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Abstract

We formulate indefinite integration with respect to an irregular function as an algebraic
problem which has a unique solution under some analytic constraints. This allows us to define
a good notion of integral with respect to irregular paths with Holder exponent greater than
1/3 (e.g. samples of Brownian motion) and study the problem of the existence, uniqueness and
continuity of solution of differential equations driven by such paths. We recover Young’s
theory of integration and the main results of Lyons’ theory of rough paths in Holder topology.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This work has grown out from the attempt of the author to understand the
integration theory of Lyons [7,8] which gives a meaning and nice continuity
properties to integrals of the form

/t Co(X), dX,, (1)

where ¢ a differential 1-form on some vector space V" and 7 X, is a path in V not
necessarily of bounded variation. From the point of view of Stochastic Analysis
Lyons’ theory provide a path-wise formulation of stochastic integration and
stochastic differential equations. The main feature of this theory is that a path in a
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vector space V should not be considered determined by a function from an interval
IR to V but, if this path is not regular enough, some additional information is
needed which would play the role of the iterated integrals for regular paths: e.g.
quantities like the rank two tensor:

t u
= [ axrax; @)

and its generalizations (see the works of Chen [10] for applications of iterated
integrals to Algebraic Geometry and Lie Group Theory). For irregular paths the
r.h.s. of Eq. (2) cannot in general be understood as a classical Lebesgue—Stieltjes
integral. However if we have any reasonable definition for this integral then (under
some mild regularity conditions) all the integrals of the form given in Eq. (1) can be
defined to depend continuously on X, X? and ¢ (for suitable topologies). A rough
path is the original path together with its iterated integrals of low degree. The theory
can then be extended to cover the case of more irregular paths (with Holder
exponents less than 1/3) by generalization of the arguments (the more the path is
irregular the more iterated integrals are needed to characterize a rough path).

With this work we would like to provide an alternative formulation of integration
over rough paths which leads to the same results of that of Lyons’ but to some extent
is simpler and more straightforward. We will encounter an algebraic structure which
is interesting by itself and corresponds to a kind of finite-difference calculus. In the
original work of Lyons [7] roughness is measured in p-variation norm, instead here
we prefer to work with Holder-like (semi)norms, in Section 6 we prove that
Brownian motion satisfy our requirements of regularity. In a recent work Friz [3] has
established Holder regularity of Brownian rough paths (according to Lyons’ theory)
and used this result to give an alternative proof of the support theorem for
diffusions. This work has been extended later by Friz and Victoir [4] by interpreting
Brownian rough paths as suitable processes on the free nilpotent group of step 2:
regularity of Brownian rough paths can then be seen as a consequence of standard
Holder regularity results for stochastic processes on groups.

We will start by reformulating in Section 2 the classical integral as the unique
solution of an algebraic problem (adjoined with some analytic condition to enforce
uniqueness) and then generalizing this problem and building an abstract tool for its
solution. As a first application we rediscover in Section 3 the integration theory of
Young [11] which was the prelude to the more deep theory of Lyons. Essentially,
Young’s theory define the integral

t
/ Judgu

when £ is y-Holder continuous, g is p-Hoélder continuous and y + p> 1 (actually, the
original argument was given in terms of p-variation norms). This will be mainly an
exercise to familiarize with the approach before discussing the integration theory for
more irregular paths in Section 4. We will define integration for a large class of paths
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whose increments are controlled by a fixed reference rough path. This is the main
difference with the approach of Lyons. Next, to illustrate an application of the
theory, we discuss the existence and uniqueness of solution of ordinary differential
equation driven by irregular paths (Section 5). In particular, sufficient conditions will
be given for the existence in the case of y-Holder paths with y > 1/3 which are weaker
than those required to get uniqueness. This point answer a question raised in Lyons
[7]. In Section 6 we prove that Brownian motion and the second iterated integral
provided by It6 or Stratonovich integration are Hoélder regular rough paths for
which the theory outlined above can be applied. Finally we show how to prove the
main results of Lyons’ theory (extension of multiplicative paths and the existence of
a map from almost-multiplicative to multiplicative paths) within this approach. This
last section is intended only for readers already acquainted with Lyons’ theory
(extensive accounts are present in literature, see e.g. [7,8]).
In Appendix A we collect some lengthy proofs.

2. Algebraic prelude

Consider the following observation. Let f be a bounded continuous function on R
and x a function on R with continuous first derivative. Then there exists a unique

couple (a,r) with ae C'(R), ao = 0 and re C(R?) such that
Ss(xe =) = ar — as — 1y, (3)
and

|t _
t—os |[ — Sl

0. (4)
This unique couple (a,r) is given by

a = /Otfu dxy, P = /St(fu —f5) dx,,.

The indefinite integral [f dx is the unique solution a of the algebraic problem (3)
with the additional requirement (4) on the remainder r. Since Eq. (3) make sense for
arbitrary functions f,x it is natural to investigate the possible existence and
uniqueness of regular solutions. This will lead to the generalization of the integral
[ f dx for functions x not necessarily of finite variation.

2.1. Framework

Let € be the algebra of bounded continuous functions from R to R and
Q%, (n>0) the subset of bounded continuous functions from R"*! to R which are
zero on the main diagonal where all the arguments are equal, i.e. Re Q%, implies
Ry, ., =0ifty =1, = --- =t,. In this paper we will call elements from Q% (for any
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n>0) processes to distinguish them from paths which are elements of . The vector
spaces Q%, are ¥-bimodules with left multiplication (AB),I,,_t”+1 = A, By, ....,., and
right multiplication (BA),, .., , = A, B, ..t,,, forall (41, e tip1)eR™! Ae% and
BeQ%,. Moreover if 4eQ%,, and Be Q%,, their external product ABe Q% 1,1 1S
defined as (4B), =Ay..0, B, In the following we will write Q% for
Q%E),.

The application 0 : € - Q% defined as

1 Inn—1 Ingm-1°

(04), = A, — A (5)

is a derivation on % since 6(AB) = A6B+ JAB = BoA + dBA.
Let Q%7 be the subspace of elements X € Q% such that

| Xt
5 < 00
sl

|| X][, = sup

tseR? | -

and let 7 be the subspace of the elements 4€% such that |[64]], < 0.
Define Q%% as the subspace of elements X of Q%, such that

X,
|1X1[,, = sup X - <0

(s,u,t) eR? |u - S|p|t - Ll|

Let Q%5 = @,-0Q%5" ": an element A€Q%; is a finite linear combination of
elements 4;€ Q%5 " for some p;e(0,z).
Define the linear operator N : Q€ — Q%, as

(NR) Rst - Rut - Rsu~

sut
and let 2, = N(Q%) and &3 = Q€50 Z>.

We have that Ker N = Im 6. Indeed NoA = 0 for all 4 €% and it is easy to see that
for each Re Q% such that NR = 0 we can let A, = Ry to obtain that 64 = R.

If Fe® and Re Q% then a straightforward computation shows that

N(FR),,, = F;N(R),, — 0FyRy = (FN(R) — 6FR),,;

N(RF)g,, = FIN(R) + RuoFy, = (N(R)F + RéF)suz' (6)

sut sut

These equations suggest that the operators 6 and N enjoy remarkable algebraic
properties. Indeed they are just the first two members of a family of linear operators
which acts as derivations on the modules Q%;, k=0,1,... and which can be
characterized as the coboundaries of a cochain complex which we proceed to define.

