s; t; sÞRts: ðA:2Þ

Assume we can write A ¼
Pn

i¼1Ai where AiAOCri ;z�ri

2 for a choice of n and

ri40; i ¼ 1;y; n: Write r0i ¼ z � ri:
Then consider

IðaÞ ¼ �
Z t

s

dx

Z Z
dt dsKða; x; t; s; t; sÞRts

¼
Z Z

dt dsf@aZaðs � sÞ½Zaðt � tÞ � Zaðs � tÞ�

� @aZaðt � tÞ½Zaðt � sÞ � Zaðs � sÞ�gRts

þ
Z t

s

dx

Z Z
dt ds½@aZaðx � tÞ@xZðx � sÞ � @aZaðx � sÞ@xZðx � tÞ�Rts
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¼
Z Z

dt ds@aZaðsÞZaðtÞ½Rtþt;sþs � Rsþt;sþs � Rtþt;tþs þ Rtþt;sþs�

þ
Z t

s

dx

Z Z
dt ds@aZaðtÞ@sZðsÞ½Rxþs;xþt � Rxþt;xþs�

¼
Z Z

dt ds@aZaðsÞZaðtÞ½NRtþt;sþt;sþs þ NRtþt;tþs;sþs�

þ
Z t

s

dx

Z Z
dt ds@aZaðtÞ@sZðsÞ½NRxþs;x;xþt � NRxþt;x;xþs�

so that we can bound

jIðaÞjp
Z Z

dt dsj@aZaðsÞjjZaðtÞj½jNRtþt;sþt;sþsj þ jNRtþt;tþs;sþsj�

þ
Z t

s

dx

Z Z
dt dsj@aZaðtÞjj@sZðsÞj½jNRxþs;x;xþtj þ jNRxþt;x;xþsj�

p
Xn

i¼1
jjAijjri ;r

0
i

Z Z
dt dsj@aZaðsÞjjZaðtÞj½jt � sjri jt� sjr

0
i þ jt� sjri jt � sjr

0
i �

þ
Xn

i¼1
jjAijjri ;r

0
i

Z t

s

dx

Z Z
dt dsj@aZaðtÞjj@sZðsÞj½jsj

ri jtjr
0
i þ jtjri jsjr

0
i �;

where each term can be bounded as follows:Z Z
dt dsj@aZaðsÞjjZaðtÞjjt� sja ¼ aa�1

Z Z
dt dsjZðsÞ � sZ0ðsÞjjZðtÞj jt� sjapKaa�1;

Z Z
dtj@aZaðtÞjjtj

a ¼ aa�1
Z Z

dtjZðtÞ � tZ0ðtÞjjtjapK1=2aa�1

for a suitable constant K40 and obtain

jIðaÞjpK
Xn

i¼1
ðari�1jt � sjr

0
i þ ar

0
i�1jt � sjriÞjjAijjri ;r

0
i

þ K jt � sj
X

az�2jjAijjri ;r
0
i
:

Upon integration in a we get:Z 1

0

jIðaÞj dapK
Xn

i¼1
jjAijjri ;r

0
i

if jt � sjp1: By dominated convergence of the integral in Eq. (A.2),

lim
b-0

LbA ¼: LA
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exists (in OC uniformly in bounded intervals). If we also observe that

jðLb0AÞstjpKðb0Þ�1jt � sj
Xn

i¼1
jjAijjri ;r

0
i

we get that

jðLAÞt;sjpK
Xn

i¼1
jjAijjri ;r

0
i

for jt � sjp1:
Finally, let Jt;sðxÞ :¼ s þ ðt � sÞð03ðx41ÞÞ and ðJ	

t;sXÞu;v;w :¼ XJt;sðuÞ;Jt;sðvÞ;Jt;sðwÞ for

all XAOC2: Then

jjJ	
t;sX jjg;g0pjt � sjgþg0 jjX jjg;g0 :