2.2. A cochain complex

Consider the following chain complex: a simple chain of degree n is a string
[tit;--1,] of real numbers and a chain of degree n is a formal linear combination of
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simple chains of the same degree with coefficients in Z. The boundary operator 0 is
defined as

a[tl...,n]zz(_1)"[11...,”[...;”], (7)

where #; means that this element is removed from the string. For example
lst] = —[t] + [s], Olsut] = —[su] + [ts] — [ut].

It is easy to verify that 99 = 0. To this chain complex is adjoined in a standard way a
complex of cochains (which are linear functionals on chains). A cochain 4 of degree
n is such that, on simple chains of degree n, act as

e ta], A = Ay,
The coboundary 0* acts on cochains of degree n as

(8*‘4)1 = <[ll ~~~t,,+1],8*A> = <6[11 "'tn+l}7A>

1 Ingl

1 n+1

(=)0t ity AY = > (=14, (8)

1 i=1

n

+

1

e.g. for cochains A4, B of degree 1 and 2 respectively, we have

(B*A)sz = A, — A4, (B*B) s« — Bur — By,

sut

so that we have natural identifications of 0* with —¢ when acting on 1-cochains and
with N when acting on 2-cochains. We recognize also that elements of
Q€,—1 (Q€y = %) are n-cochains and that we have the following complex of
modules:

0-R-% L 05 L 04, L 06— -

As usual 0°9" = 0 which means that the image of 0%|q, is in the kernel of 0%|qq -
Since Ker N = Im J the above sequence is exact at Q%. Actually, the sequence is
exact at every Q%,: let 4 be an n+ 1-cochain such that 9*4 = 0. Let us show that
there exists an n-cochain B such that 4 = 0*B. Take

B, I T (_1)n+1AZ1'“lnS7

1
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where s is an arbitrary reference point. Then compute

(a*B)[ = _BIZ"'tn+l +Bt1f2-- +oet (_1)n+]Bt1'-'tn

1t ntl

= (_1)n+1 [_At2'~-1,,+13 + At]fg-' + st (_1)”+1At1"~t,73]

lng1S

=(=1)""[(8*4) — (=" Ay = An

iyt
As an immediate corollary we can introduce the operator N, : Q%, — Q%5 such
that N, = (9*|Q(€2 to characterize the image of N as the kernel of ;. Note that, for

example, N, satisfy a Leibnitz rule: if 4, Be Q%,,
N>(4B)

suvt — o (AB)suvt = _(AB)uvt + (AB)svt - (AB)sut + (AB)suv

= - AllL‘BU[ + AszvI - AsuBut + AsuBuv
= (NA)suvB” - AS“(NB)

uvt

=(NAB — ANB),,,,. 9)

To understand the relevance of this discussion to our problem let us reformulate
the observation at the beginning of this section as follows:

Problem 1. Given two paths F,Xe€% is it possible to find a (possibly) unique
decomposition

FSX =34 — R, (10)

where A€% and Re Q%?
To have uniqueness of this decomposition we should require that 54 should be (in
some sense) orthogonal to R. So we are looking to a canonical decomposition of
Q€ ~ 6% ® % where 4 is a linear subspace of Q% which should contain the remained

R. This decomposition is equivalent to the possibility of splitting the short exact
sequence

0-%¢/R % 05 Y 7,-0.

We cannot hope to achieve the splitting in full generality and we must resort to
consider an appropriate linear subspace & of Q% which contains ¢ ¥ and for which
we can show that there exists a linear function A¢ : N& — & such that

NAg = lye.
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Then A4 splits the short exact sequence
5 o N
0-¢/R — &— NE-O

which implies § ~0€ P NE.
In this case, if FOX €& we can recover 64 as

0A = FOX — AgN(FéX). (11)
To identify a subspace & for which the splitting is possible we note that
Im 6 n Q%" = {0}

for all z>1, indeed, if X = 04 for some A €% and X € Q%" then A € 4° which implies
A = const if z>1.

Then we can reformulate the algebraic characterization of integration at the
beginning of this section as the following problem:

Problem 2. Given two paths F, X €% is it possible to find A€ € and Re Q%" for some
z>1 such that the decomposition

FéX =04 —R (12)
holds?

Note that if such a decomposition exists then it is automatically unique since if
FoX =064’ — R is another we have that R— R' =J(4 — A’) but since R-—
R e Q% nker N we get R = R’ and thus 4 = A" modulo a constant.

That Problem 2 cannot always be solved is clear from the following consideration:
let F = X and apply N to both sides of Eq. (12) to obtain

0Xu0Xy = —NRyy
for all (s, u,7)eR®. Then
0X0Xy = —NRy; = Ry + Ry,
for all (1,5) e R%. Now, if Re Q% with z>1 then
|0Xe| [0 Xe| <2[[R| |1 — s (13)

which implies that X e %“/?. So unless this last condition is fulfilled we cannot solve
Problem (12) with the required regularity on R.

A sufficient condition for a solution to Problem 2 to exists is given by
the following result which states sufficient conditions on 4€Q%, for which the
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algebraic problem
NR=A4
has a unique solution Re Q% /J%.
2.3. The main result
For every Ae 2 with z>1 there exists a unique Re Q%” such that NR = A4:

Proposition 1. If z>1 there exists a unique linear map A : Z5— Q%" such that NA =
ly, and such that for all Ae %5 we have

1 n
A4l <57—5 > [4ill,, -,
2-_2; PinZ=P;

if A=Y" A; withn=1, 0<p;<z and A;€ Q5" fori=1,...,n.

2.4. Localization

If < J denote with A|, the restriction on I of the function A4 defined on J.
The operator A is local in the following sense:

Proposition 2. If I <R is an interval and A, Be %3 with z>1 then

Al =Bl = AA|p = AB| 2.

Proof. This follows essentially from the same argument which gives the uniqueness
of A. Indeed if Q=44 — AB we have that NQ = 4 — B which vanish when
restricted to I2. So for (¢,5)eI?, t<u<s we have

Qut = Qst - qu
but since Qe Q% with z>1 we get 0|, =0. O

Given an interval I = [a,b] =R and defining in an obvious way the corresponding
spaces €7(I), Q%' (I), etc. we can introduce the operator A; : Z5(I) - Q%" (I) as
ArA = AA|;; where Ae %73 is any arbitrary extension of the element A€ 275(I). By
the locality of A any choice of the extension 4 will give the same result, moreover the
specific choice Ay, = A1) x(u)=(s) Where (1) == (t ADb) v a has the virtue to satisfy the
following bound:

1Aill,, -, <l 4]

piz—pil?
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where || ||, ._, ; is the norm on Q%5(/) and A = }_,4; is a decomposition of 4 in
Q%5(I) so that we have

144l < 57— Z 1Aill, 2,1

We will write A instead of A; whenever the interval I can be deduced from the
context.

2.5. Notations

In the following we will have to deal with tensor products of vector spaces and we
will use the “physicist” notation for tensors. We will use V, Vi, V5, ... to denote
vector spaces which will be always finite dimensional." Then, if V' is a vector space,
AeV will be denoted by A*, where u is the corresponding vector index (in an
arbitrary but fixed basis), ranging from 1 to the dimension of V', elements in V* (the
linear dual of V) are denoted by A, with lower indexes, elements in V' ® V" will be
denoted by A", elements of V®2® V* as A", etc. Summation over repeated indexes
is understood whenever not explicitly stated otherwise: 4,B* is the scalar obtained
by contracting 4 V* with Be V.