Since LbAt;s ¼ ðJ	
t;sLjt�sjbAÞ0;1 ¼ Ljt�sjbðJ	

t;sAÞ0;1 and

jðLðJ	
t;sRÞÞ1;0jpK

Xn

i¼1
jjJ	

t;sAijjri ;r
0
i

this is enough to obtain the desired regularity:

jðLAÞt;sjpK jt � sjz
Xn

i¼1
jjAijjri ;r

0
i
:

The constant K can be chosen to be equal to 1=ð2z � 2Þ: Let F ¼
Pn

i¼1jjAijjri ;r
0
i
:

and R ¼ LA and since NR ¼ A write

Rst ¼ Rut þ Rsu þ
X

i

Ai;sut

with t4u4s and u ¼ s þ jt � sj=2: Then estimate

jRstjp jRutj þ jRsuj þ
X

i

jAi;sutj

p jjRjjzðjt � ujz þ ju � sjzÞ þ
X

i

jjAijjri ;r
0
i
ju � sjri jt � ujr

0
i

¼ 2jjRjjz þ F
2z

jt � sjz

so that

jjRjjzp
1

2z � 2
F:
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A.2. Some proofs for Section 4

A.2.1. Proof of Lemma 1

Proof. Write down the decomposition for Z and Y :

dZm ¼ Fm
n dY n þ R

m
ZY ;

dYm ¼ Gm
n dX n þ R

m
Y

where FACZ�gðI ;V#V	Þ; GACs�gðI ;VÞ; RZYAOCZðI ;VÞ and RYAOCsðI ;VÞ;
then

dZm ¼ Fm
n GnkdX k þ R

m
ZY þ Fm

n Rn
Y ¼ Z0m

k dXk þ R
m
ZX

with Z0m
k ¼ Fm

n Gn
k and R

m
ZX ¼ R

m
ZY þ Fm

n Rn
Y : Let d ¼ minðs; ZÞ and note that for RZY

we have

jjRZY jjZ;IpjjZjjDðY ;g;ZÞ;I ;

jjRZY jjg;IpjjZjjg;I þ jjF jj
N;I jjY jjg;IpjjZjjDðY ;g;ZÞ;I ð1þ jjY jjg;IÞ

and by interpolation we obtain ða ¼ ðZ� dÞ=ðZ� gÞp1Þ

jjRZY jjd;IpjjRZY jj1�a
Z;I jjRZY jjag;IpjjZjjDðY ;g;ZÞ;Ið1þ jjY jjg;I Þ

apjjZjjDðY ;g;ZÞ;I ð1þ jjY jjg;I Þ

and similarly

jjRY jjd;IpjjY jjDðX ;g;sÞ;I ð1þ jjX jjg;I Þ;

moreover,

jjF jj0;I ¼ sup
t;sAI

jFt � Fsjp sup
t;sAI

ðjFtj þ jFsjÞ ¼ 2jjF jj
N;Ip2jjZjjDðY ;g;ZÞ;I

so, again by interpolation, we find

jjF jjd�g;IpjjZjjDðY ;g;ZÞ;I2
1�ðd�gÞ=ðs�gÞp2jjZjjDðY ;g;ZÞ;I

and

jjGjjd�g;Ip2jjY jjDðX ;g;sÞ;I :

To finish bound the norm of Z;Z0 as

jjðZ;Z0ÞjjDðX ;g;dÞ;I ¼ jjZ0jj
N;I þ jjZ0jjd�g;I þ jjRZX jjd;I þ jjZjjg;I

p jjF jj
N;I jjGjj

N;I þ jjF jjd�g;I jjGjj
N;I
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þ jjF jj
N;I jjGjjd�g;I þ jjRZY jjd;I þ jjF jj

N;I jjRY jjd;I þ jjZjjg;I

pK jjZjjDðY ;g;ZÞ;I ð1þ jjY jjDðX ;g;sÞ;I Þð1þ jjX jjg;I Þ: &

A.2.2. Proof of Proposition 4

Let yðrÞ ¼ ðYt � YsÞr þ Ys so that

Z
m
t � Zm

s ¼jðyð1ÞÞm � jðyð0ÞÞm ¼
Z 1

0

@njðyðrÞÞmy0ðrÞn dr

¼ðY n
t � Y n

s Þ
Z 1

0

@njðyðrÞÞm dr

¼ @njðYsÞmðY n
t � Y n

s Þ þ ðY n
t � Y n

s Þ
Z 1

0

½@njðyðrÞÞm � @njðYsÞm� dr

Then if dY m ¼ Y 0m
n dX n þ Rm we have

Z
m
t � Zm

s ¼ @njðYsÞmY 0n
k;sðXk

t � Xk
s Þ þ @njðYsÞmRn

st þ ðY n
t � Y n

s Þ
Z 1

0

½@njðyðrÞÞm � @njðYsÞm� dr

¼Z0m
k;sðX k

t � X k
s Þ þ R

m
Z;st ðA:3Þ

with Z0m
k;s ¼ @njðYsÞmY 0n

k;s;

jjZ0jjs�gp jj@jðY�Þjjs�gjjY 0jj
N

þ jj@jðY�ÞjjNjjY 0jjs�g

p ðjj@jðY�Þjjdg þ jj@jðY�Þjj0ÞjjY 0jj
N

þ jj@jðY�ÞjjNðjjY 0jjZ�g þ jjY 0jj0Þ

p jjjjj1;dðjjY jjdg þ 2ÞjjY 0jj
N

þ 2jjjjj1;dðjjY 0jjZ�g þ 2jjY 0jj
N
Þ

pKjjjjj1;dðjjY jjDðX ;g;ZÞ þ jjY jj1þd
DðX ;g;ZÞÞ:

As far as RZ is concerned we have

jRZ;stj ¼ jYt � Ysj
Z 1

0

j@jðyðrÞÞ � @jðYsÞjdr

� �
p jjjjj1;d

Z 1

0

rddr

���� ����jYt � Ysj1þdpKjjjjj1;djjY jj1þd
g jt � sjgð1þdÞ;

and

jRZ;stj ¼ jYt � Ysj
Z 1

0

j@jðyðrÞÞ � @jðYsÞjdr

� �
pK jjjjj1;djjY jjgjt � sjg:
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Interpolating these two inequalities we get

jjRZjjspK jjjjj1;djjY jjs=gg pK jjjjj1;djjY jjs=g
DðX ;g;sÞ

which together with the obvious bound

jjZjjgpjjjjj1;djjY jjg

implies

jjZjjDðX ;g;sÞpK jjjjj1;dðjjY jjDðX ;g;ZÞ þ jjY jj1þd
DðX ;g;ZÞ þ jjY jjs=g

DðX ;g;ZÞÞ:

If d eYY m ¼ eYY 0m
n dX n þ eRRm is another path, eZZt ¼ jð eYYtÞ and H ¼ Z � eZZ we have (see

Eq. (A.3)):

dHm ¼ H 0m
k dX k þ Am þ Bm ðA:4Þ

with

H 0m
k ¼ @njðY ÞmY 0n

k � @njð eYY Þm eYY 0n
k ;

A
m
st ¼ @njðYsÞmRn

st � @njð eYYsÞm eRRn
st

and

B
m
st ¼ dY n

st

Z 1

0

½@njðyðrÞÞm � @njðyð0ÞÞm� dr � d eYY n
st

Z 1

0

½@njðeyyðrÞÞm � @njðeyyð0ÞÞm� dr

¼ dðY � eYYÞnst

Z 1

0

½@njðyðrÞÞm � @njðyð0ÞÞm� dr

þ d eYY n
st

Z 1

0

½@njðyðrÞÞm � @njðeyyðrÞÞm � @njðyð0ÞÞm þ @njðeyyð0ÞÞm� dr:

Let yðr; r0Þ ¼ ðyðrÞ � eyyðrÞÞr0 þ eyyðrÞ and bound the second integral asZ 1

0

dr½@njðyðrÞÞm � @njðeyyðrÞÞm � @njðyð0ÞÞm þ @njðeyyð0ÞÞm����� ����
¼
Z 1

0

dr

Z 1

0

dr0½@k@njðyðr; r0ÞÞm � @k@njðyð0; r0ÞÞm�ðyðrÞ � eyyðrÞÞk���� ����
p jjjjj2;d

Z 1

0

dr

Z 1

0

dr0jyðr; r0Þ � yð0; r0ÞjdjyðrÞ � eyyðrÞj
pK jjjjj2;dðjjY jjg þ jj eYY jjgÞ

djjY � eYY jj
N
jt � sjgd;

then

jjBjjð1þdÞgpjjY � eYY jjgjjjjj2;djjY jjdg þ Kjj eYY jjgjjjjj2;dðjjY jjg þ jj eYY jjgÞ
djjY � eYY jj

N
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and in the same way it is possible to obtain

jjBjjgpjjjjj2;dðjjY � eYY jjg þ jj eYY jjgjjY � eYY jj
N
Þ:

Moreover

jjH 0jj
N
pjjjjj2;djjY 0 � eYY 0jj

N
þ jjY 0jj

N
jjjjj2;djjY � eYY jj

N
;

jjH 0jjgdpjjjjj2;djjY 0 � eYY 0jjgd þ jjY 0jjgdjjjjj2;djjY � eYY jj
N

and

jjAjjgp jjjjj2;djjR � eRRjjg þ jjRjjgjjjjj2;djjY � eYY jj
N

p jjjjj2;dðjjY 0 � eYY 0jj
N
jjX jjg þ jjY � eYY jjgÞ þ ðjjY 0jj

N
jjX jjg þ jjY jjgÞjjjjj2;djjY � eYY jj

N

jjAjjð1þdÞgpjjjjj2;djjR � eRRjjð1þdÞg þ jjRjjð1þdÞgjjjjj2;djjY � eYY jj
N
:

And collecting all these results together we end up with

jjZ � eZZjjDðX ;g;ð1þdÞgÞpCjjY � eYY jjDðX ;g;ð1þdÞgÞ

with

C ¼ K jjjjj2;dð1þ jjX jjgÞð1þ jjY jjDðX ;g;ð1þdÞgÞ þ jj eYY jjDðX ;g;ð1þdÞgÞÞ
1þd:

To finish consider the case in which d eYYm ¼ eYY 0m
n d eXX n þ eRRmeY is a path controlled byeXX : If we let again eZZt ¼ jð eYYtÞ and H ¼ Z � eZZ we have

dHm ¼ @njð eYY�Þm eYY 0n
k dðXk � eXXkÞ þ H 0m

k dX k þ Am þ Bm

where the only difference with the expression in Eq. (A.4) is in the first term in the
r.h.s. then

jjZ � eZZjjg þ jjZ0 � eZZ0jjdg þ jjRZ � ReZjjð1þdÞg þ jjZ0 � eZZ0jj
N
pCðeþ jjX � eXX jjgÞ

with

e ¼ jjY � eYY jjg þ jjY 0 � eYY 0jjdg þ jjRY � ReY jjð1þdÞg þ jjY 0 � eYY 0jj
N

and this concludes the proof of Proposition 4. &
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A.3. Some proofs and lemmata used in Section 5

A.3.1. Proof of Lemma 3

Proof. Take uAI-J:

sup
tAI\J;sAJ\I

jXstj
jt � sjgp sup

tAI\J;sAJ\I

jXutj þ jXsuj þ jðNX Þsutj
jt � sjg

p sup
tAI\J;sAJ\I

jXutj
jt � sjg þ sup

tAI\J;sAJ\I

jXsuj
jt � sjg þ sup

tAI\J;sAJ\I

jðNX Þsutj
jt � sjg

p sup
tAI\J;sAJ\I

jXutj
jt � ujg þ sup

tAI\J;sAJ\I

jXsuj
ju � sjg þ sup

tAI\J;sAJ\I

jðNX Þsutj
jt � ujg2 js � ujg2

p jjX jjg;I þ jjX jjg;J þ jjX jjg1;g2;I,J

then

jjX jjg;I,J ¼ sup
t;sAI,J

jXstj
jt � sjgp sup

t;sAI

jXstj
jt � sjg þ sup

t;sAJ

jXstj
jt � sjg þ sup

tAI\J;sAJ\I

jXstj
jt � sjg

p 2ðjjX jjg;I þ jjX jjg;JÞ þ jjX jjg1;g2;I,J

as claimed. &

A.3.2. Lemmata for some bounds on the map G

With the notation in the proof of Proposition 5 we have

Lemma A.1. For any interval I ¼ ½t0; t0 þ T �DJ such that To1 the following bound