Symbols like /i, ¥, ... (a bar over a greek letter) will be vector multi-indexes, i.e. if
A= (py,...,u,) then A% is the element A*# of V@ Given two multi-indexes fi
and v we can build another multi-index v which is composed of all the indices of ji
and v in sequence. With || we denote the degree of the multi-index g, i.e. if =
(uy, ..., 1,) then |i|=n. Then for example |av| = |a|+ |[J|. By convention we
introduce also the empty multi-index denoted by @ such that i = 0z = i and
0] =o.

Symbols like €(V), Q¥€(V), €(I,V), etc. (where I is an interval) will denote
paths and processes with values in the vector space V.

Moreover the symbol K will denote arbitrary strictly positive constants, maybe
different from equation to equation and not depending on anything.

3. Young’s theory of integration

Proposition 1 allows to solve Problem 2 when Fe%’, Xe% "’ with y+p>1:in
this case

N(FX),,, = —0Fud X

sut

"In many of the arguments this will be not necessary, but to handle infinite-dimensional Banach spaces
some care should be excercized in the definition of norms on tensor products. We prefer to skip this issue
for the sake of clarity.
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so that N(FoX)e 2. Then since N(F6X — AN(F3X)) = 0 there exists a unique
Ae® (modulo a constant) such that

04 =FéX — AN(FdX).

Proposition 3 (Young). Fix an interval ISR. If Fe€’(I) and X €€ ’(I) with y+
p>1 define

t
/ F, dX, = [FSX — AN(FSX)],,  s,tel. (14)
N
Then we have
t 1 ot
[ BB x| <o = s XLy srel (1)

Proof. Is immediate observing that by definition
t
[ (B~ F dx, = <N (FOX)), = [(AGFOX)),

and using the previous results. [
Another justification of this definition of the integral comes from the following
convergence of discrete sums which also establish the equivalence of this theory of

integration with that of Young.

Corollary 1. In the hypothesis of the previous proposition we have

/F dX, = lim Y F(X,, —X,), stel

|0 {t}ell

where the limit is taken over partitions Il = {1, 11, ..., t,} of the interval [s, 1| =TI such
that tg = s, t, = t, tip1>t;, || = sup;|tiy — t;].

Proof. For any partition IT write

n—1 n— n—

Sﬂ = Z Fl‘i(XhH - Xfi) = (FéX)llHl = (5A + )””1
i=0 i

Il
<)
Il
<)

i

with Re Q% "7 (I) given by R = A(JF3X) and such that (cf. Proposition 3):

IR, 5 1 1 X1

/+P1\2>+p
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Then
n—1 t n—1
Sp=A— A=Y Ry, = / FydXy = Ry, (16)
i=0 s i=0
But now, since y + p>1,
n—1 n—1

‘Rfifiﬂ | < ||R| ‘y+p,l Z |ti+1 —
=0 i=0

(AL N

e < ||R| ‘y+p7l|H

1

as |[I]-0. O

4. More irregular paths

In order to solve Problem 1 for a wider class of F and X we are led to dispense
with the condition ReQ%* with z>1 and thus loose the uniqueness of the
decomposition: if the couple (4, R) solve the problem, then also (4 + B, R+ B)
solve the problem with a nontrivial Be%*. So our aim is actually to find a
distinguished couple (4,R) which will be characterized by some additional
conditions.

Up to now we have considered only paths with values in R, since the general case
of vector-valued paths can be easily derived; however, in the case of more irregular
paths the vector features of the paths will play a prominent role so from now on we
will consider paths with values in (finite-dimensional) Banach spaces V., V7, ... .

Let X €% 7 (V) a path with values in the Banach space V' for some y >0 and assume
that we are given a tensor process X> in Q%% (V' ®2) such that

N(OCH) = 5XH16X". (17)

If y<1/2 we cannot obtain this process using Proposition 1 but (as we will see in
Section 6) there are other natural ways to build such a process for special paths X.

We can think at the arbitrary choice of X? among all the possible solutions (with
given regularity 2y) of Eq.(17) as a way to resolve the ambiguity of the
decomposition in Problem 1, since in this case

XHSXY = ST — X2

and so we are able to integrate any component of X with respect to each other and
we can write

XU dX! = oI
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meaning that the integral on the Lh.s. is defined by the r.h.s., definition which

depends on our choice of X?. Of course in this case Corollary 1 does not hold

anymore and discrete sums of XdX are not guaranteed to converge to [ X dX.
Note that in the scalar case the equation

XoX =6l —R

with X €%’ has always a solution given by I, = X?/2 + const for which

1 1 1 1 1
0Ly = 5 X7 =5 X7 =2 Xi(Xi = X)) 45 Xi(X, = Xo) = Xoo Xy + 5 (0Xy)?
giving the decomposition 81 = XdX + R with Re Q%?. The same argument works
for the symmetric part of the two-tensor X?: If X €7 (V') there exists a two-tensor
SeQE”(VYV) given by

| .
for which

1

NS¥ = = (3X"5X" + 6 X" 5X").

|

of course S is not unique as soon as y<<1/2.

Since one of the feature of the integral we wish to retain is linearity we must agree
that if A4 is a linear application from ¥V to ¥V and Y/ = A*X} then the integral
61 = [ Y dX must be such that

YHSX' = AMXROXY = SI" — AMXP
o)
oI = YHOX' + A’;XL"V
and we have fixed at once the values of all the integrals of linear functions of the path
X w.r.t. X. Then consider a path Y which is only locally a linear function of X, i.e.
such that
oYt = GloX" + QX (18)

where Q is a “remainder” in Q¥(V) and G is a path in €(V® V*). In order to be
able to show that Y is integrable w.r.t. X we must find a solution R of the equation

NRW =6YHoX".
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but then, using the local expansion given in Eq. (18),
NR" =GlOX o0X" + Q"o XY
= G'N(X*™) 4 Q"5 X"
= N(GIXP) + 5GIX + Q15 X",

where we have used Eq. (6) (the Leibnitz rule for N). To find a solution R is then
equivalent to let

Euv — RW _ G,I%XZA,KV
and solve
NR = 6G"X>* + QLo X", (19)

Sufficient conditions to apply Proposition 1 to solve Eq.(19) are that
Ge€" " (VRV*), QeQ®"(V) with n+7 = z>1. In this case there exists a unique

Re Q%" solving (19) and we have obtained the distinguished decomposition
YHSX = 61" — GHXH — R™. (20)

Note that the path Y lives a priori only in ¢ 7 and this implies that uniqueness of the
solution of Problem 2 can be achieved only if > 1/2. On the other hand the request
that Y can be decomposed as in Eq. (18) with prescribed regularity on G and Q has
allowed us to show that the ambiguity in the solution of Problem 1 can be reduced to
the choice of a process X satisfying Eq. (17). Of course if y>1/2 there is only one
solution to (17) with the prescribed regularity and decomposition (20) (into a
gradient and a remainder) coincides with the unique solution of Problem 2.
Another way to look at this result is to consider the ‘“‘non-exact’ differential

FoX + GX2,

where F,G are arbitrary paths and ask in which case it admits a unique
decomposition

FSX +GX?> =04+ R

as a sum of an exact differential plus a remainder term. Of course to have uniqueness
is enough that Re Q%*, z>1. Compute

N(FSX + GX?) = —0F5X — 0GX? 4+ GOX X = (—0F + GSX)oX — 6GX?,

so in order to have Re Q%*, z>1 condition (18) and suitable regularity of G and Q,
are sufficient to apply Proposition 1.
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4.1. Weakly controlled paths
The analysis laid out above leads to the following definition.

Definition 1. Fix an interval TSR and let Xe%7(I, V). A path Ze%€ (I, V) is said
to be weakly controlled by X in I with a remainder of order n if there exists a path
Z'e€" (I, V®V*) and a process Rz eQ®" (I, V) with #>7 such that

57" = Z"5X" + RL.