holds

eZ;IpKCX ;I Cd
Y ;I ½ð1þ jjjjj1;dÞrI þ T gdeY ;I � ðA:5Þ

Proof. Consider first the case when j ¼ ejj: Eq. (A.6) is a statement of continuity of
the integral defined in Proposition 3 is a bounded bilinear application

ðA;BÞ/
R

A dB then it is also continuous in both arguments and it is easy to check

that

jjQZ � QeZjjð1þdÞg;IpKðCX ;Ie	W ;I þ CY ;IrI Þ; ðA:6Þ

where we used the shorthands (defined in the proof of Proposition 6):

eZ;I ¼ jjZ � eZZjjg;I ; e	W ;I ¼ jjW � eWW jjdg;I ; eY ;I ¼ jjY � eYY jjg;I ; e	Y ;I ¼ jjY � eYY jjdg;I ;
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rI ¼ jjX � eXX jjg;I þ jY0 � eYY0j

CX ;I ¼ jjX jjg;I þ jj eXX jjg;I

CY ;I ¼ jjY jjg;I þ jj eYY jjg;I :

Observe that

jjjðYÞ � jð eYYÞjj
N;Ip jjðY0Þ � jð eYY0Þj þ TdgjjjðY Þ � jð eYYÞjjdg;I

p jjjjj1;drI þ Tdge	W ;I ;

eZ;Ip jjjðYÞdX � jð eYY Þd eXX jjg;I þ jjQZ � QeZjjg;I
p jjjðYÞ � jð eYYÞjj

N;I jjX jjg;I þ jjjð eYYÞjj
N;I jjX � eXX jjg;I þ TdgjjQZ � QeZjjð1þdÞg;I

p jjjjj1;drI CX ;I þ Tdge	W ;I þ KTdgðCX ;Ie	W ;I þ CY ;IrI Þ

p jjjjj1;drIðCX ;I þ 1þ KCd
Y ;I Þ þ T gde	W ;I ðCX ;I þ KCY ;I Þ:

It remains to bound e	W ;I : Write

jðxÞ � jðyÞ ¼
Z 1

0

da@jðax þ ð1� aÞyÞðx � yÞ ¼ Rjðx; yÞðx � yÞ

then

jjRjjj
N

¼ sup
x;yAV

jRjðx; yÞjpjjjjj1;d

and

jRjðx; yÞ � Rjðx0; y0Þj ¼
Z 1

0

ð@jðax þ ð1� aÞyÞ � @jðax0 þ ð1� aÞy0Þ da
���� ����

p jjjjj1;d
Z 1

0

jaðx � x0Þ þ ð1� aÞðy � y0Þjd da

p jjjjj1;dðjx � x0jd þ jy � y0jdÞ

so that

e	W ;I ¼ jjjðY Þ � jð eYYÞjjdg;I ¼ jjRjðY ; eYYÞðY � eYY Þjjdg;I

p jjRjðY ; eYY Þjj
N;I jjY � eYY jjdg;I þ jjRjðY ; eYYÞjjdg;I jjY � eYY jj

N;I
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p jjjjj1;djjY � eYY jjdg;I þ jjY � eYY jj
N;I jjjjj1;dðjjY jjdg;I þ jj eYY jjdg;I Þ

pK jjjjj1;dCd
Y ;I e

	
Y ;I

pK jjjjj1;dCd
Y ;I eY ;I

concluding:

eZ;IpK jjjjj1;dCX ;I Cd
Y ;IðrI þ T gdeY ;IÞ: ðA:7Þ

The general case in which jaejj can be easily derived from Eq. (A.7) and the
continuity of the integral, giving:

eZ;IpKCX ;I Cd
Y ;I ½ð1þ jjjjj1;dÞrI þ TgdeY ;I �: &

Using the notation in the proof of Proposition 7 we have

Lemma A.2. For any interval I ¼ ½t0; t0 þ T �DJ such that To1 the following bound

holds

eZ;IpK jjjjj2;dðC2
X ;I C3

Y ;IrI þ TdgC3
X ;I C2

Y ;I eY ;I Þ þ K jjj� ejjjj2;dCX ;I C2
Y ;I : ðA:8Þ

Proof. To begin assume that j ¼ ejj: Let W ¼ jðYÞ; eWW ¼ jð eYYÞ and write their
decomposition as

dWm ¼ W 0m
n dX n þ R

m
W ; d eWWm ¼ eWW 0m

n d eXX n þ R
meW ;

with W 0m
n ¼ @kjðYÞmY 0k

n ; eWW 0m
n ¼ @kjð eYY Þm eYY 0k

n : Moreover let

e	W ;I ¼ jjW 0 � eWW 0jj
N;I þ jjW 0 � eWW 0jjdg;I þ jjRW þ ReW jjð1þdÞg;I þ jjW � eWW jjg;I

Using the bound (29) we have

jjQ � QeZjjð2þdÞgpKðD1 þ D2Þ ðA:9Þ

D1 ¼ CX e	W ;I

D2 ¼ðjjjðYÞjjDðX ;g;ð1þdÞgÞ;I þ jjjð eYY Þjj
DðeX ;g;ð1þdÞgÞ;IÞðjjX � eXX jjg;I þ jjX2 � eXX2jj2g;I Þ

pK jjjjj2;dC2
Y ;IrI

where we used Eq. (40) to bound jjjðY ÞjjDðX ;g;ð1þdÞgÞ;I and jjjð eYY Þjj
DðeX ;g;ð1þdÞgÞ;I in

terms of CY ;I :
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By Proposition 4 we have

e	W ;IpK jjjjj2;dCX ;I C1þd
Y ;I ðjjX � eXX jjg;I þ e	Y ;I ÞpK jjjjj2;dCX ;I C2

Y ;IðrI þ e	Y ;IÞ ðA:10Þ

with

e	Y ;I ¼ jjY 0 � eYY 0jj
N

þ jjY 0 � eYY 0jjdg þ jjRY � ReY jjð1þdÞg þ jjY � eYY jjg

and

CI ¼ Kjjjjj2;dCX ;I C1þd
Y ;I :

Taking To1 we can bound e	Y ;IpeY ;I þ jjY � eYY jjg;I and

e	Y ;Ip jjY 0 � eYY 0jj
N

þ jjY 0 � eYY 0jjg þ jjRY � ReY jj2g þ CX ;IeY ;I þ CY ;I jjX � eXX jjg;I

p 2CX ;I eY ;I þ CY ;IrI ; ðA:11Þ

where we used the following majorization for jjY � eYY jjg;I :

jjY � eYY jjg;Ip jjY 0dX � eYY 0d eXX jjg;I þ jjRY � ReY jjg;I

p jjY 0 � eYY 0jj
N;I jjX jjg;I þ ðjjY 0jj

N;I þ jj eYY 0jj
N;I ÞjjX � eXX jjg;I þ jjRY � ReY jj2g;I

pCX ;I eY ;I þ CY ;IrI : ðA:12Þ

Eq. (A.11) together with Eq. (A.10) imply

e	W ;IpK jjjjj2;dðCX ;I C3
Y ;IrI þ C2

X ;I C2
Y ;I eY ;I Þ

and so

jjQZ � QeZjjð2þdÞgpKCX eW ;I þ K jjjjj2;dC2
Y ;IrI

pKðCX CI ð1þ 2CY Þ þ jjjjj2;dC2
Y ;I ÞrI þ 2KCI C2

X eY ;I

pK jjjjj2;dðC2
X C3

YrI þ C3
X C2

Y eY ;I Þ ðA:13Þ

eZ;I ¼ jjjðY Þ � jð eYYÞjj
N;I þ jjjðY Þ � jð eYYÞjjg;I þ jjRZ � ReZjj2g;I

p jjðY0Þ � jð eYY0Þj þ 2jjjðYÞ � jð eYYÞjjg;I þ jjRZ � ReZjj2g;I :
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Proceed step by step:

jj@jðYÞ � @jð eYYÞjj
N;Ip j@jðYt0Þ � @jð eYYt0Þj þ T gjj@jðYÞ � @jð eYYÞjjg;I

p jjjjj2;djYt0 � eYYt0 j þ T gjjjjj2;djjY � eYY jjg;I

pTgjjjjj2;dCX ;IeY ;I þ 2jjjjj2;dCY ;IrI :

Next:

jjRZ � ReZjj2g;Ip jj@jðYÞX2 � @jð eYY ÞeXX2jj2g;I þ jjQZ � QeZjj2g;I
p jj@jðYÞ � @jð eYYÞjj

N;I ðjjX2jj2g;I þ jjeXX2jj2g;I Þ

þ ðjj@jðYÞjj
N;I þ jj@jð eYYÞjj

N;I ÞjjX2 � eXX2jj2g;I

þ TdgjjQZ � QeZjjð2þdÞg;I

pK jjjjj2;dðrI C2
X C3

Y þ eY ;I TdgC3
X C2

Y Þ

and

jjjðYÞ � jð eYY Þjjg;Ip jj@jðYÞdX � @jð eYYÞd eXX jjg;I þ jjRW � ReW jjg;I

p jj@jðYÞ � @jð eYYÞjj
N;I ðjjX jjg;I þ jj eXX jjg;I Þ

þ ðjj@jðYÞjj
N;I þ jj@jð eYY Þjj

N;IÞjjX � eXX jjg;I þ T gjjRW � ReW jj2g;I

p ðjjjjj2;djYt0 � eYYt0 j þ T gjjjjj2;dCX ;I eY ;I

þ jjjjj2;dCY ;I jjX � eXX jjg;IÞðjjX jjg;I þ jj eXX jjg;I Þ

þ 2jjjjj2;djjX � eXX jjg;I þ T ge	W ;I

pK jjjjj2;dðCX ;I C3
Y ;IrI þ TgC2

X ;I C2
Y ;I eY ;I Þ:

Finally we have

eZ;IpK jjjjj2;dðC2
X ;I C3

Y ;IrI þ TdgC3
X ;I C2

Y ;I eY ;IÞ: ðA:14Þ

When jaejj rewrite the difference Z � eZZ as

Zt � eZZt ¼ Yt0 � eYYt0 þ
Z t

t0

½jðY Þ � jð eYYÞ� dX þ
Z t

t0

½jð eYYÞ � ejjð eYY Þ� dX

the contribution to eZ;I from the first integral is bounded by Eq. (A.14) while the last

integral can be bounded by K jjj� ejjjj2;dCX ;I C2
Y ;I (cf. Eq. (46)) giving the final result

(A.5). &

ARTICLE IN PRESS
M. Gubinelli / Journal of Functional Analysis 216 (2004) 86–140 137



A.4. Proof of Lemma 4

Proof. Let Bðu; rÞ ¼ fwAT : jw � ujprg: Observe that by the monotonicity and
convexity of c for any couple of measurable sets A;BCT we haveZ

A�B

Rst

dt ds

jAjjBj

���� ����p pðdðA;BÞ=4Þc�1
Z

A�B

c
jAstj

pðdðt; sÞ=4Þ

� �
dtds

jAjjBj

� �

p pðdðA;BÞ=4Þc�1 U

jAjjBj

� �
; ðA:15Þ

where dðA;BÞ ¼ suptAA;sABjt � sj: Let

%Rðt; r1; r2Þ ¼
Z

Bðt;r1Þ

du

jBðt; r1Þj

Z
Bðt;r2Þ

dv

jBðt; r2Þj
Ruv:

Take t; sAT ; a ¼ jt � sj; define the decreasing sequence of numbers lnk0 as l0 ¼
a; lnþ1 such that

pðlnÞ ¼ 2pðlnþ1Þ

then

pððln þ lnþ1Þ=4Þp pðlnÞ ¼ 2pðlnþ1Þ

¼ 4pðlnþ1Þ � 2pðlnþ1Þ

¼ 4½pðlnþ1Þ � pðlnþ2Þ�:

Using Eq. (A.15) and the fact that jBðt; liÞjXli for every iX0 we have

j %Rðt; lnþ1; lnÞjp pððln þ lnþ1Þ=4Þc�1 U

lnlnþ1

� �
p 4½pðlnþ1Þ � pðlnþ2Þ�c�1 U

lnlnþ1

� �
p 4

Z lnþ1

lnþ2

c�1 U

r2

� �
dpðrÞ:

Take a sequence ftigNi¼0 of variables in T and note that, for every nX0;

Rttn
¼ Rttnþ1 þ Rtnþ1tn

þ ðNRÞttnþ1tn

so that, by induction,

Rtt0 ¼ Rttnþ1 þ
Xn

i¼0
½Rtiþ1ti

þ ðNRÞttiþ1ti
�:
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Average each ti over the ball Bðt; liÞ and bound as follows:

%Rðt; 0; l0Þ ¼ %Rðt; 0; lnþ1Þ þ
Xn

i¼0
%Rðt; liþ1; liÞ þ

Xn

i¼0
%Bðt; liþ1; liÞ; ðA:16Þ

where

%Bðt; liþ1; liÞ ¼
Z

Bðt;liþ1Þ

dv

jBðt; liþ1Þj

Z
Bðt;liÞ

du

jBðt; liÞj
NRtvu

which, using (50), can be majorized by

j %Bðt; liþ1; liÞjpc�1 C

l2i

 !
pðli=2Þp4c�1 C

l2i

 !
½pðliþ1Þ � pðliþ2Þ�

p 4

Z liþ1

liþ2

c�1 C

r2

� �
dpðrÞ:

Then, taking the limit as n-N in Eq. (A.16), using the continuity of R and that
Rtt ¼ 0; we get

j %Rðt; 0; l0Þjp
XN
i¼0

4

Z liþ1

liþ2

c�1 U

r2

� �
dpðrÞ þ

XN
i¼0

4

Z liþ1

liþ2

c�1 C

r2

� �
dpðrÞ

p 4

Z l1

0

c�1 U

r2

� �
þ c�1 C

r2

� �� �
dpðrÞ

p 4

Z jt�sj

0

c�1 U

r2

� �
þ c�1 C

r2

� �� �
dpðrÞ ðA:17Þ

and of course the analogous estimate

j %Rðs; 0; l0Þjp4

Z jt�sj

0

c�1 U

r2

� �
þ c�1 C

r2

� �� �
dpðrÞ: ðA:18Þ

Moreover,

Rst ¼ Rsu þ Ruv þ Rvt þ NRsut þ NRuvt

so

jRstjpjRsuj þ jRvtj þ jRuvj þ sup
rA½s;t�

jNRsrtj þ sup
rA½u;t�

jNRurtj:

By averaging u over the ball Bðs; aÞ and v over the ball Bðt; aÞ we getZ
Bðs;aÞ

du

jBðs; aÞj

Z
Bðt;aÞ

dv

jBðt; aÞjjRuvjppð3a=4Þc�1 U

4a2

� �
p
Z jt�sj

0

c�1 U

r2

� �
dpðrÞ

ARTICLE IN PRESS
M. Gubinelli / Journal of Functional Analysis 216 (2004) 86–140 139



and Z
Bðs;aÞ

du

jBðs; aÞj suprA½u;t�
jNRurtjppða=2Þc�1 C

a2

� �
p
Z jt�sj

0

c�1 C

r2

� �
dpðrÞ:

Putting all together we end up with

jRstjp10

Z jt�sj

0

c�1 U

r2

� �
þ c�1 C

r2

� �� �
dpðrÞ:
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