If this is the case we will write (Z,Z')e 2'(1, V) and we will consider on the linear
space 2%(1, V) the semi-norm

WZl o gy = 211 s 121y —ys + IRZI s + (1211,

(The last contribution is necessary to enforce Ze%”(I, V) when [ is unbounded).

The decomposition 6Z* = Z"™§X" + R* is a priori not unique, so a path in
D, , (I, X) must be understood as a pair (Z, Z’) since then Rz is uniquely determined.
However we will often omit to specify Z' when it will be clear from the context.

The term weakly controlled is inspired by the fact that paths which are solution of
differential equations controlled by X (see Section 5) belongs to the class of weakly
controlled paths (w.r.t. X). In general, however, a weakly controlled path Z is
uniquely determined knowing X and the “derivative” Z’ only when 5> 1.

Weakly controlled paths enjoy a transitivity property:

Lemma 1. If Ze 71, V) and Y € Z°(1, V) then Ze Z™™ " (I, V) and
||(27 Z/) | |D(X,y.ﬁ),] < K| |Z| |D( Y,y.)])‘l(l + | ‘ Y‘ |D(X,y,(7),])(1 + ||X| |),'.,I)

where K is some fixed constant.
Proof. The proof is in Appendix A, Section A.2.1. [

Another important property of the class of weakly controlled paths is that
it is stable under smooth maps. Let C"(V, V1) the space of n-times differentiable
maps from V' to the vector space V| with 6-Hdélder nth derivative and consider the
norm

n
lollos = llolle +llolls,  leollus = llell, +>_ 10l + 110"l
k=1



100 M. Gubinelli | Journal of Functional Analysis 216 (2004) 86140

where pe C™°(V, V1), 0Xg is the kth derivative of ¢ seen as a function with values in
V1 ® V*®k and

» = sup |p(x)]|,
xeV

0" (x) — ")l
e =l

10" o||; = sup
x,yevV

Proposition 4. Let Y ey (1,V) and pe C'°(V, V1), then the path Z such that Z}' =
o(Y)!" isin 2 (1, V1) with ¢ = min(y(d + 1),n). Its decomposition is

62" = B,p(Y)' Y)oX* + R,
with R;€Q€° (I, V1) and
146 aly
12U .00, S K@Ul U i gmr + 1Y b g = 1Y iy ) (21
If pe C*(V, V) we have also
10(Y) = (D)l px 60 < CNY = Yllpirreo.a (22)
for Y, Y e (1 V) with
146
C = Kllol,s (1 + X1 DY e ams + 1Y peraesy.) ™

Moreover if Ye@’ (140 1,V), Z=(Y) and
SY' = YIoX' 4+ Ry, 0Y' =YX 4 R,
0Z' = ZV'SX' + Ry, 0Z'=ZIOX + RY,

with Z\', = 0,@(Y, )" Y™

v,

Zl = 0e(Y,)" f’\ffr then
1Z' = Z||,, + 112" = Z'|l5,1 + IRz = Rzl 51,0 + 112 = 2,4

<C(|X = X[, +er) (23)
with

e =Y = Y|, + 1Y = Y'|l5,, + IRy —

Proof. The proof is given in Appendix A, Section A.2.2. [
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4.2. Integration of weakly controlled paths

Let us give a reference path Xe®’(I,V) and an associated process
X?e Q%% (I, V ® V) satisfying the algebraic relationship

NXGE = 0X1oX),  s,u,tel. (24)

Following Lyons we will call the couple (X, X?) a rough path (of roughness 1/7).
We are going to show that weakly controlled paths can be integrated one against
the other.
Take two paths Z, W in V weakly controlled by X with remainder of order 5. By
an argument similar to that at the beginning of this section we can obtain a unique
decomposition of Z6W as

ZPSW® = 8A™ — FM' GV XY 4 AN(ZFSW" + FH G X))

and we can state the following theorem:

Theorem 1. For every (Z,Z')e DY'(I, V) and (W, W') e DY'(I, V) withn +7 = d>1
define

t
/ ZUdW,) = ZISW) + Z)5 Wi XS — [AN(ZMSW + Z W3]

w st?

s,tel (25)

then this integral extends that defined in Proposition 3 and the following bound
holds:

t
(T "1 v Al e 2,1V
/ (Zu Zs )qu Z,u’,s Wv’,sxsl
s

1 1)
Sg5 31t = 31 2y Vs Wl s (26)

which implies the continuity of the bilinear application

(Z,Z2)), (W, W) (/ ZdW,ZW’)

0

from TV x GV to F (V).
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Proof. Compute

e = N(ZHOW" + ZZf WX

sut

= —8ZEOW 4 (ZE W NXEY — 521w XA

w w ut

ut

_ 7 w Iy v _ phk v i W pv
- Z,u’,séXm Wv’,uéXur RZ,Sué Z,u’,séXs‘u RW.ut

= O W X + (Z WD NG

1% v v ut

_ __ pH v 4 W pv
- RZ,su5 Z,u"séXsuRW,ul

ut

v 2, 'y ! / v
— N ZEWN Xl = Z OXLOW,

V' su

ox,

and observe that all the terms are in Q%5(1, V®2) so that Qe Z5(I, V'®?) is in the
domain of A, then

1
149015 < 55— IRzl W], p + 12

oo 2| XL Rw Ly 1

+ ||X2||2y,1(HZ/||w,1HW,qu“/,l + || W,Hoo,l |Z/||177}h,1)
2
+ ||Zl||w,1||W,qu”/,I”X”*,',I]
1 2 2
< %> (L+[1XT5, + [1X2, DIN(Z, Z/)HD(X.}A,;]),[”(W? W/)||D(x,~,-,n),1

and bound (26) together with the stated continuity easily follows.
To prove that this new integral extends the previous definition note that when

2y>1 Eq. (24) has a unique solution and since Z, We®% (I, V) let Ay = ffZ aw
where the integral is understood in the sense of Proposition 3. Then we have

ZESW = 641 — R
with Re Q%% (I, V®V), at the same time
ZESWY = 5AM — ZU WYX — R

v

with ReQ(é(S(I , V®2). Comparing these two expressions and taking into account
that 2y > 1 we get 64 = 04 and R* = Z;ff W\’,)’Xz’“"" — R* proving the equivalence of
the two integrals. O

Note that, in the hypothesis of Theorem 1, we have

t
S = / (X" — XM dX.
5
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Even if the notation does not make it explicit it is important to remark that the
integral depends on the rough path (X, X?), however if there is another rough path
(Y,Y?) and X e 25 (I, V) we have shown that %' (I, V)< 2% (I, V) (see Lemma 1)
and the integral defined according to (X, X?) is equal to that defined according to
(Y,Y?) if and only if we have

t
er = [Loxsax;,
S

where this last integral is understood based on (Y, Y?). Necessity is obvious, let us
prove sufficiency. Let the decomposition of X according to Y be

0X" =AY + Ry
and write
574 = ZMSX + R, SWH = WHSW + R,
then if
t
51&" = / Z'ud<X’X2) WV
S
is the integral based on (X, X?),

t
(SI_S‘V = / Z‘ud<Yﬁyl) WV
S

the one based on (Y, Y?); we have by definition of integral

oI = ZHFSWY +Z,’<# W;\zxz;cp +R,;w’

ST = Z'SW" + Z AL W) ALY 4 R
and
X = 45,40 Y+ R,
where Ry, R Ry € Q% 71(V®?). Then
S —TM) = ZEWp (XP — A% AbY>*7) + R} — R
= Z!W'R% + R}’ — RY

but then §(1 — I)e Q% (I, V®2) with y + 1> 1 so it must be 81 = 01.
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Given another rough path (X, X?) and paths W, Ze 9%" (I, V) then it takes not so
much effort to show that the difference

t '
A‘Y,::/Zde/ZdW

(where the first integral is understood with respect to (X, X?) and the second w.r.t.
(X, X?)) can be bounded as

S e 1
|4 — ZoW + Z6W + WZ'X? — W’Z’X2||51,<ﬁ(01 +Dy+ D3), (27)

where

Dy = (1 IXIE, + 13y NUIZ Z Mo gyt + 1 Z) i)

Dy = (1+]lX

2 o
2 1y DUV s + 17 i Ve

Ds = (IOV. W) s + 17 ) i)

Z 2 g ss + 1 2Ly VUK = Kl 4115 = K21, )
and
62 =12 = Z|| s + 112 = Z'llyoys + IRz = Rellys + 11Z = Z]|, s
ew = W' = Wl + W = W||,_+[Rw = Rl + W = W||,

so that the integral possess reasonable continuity properties also with respect to the
reference rough path (X, X?).

Remark 1. It is trivial but cumbersome to generalize the statement of Theorem 1 in
the case of inhomogeneous degrees of smoothness, i.e. when we have

ZedW(V), Wedh" (V) with Xe@'(V), Ye®’(V) and there is a process
HeQ% " (V®?) which satisfy

NH"™ = 5X"5Y".

In this case the condition to be satisfied in order to be able to define the integral is
min(y +#',p+n) =95>1.

As in Section 3 we can give an approximation result of the integral defined in
Theorem 1 as a limit of sums of increments:
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Corollary 2. In the hypothesis of the previous proposition we have

n—1
/ Zidw, = lim N (ZEW],  +Z, WX

1.t (N TR TN
\l'l\—>0 Py islit1 istitl

where the limit is taken over partitions Il = {1y, 1, ..., t,} of the interval [s,t] such that
=S5, ty =1, tipg>1;, [[I| =sup|tiss — 1]

Proof. The proof is analogous to that of Corollary 1. O

Simpler bounds can be stated in the case where we are integrating a path
controlled by X against X itself

Corollary 3. When We 2\ (1, Vi ® V*) the integral
t

oA, :/ wh, dx,
S

belongs to T (I, V1) and satisfy

1

164 — W,0X" — WV'KXZ’V”I|D<x;,,,7+«,),1SW(HXII 1 P, W

X pn),

(28)

Moreover if (X,X?) is another rough path and We@%‘" (I, Vi®V*) then

OBl = / W, dX, — / l W, dX,
5 s
and
OB" = WISX" — WIOX' — WX — WX + R,
with Rpg satisfying the bound

1

i~ Cxaewa + (IWllpge s + Wl p s orl  (29)

[RBl[,yy1 <
with
ews = |[Rw = Rygll,r + W' = Wl
and

pr = 11X = X[, + D =X,

Cr.r = 1X1L,p + PP s + 1K + 1Ly -
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Proof. The integral path 04 has the following decomposition:

5AM = WHSX" + WEXP™ + R,
with R, satisfying

NRY) = OWEX>"™ 4+ Ry, 60X

then Eq. (28) follows immediately from the properties of A. Next, let 64 = i WdXx
and

A" = WISX" + WEX>"™ + R

VK
then

NRY = 5"

VK

2,vK L v 71 2, VK v
SO Rl OXY — SISO 1 RE 6K

and

1

1Rl < 3 11 = Wl )

st + N1 a2 = K2l

n=v,

+ [1X = X[, ARwll, r + 11X | Rw = Ry [l /]

1 .
<53 [Cx.rewr + (W oo yms + IW b0 P1)- u

5. Differential equations driven by paths in €7 (V")

The continuity of the integral defined in Eq. (14) allows to prove existence and
uniqueness of solutions of differential equations driven by paths in € 7(V') for y not
too small.

Fix an interval J<R and let us given Xe%’(J,V) and a function
eeC(V,V®V*). A solution Y of the differential equation

dYt# = (P(Yf)e dXtv’ Yto =y, lelJ (30)

in J will be a continuous path Ye%7(}V,J) such that

t
W:yf/wnﬁﬂl (31)

fo
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for every teJ. If y>1/2 sufficient conditions must be imposed on ¢ such that the
integral in (31) can be understood in the sense of Proposition 3. If 1/3<y<1/2 the
integral must be understood in the sense of Theorem 1. Then in this case we want to
show that, given a driving rough path (X,X?) it is possible to find a path
Ye@}’z"(V, J) that satisfy Eq. (31).

The strategy of the proof will consist in introducing a map ¥+ G(Y) on suitable
paths Ye®(J, V) depending implicitly on X (and eventually on X?) such that

G(r), = Y+ [ ol (32)

fo

Existence of solutions will follow from a fixed-point theorem applied to G acting on
a suitable compact and convex subset of the Banach space of Holder continuous
functions on J (this require V to be finite dimensional). To show uniqueness we will
prove that under stronger conditions on ¢ the map G is locally a strict contraction.
Next we show also that the It6 map (in the terminology of Lyons [7]) Y = F(y, ¢, X)
(or Y = F(y,9,X,X?)) which sends the data of the differential equation to the
corresponding solution Y = G(Y), is a Lipschitz continuous map (in compact
intervals J) in each of its argument, where on X and X* we are considering the
norms of €7(J, V) and Q%% (J, V®?), respectively.

Note that, in analogy with the classical setting, the solution of the differential
equation is ““‘smooth” in the sense that it will be of the form

8Y = o(Y)oX + Ry (33)
with Ry e Q%" (V,J) with z>1 in the case of y>1/2 and of the form
3Y = @(Y)oX + 9p(Y)p(Y)X* + Qy (34)

with Ry e Q%*(V,J) with z>1 in the case of 1/3<y<1/2.

Natural conditions for existence of solutions will be pe CO(V, V@ V*) if y>1/2
and (1+6)y>1, while pe C¥(V, V® V*) if 1/3<y<1/2 where 6€(0, 1) such that
(2 4 6)y>1 while uniqueness will hold if pe C'(V, V@ V*) or e C>*(V, V® V*)
respectively with analogous conditions on .

Remark 2. Another equivalent approach to the definition of a differential equation
in the non-smooth setting is to say that Y solves a differential equation driven by X
if Eq. (33) or (34) is satisfied with remainders Ry or Qy in Q%° (V') for some z. This
would have the natural meaning of describing the local dynamical behaviour of Y, as
the parameter ¢ is changed in terms of the control X. This point of view has been
explored previously in an unpublished work by Davie [1] which also gives some
examples showing that the conditions on the vector field ¢ cannot be substantially
relaxed.
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Remark 3. In a recent work [6] Li and Lyons show that, under natural hypotesis on
@, the Itd6 map F can be differentiated with respect to the control path X (when
extended to a rough path).

5.1. Some preliminary results

In the proofs of the propositions below it will be useful the following comparison
of norms which holds for locally Hélder continuous paths:

Lemma 2. Let 5>y, b>a then Q%" ([a,b]) = Q€ " ([a,b]) and
X, 0 <16 = al" 7 1X1],) 10

Sfor any X € Q€"([a, b]).

Proof. Easy:

|Xol | Xl

— — | Xsi|
|1 X, 15 = sup S = |t —s"7"<|b—a|"" sup ) O
e t,sela,b] |l - S‘/ t,s€a,b |t - S|" h t,s€la,b |t - S|'7

Moreover we will need to patch together local Holder bounds for different
intervals:

Lemma 3. Let I,J be two adjacent intervals on R (ie. InJ#0) then if
XeQ®'(I,V), XeQ€"(J,V) and NX e Q€ ""2(I1VJ, V) with y =7y, + 7,, then we
have X € Q€ (I1VJ, V) with

||xX

lror S2AXAL 7 + 11X ,) + VX (35)

Y1y O

Proof. See Appendix A, Section A.3.1. [

5.2. Existence and uniqueness when y>1/2

First we will formulate the results for the case y>1/2 since they are simpler and
require weaker conditions.

Proposition 5 (Existence y>1/2). Ify>1/2 and pe C*(V,V @ V*) with 6€(0, 1) and
(1 4+ 0)y>1 there exists a path Y € €7 (V') which solves Eq. (30) (where the integral is
the one defined in Section 3).

Proof. Consider an interval I = [tg, 7y + T]<J, T >0 and note that W = ¢(Y) isin
€ (I, V® V*) with

I WH&,-,I = ||<P(Y)||5~,~,1< leol]51] Y||;).1
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so that if (1 4+ d)y>1 it is meaningful, according to Proposition 3 to consider the
application €7(1,V)—>%"(I,V) defined as in Eq. (32). Moreover the path Z =
G(Y)e®"(1,V) satisfy

02" = p(Y )X + 04

with

1 1 s
10211116y <3t 3 ||X||;r,1||<P(Y)||5;,,z<m el XTL, AT YL 7o

v —

then, using Lemma 2,
Z]l, ;< llo(Y)oX]|, ; + [10zIl,

< llollosl1 X1, + TV§||QZ||(1+(>‘)~,,1

< KCxillollys(1+ T Y17,

< KCyyllolly,(1+ T Y117 )
with

Cxr =X,
For any T let A7 >0 be the solution to
Ar = KCxgl|ollos(1 + T747). (36)

Then ||G(Y)]|,;<Ar whenever ||Y]|,;<Ar and moreover G(Y), = Y,. Then for
any ye V', the application G maps the compact and convex set

Qy,[to,to+T] = {Ye(gy([t(h o + T]? V): Ylo =) || Y||),',[IO‘IO+T] <AT} (37)

into itself. Let us show that G on Q, , ;,+7) 1 at least Holder continuous with respect
to the norm || - [|,. This will allow us to conclude (by the Leray-Schauder-Tychonoff
theorem) the existence of a fixed-point in Q) ,+7)- TO prove continuity take
Y, Ye 0,1 and denote Z = G(Y) so that

37" = p(Y)'5X" + Ol

as for Z = G(Y). Then

1Z = ZIJ,;<llo(Y) = oY)l o A X1],; + 1102 = O31l,.; (38)
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but now taking 0 <o <1 such that (1 4 ad)y>1

1 ~
102 — Ol (1 100y <m||/\/||~,,1||</7(1}) = o(V)lysy.1-

To bound ||¢(Y) — (p(f’)||“5?.’ ; we interpolate between the following two bounds:
10(Y) = @(X)llo, <2ll@(Y) = @(Y)l[.. , <2lellsl|Y = Y[,
and
le(Y) = @(X)ll5,1 <Ilo(N)ls1 + (X5, <ol (Y1, + Y1) <llells247
obtaining

S (1- (x o
lo(Y) = @(¥)|Ls,, <2l ¥ = Y| 047

Eq. (38) becomes

1Z =2, ;< lle(Y) - @(Y)H%,I”XH«/.I + 1107 — O3l (14001

1—a o
< Klloll;11X1],.,1l 042,

Since ||Y — Y|, ,<||Y — ?”M (recall that T'<1) we have that G is continuous on
0,1 for the topology induced by the norm || - ||, ; (the paths all have a common
starting point).

Since all these arguments does not depend on the location of the interval I we can
patch together local solutions to get the existence of a global solution on all J. [

Proposition 6 (Uniqueness y>1/2). Assume ¢peCY(V,V®V*) with (1 +03)y>1,
then there exists a unique solution of Eq. (30). The Ité map F(y, ¢, X) is Lipschitz in
the sense that satisfy the following bound.

EW, @, X) = FO, 0, X, , <M X = X[|, ; + [l = oll 5+ [y = Y1)

for some constant M depending only on X w00 N0l ol s and J.

Proof. Let us continue to use the notations of the previous proposition. Let Y, Y be
two paths in (/’(J V), and X,Xe%"(J,V). Let W =¢(Y), W= (p(~) Z =
G(Y), Z= G( Y) where G is the map corresponding to the driving path X:

P G(T) = FF + / o(To) dX,

)
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Then
07" = (V)'oX" + 0L,

Introduce the following shorthands:
ezi =12 =2, ews =W =Wls,r, evi=I1Y =Y, &, =IY=Ylsz

pr =X = XI[,; + Yo = Yol +[l¢ — ol], 5

Cxr =X, +1IXIl,;  Cya=IYIl,; + Y],
With these notations, Lemma 5 states that, when 7T'<1:
e21<KCx 1Cy [(1+l0ll; 5)pr + ol sTev 1). (39)

As we showed before in Proposition 5 there exists a constant A7 such that the set
Oy ={YeC(I,V): Y, =»,||Y|],;<Ar} is invariant under G. Take Y, Ye 01
and X = X. Then we have p;r=0, Cy;<2Ar and

ez1<K|lol|, sCx 45T ey 1.

Choosing 7 small enough such that K||¢||, ;Cx 45T = o<1 implies
1G(Y) - G(Y)|

i = ez1<o|Y = Y], .
The map G is then a strict contraction on @, ; and has a unique fixed-point. Again,

since the estimate does not depend on the location of / < J we can extend the unique
solution to all J. [

5.3. Existence and uniqueness for y>1/3

Proposition 7 (Existence y>1/3). If y>1/3 and @eCY(V,V) with (2+)y>1
there exists a path Y € 2’ (V) which solves Eq. (30) where the integral is understood
in the sense of Theorem 1 based on the couple (X, X?).

Proof. By Proposition 4 for any YeZ}”(J,V), the path W =¢(Y) is in
(7 V) with

1+ 2
IWWpex 1 mms =0 g s o <Klloll s(TY 1L, + 1YL+ 1Y)
2
< 3K]loll s(L+ (1Y 1) (40)

where we introduced the notation [[ - |[, ; = || - || p(x ;2).s-
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Then we can integrate W against X as soon as (2 + J)y>1 and define the map G
as G: I (I, V)— 2% (I, V) with formula (32). Let Y be a path such that Y, =

(P( Ylo)'
The decomposition of Z (as above Z = G(Y)) reads

0Z" =ZF5X" + R, = @(Y)\oX" + 0p(Y)! Y;”Xz’“" + 05
with (use Eq. (28))

‘ |QZ||(2+5)yA,1 <KCx 1llo(Y)] |D(X,7,(1+(S)y)717

where

Cx.p = 1+ [1X],; + [y, -

Our aim is to bound Z in Z%% (I, V). To achieve this we already have the good
bound (41) for Oz so we need bounds for ||0.¢(Y), Y;"Xz“'sz},J, llo(Y)I],; and
|Z]|, ;- To simplify the arguments assume that 7'<1 since at the end we will need to

take T small anyway.
Let us start with ||0,¢(Y), Y;"Xz""’HzM:

100 (Y), Y, X2, < NO@(Y ) oo g1 Y55 A2,

Iy

<100ll., (Y7 + T Y'[], DIX]],

<llell sl s+ T7I1Y’

b

|2y,1'

Next, using the fact that

100 (X))l 1< 100(Yiy)| + [[00(Y)llo.s

<ol + T |00 (Y)|

o1
S ||€DH1,(5 + Toy”ﬁo(Y)‘|D(X,y,(1+5)y) I

obtain

eI, s < [1XTL, 100 ()]0 1 + IR ,.1

< el o1 X1 + T UX 100N by 146100 + [ Roer ll1esy0)

< Crallloll s+ T No (b 14a).0)-

(42)

(43)
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To finish consider

1211, < 1Z'6X1],; + [|Rell,
<o)l X1, s +1100(Y) Y, ; + 110211, - (44)

Putting together the bounds given in Egs. (41), (42), (43) and Eq. (44) we get

1ZILs = o)l + (V)] ; + 10e@(Y), Yy Xy, + [0zl + 1211,
<201+ [IX 1L Do s + NI ; + 20180 (Y), Y, 1,
+ 2T5y||QZ||(2+5)y,1
< KCxs(lloll 5+ llelli s+ Tl sl Y1l.s + TN pox i) (45)

Eq. (40) is used to conclude that

) 2
IG).s < Klloll sCxa(1+ lloll 5+ T7 (1 +[1Y]L))
< Kllgll 5Cxs (1 + [l 5+ T7(1+ (1Y 1) (46)

There exists T, such that for any 7'< T, the equation

Ar = Klloll, 5Cxs(1+ ol 5 + T7(1 + 47))°

has at least a solution A7r>0. Then we get that ||G(Y)||,;<Ar whenever
||Y]|,;<Ar. Let us now prove that in the set

0, ={YeZF(IV): Y,=yY, =) |Y],,<Ar}

the map G is continuous (in the topology induced by the [|-|[,; norm). Take
Y, YeQ,, with Z=G(Y), Z=G(Y) and

0Z' = ZVSX" + R = o(Y)[0X" + 0 p(Y )L Y, X + 0.
Take 0<a<1 and (2 + ad)y>1: a bound similar to Eq. (45) exists for ||Z — ZH*J:

1Z = Z||., <200+ [1X1L, Dllo(Y) = (D)L, + llo(Y) = o(D)l,;

+ 2[00 (Y), Y, = 0cp(Y), Y, )X} |y s + 2102 = Ol 200
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< KCxilllo(Y) = @(Y)ll,; + 100(Y) + 00(Y)l| ;A7 + 1Y = Yl 4llol]..]
+ 2[|0z — Q§||(2+a5)y.1
when ||Y — f’||*71<e<1 we have
l@(Y) = @(V)ll,r + [100(Y) + p(Y )|l A7 + 1Y = V|| gllello <Kllll15(1 + A7),

moreover, we can bound [[Qz — O] (21,4, as

1 _
102 — Ozl 2440), 1<2(2+TCXI[HRW Ripll(14a0)50 + 1100(Y) = 0¢(Y)|l,5,4]

with W = ¢(Y), W = ¢(Y). Both of the terms in the r.h.s. will be bounded by
interpolation: the first between

Rw — Ry |l 1460 S0 D140y T 1l )||D(X.,~,v,(1+5)y)
and
1Ry = Rigll,.; =[|(30(Y) = 5¢(¥)) = (dp(Y) — do( )3 X||,,

<lle(Y) = o(V)|l,; + Cxlldp(Y) = dp(Y)]|,. ,

< llollys¢ + Cx.alloll; 5¢
while the second between
100(Y) = 00(Y)|ls,, <100 (Y)lls,, < + [100(Y)]]5,

and

109(Y) = 0o(Y)[lo, <2l109(Y) = do(Y)l| o s <loll1 51 = YII% s <lool]; €.

These estimates are enough to conclude that ||Z — Z |l.; goes to zero whenever
|Y — Y]|,, does.

Reasoning as in Proposition 5 we can prove that a solution exists in 9’)'(’2"(1 , V) for
any I<=J such that |I| is sufficiently small. Cover J by a sequence I, ...,I, of
intervals of size T'<T,. Patching together local solutions we have a continuous
solution Y defined on all J with

0Y =YX + Ry,

where Rye |J; Q%% (I, V) and Ye|J,Q€7(I,V). It remains to prove that
Ye 92}}27(J, V). Since the restriction of ¥ on J; is in Q,, for some ye V' we have
that (with abuse of notation) || ][, , <Az for any i.
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Using Lemma 3 iteratively we can obtain that

171l,,<2"" sup || 7], <2"' 47
1

and by the same token

7], ,<2""" A7
Next consider Ry: write Ji = Uf:l I; and by the very same lemma get (J | =
Jiuliyg)

1R, 5., < 20 Rl 5, + 2R3, 1, + 16T 0X]|

757 Jit1

|y,J| |X| ‘*,',J

i+1

< 2|[Rylly, s, + 2R, g, + 1Y

since NRy = —dY'6X. By induction over i we end up with

IR yll2y.7 <2"" sup [[Rylly, g, + nll V], ,[1X1], , < (2" + 22" 2n) A7
1

and this is enough to conclude that Ye 2% (J, V). O

Proposition 8 (Uniqueness y>1/3). If y>1/3 and o C**(V, V) with (2+ 6)y>1
there exists a unique path Ye@}zy (J, V) which solves Eq. (30) based on the couple
(X, X?). Moreover the Ité map F(y, ¢, X, X?) is Lipschitz continuous in the following
sense. Let Y = F(y, ¢, X, X?) and Y = F(y, 7, X, 322) where (X, X?) and (AN’, >‘~<2) are
two rough paths, then defining

ey =Y =Y, + Y =Yl + IRy = Rylly,; + o — s

pr = 1Y = Yol +|1X = X[, + X2 =X,

and

Cxr=1+[X],;+ ||jf:||;1 + ||X2||2.',1, + X2 2.1)

Cya =1+ Yl +1ITIL,)-

We have that there exists a constant M depending only on Cx j, Cyy, ||@l||,s and
ll@||, 5 such that

ey g<SMp;.

Proof. The strategy will be the same as in the proof of Proposition 6. Take two paths
Y, Ye2?(J,V) and let as above Z = G(Y), Z = G(Y). Write the decomposition
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for each of the paths Y, 17, Z,Z as

SY! =YX+ Ry, OVF =YX+ R,
and

0Z =Z'6X + Ry = ¢(Y)3X 4+ 0(Y)X? + Qy,

0Z =Z'0X + Rz = p(Y)oX + 99(Y)X* + 05.

The key point is to bound ¢z ; defined as

ez1 = |lo(Y) =@ (Y)ll o s +1lo(Y) = oM, ; + 1Rz = Rzl

and the result of Lemma 6 (in Appendix A) tells us that, when 7'<1, ¢z can be
bounded by

ezr <K[(1+ [lol,5)Cy 1 C5 1p1 + 1ol T € C yeva]- (47)

Taking Yy = Yo, X =X, X*>=x%and ¢@ = @ we have p; = p; = 0. As shown in
the proof of Proposition 7 if T'< T, for any ye V' there exists a set Oy ; cjg'f"([ V)
invariant under G. Moreover if ¥, Y € 9, ; for some y then || Y||, <A, Y|, < sS4
and letting

Cyr=1+24r
we can rewrite Eq. (47) as
ez1 <K||plls T C;(.,JC_QY,TSYJ'
So choosing T small enough such that
T7Cy , Gy =a<l1 (48)
we have
1G(Y) = G(Y)|l.; = ezs<oeys=a|Y = Y||,.

Then G is a strict contraction in 9}2"(1 , V) and thus has a unique fixed-point. Again,
patching together local solutions we get a global one defined on all J and belonging

to 237 (J, V).

Now let us discuss the continuity of the Itd map F(y, ¢, X, X?). Let Y, Y be the
solutions based on (X, X?) and (X, X?) respectively. We have Y = G(Y) =Z, ¥ =
G( IN’) Z so that ¢z1 = ¢y for any interval /<J and we can use Eq.(47)
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to write
ey = ez <K[(1 + H<P||2,5)C§(,1C3Y,191 + ||(P||2,5T5}’C§(,1C§/,18Y71]-
Fix T small enough for (48) to hold so that
eys<(l—a) 'K(1+ ||‘P||2,5)C§f,JC3Y,JP1 = Mp;.

Cover J with intervals Iy, ..., I, of width T and let J; = Uf;l I, with J, = J.
To patch together the bounds for different /; into a global bound for ey ; we use
again Lemma 3 to estimate

IRy = Rylla, ., < IRy = Ryll, 5, + [IRy = Rylly, 1., +10Y'0X —oY'6X]|,

PyJiv1

< ||Ry—R?

20 TRy = Rylly, .

i+1

+Y' = Y'll,,,

i+1

X1+ 171 11X = X1,

i+1
then we obtain easily that
ey, <Cxu(eyy, +evui,) +Crapy.

Proceeding by induction we get

n

ey, < (Cxgn+ Z C%) sup ey +nCy p;
k=1 i

< |2 CIE/JMI +nCyy|py

n
k=1

which implies that there exists a constant M depending only on Cx s, Cys, |l¢ll,s
such that

eyg<Mpj. O

6. Some probability

So far we have developed our arguments using only analytic and algebraic
properties of paths. In this section we show how probability theory provides concrete
examples of non-smooth paths for which the theory outlined above applies.

Let (2,7, P) be a probability space where is defined a standard Brownian motion
X with values in V' = R" (endowed with the Euclidean scalar product). It is well
known that X is almost surely locally Hoélder continuous for any exponent y<1/2,
so that we can fix y<1/2 and choose a version of X living in ¥7(, V) on any
bounded interval 7. In this case solutions X?> of Eq.(17) can be obtained by



118 M. Gubinelli | Journal of Functional Analysis 216 (2004) 86140

stochastic integration: let

t
Wi = [ (Xt =X,
S5
where the hat indicates that the integral is understood in It0’s sense with respect to
the forward filtration #, = g(Xj;s<t). Then it is easy to show that, for any s, u,7eR
W/u _ Wm W,uv

1t0,st 1t0,su 1t6,ut

= (X, — X)X - X;) (49)
which means that

NWL = 0X"0X".
Then we can choose a continuous version Xfto of (t,5)+— Wy for which Eq. (49)
holds a.s. for all #,u,seR. It remains to show that XftOeQ(sz(l V®2) (for any
y<1/2 and bounded interval I).
To prove this result we will develop a small variation on a well-known argument
first introduced by Garsia, Rodemich and Rumsey (cf. [5,9]) to control Holder-like
seminorms of continuous stochastic processes with a corresponding integral norm.

Fix an interval T = R. A Young function i on R* is an increasing, convex function
such that y(0) =

Lemma 4. For any process Re Q€ (T) let

| Ry >
U: dt ds,
Tle//<P t—sl/4)

where p : Rt — R is an increasing function with p(0) = 0 and \ is a Young function.
Assume there exists a constant C such that

sup [ NRuw| <y~ (

2>p(|f—s|/4), (50)
(up,r)els,?

C
|t =3

for any couple s<t such that [s,t]|<=T. Then

rasts [t (5) 0 (§) ] (51)

Proof. See Appendix A, Section A.4. [

for any s, teT.

Remark 4. Lemma 4 reduces to well-known results in the case NR = 0 since we can
take C = 0. Condition (50) is not very satisfying and we conjecture that an integral
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control over NR would suffice to obtain (51). However in its current formulation it is
enough to prove the following useful corollary.

Corollary 4. For any y>0 and p>=1 there exists a constant C such that for any Re Q%
HR”)-A,TgC(U“/-&-Z/p,p(Ra T) + HNR”%T)a (52)

where

|Rst| P 1/p
comn-[f () o]

Proof. In the previous proposition take y(x) = x”, p(x) = x’*+?/?; the conclusion
easily follows. [

In the case of X* we have, fixed T = [1,11]€R, f9<t), and using the scaling
properties of Brownian motion,
2 P |X%t6,uv‘p
[E[l]}’+2/P-P(XIté’ T) ] =E T o du dv
' [o.n]? |u— v|p'
= EXig 01l lu — o) Gy dv < o0
' [t(),fl]z
2

forany y<1and p>1/(1 —7) so that, a.s. U,,,/,,(Xj, T) is finite for any y <1 and
p sufficiently large. Since

2 2y
sup |(NX%t6)uvw| < sup |6 Xouw| |6 Xow| < HXHy,T|t — |

(up,w)s<uv<w<1 (up,w):s<uv<w<1
for any 7o <s<r<t, we have from (52) that for any y<1/2, a.s.
2 2
X6 (@) < Cy.r ()t — 5|7

for any ¢,sel, where C, r is a suitable random constant. Then for any y<1/2 and
bounded interval /<R we can choose a version such that Xj; € Q€% (I, V®?).
We can introduce

t
2,uv . Sy
XS't‘lrlat..,st = / (Xli - X;’l)oquv
K

where the integral is understood in Stratonovich sense, then by well-known results in
stochastic integration, we have

av
e o 19,

Strat.,st 1t0,st 2
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where g*' = 1 if u = v and g*" = 0 otherwise. It is clear that, also in this case, we can
select a continuous version of thrat‘,sr which lives in Q% and such that NX3,,, =
0XoX.

The connection between stochastic integrals and the integral we defined in
Section 4 starting from a couple (X, X?) is clarified in the next corollary:
Corollary 5. Let pe C'2(V, V® V*) with (1 + 8)y> 1, then the ItJ stochastic integral

t
A
S

has a continuous version which is a.s. equal to

t
51ﬁ>ugh,xt = / (p(Xu)er Xm/‘t

where the integral is understood in the sense of Theorem 1 based on the rough path
(X, X34) moreover the Stratonovich integral

a0 = / (X)X,
is a.s. equal to the integral
s = [ otxax;
s
defined based on the couple (X, Xétrat') and the following relation holds

gVK t
3= Sl + % [ (X
:

Proof. Recall that the Ito integral 01y is the limit in probability of the discrete sums

Sh=Y_ e(X Xy, — X))

while the integral d/rougn is the classical limit as |IT|—0 of
v v 2,Kkv
SH=>" lo(X)N Xy, = X)) + O (X )iXGE ]
i

(cfr. Corollary 2). Then it will suffice to show that the limit in probability of

2 kv
R% = Z a,c(P(XI[)CXI£§,‘Tifi+1

is zero. Since we assume d¢ bounded it will be enough to show that Ry —0 in L*(Q).
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By a standard argument, using the fact that Ry is a discrete martingale, we have
2 2uv (2 2
[E|R17| = Z [E|6IC(P(X11)VXI£,‘[,-[,-H | < ||(/)H1,6 Z |:Epglto titiv1 |
i i

_||(p||1(3[E|XItoOl Z ltig1 — i <||(P||1(>[E‘X11001 |||t — 5|

which implies that E|Rp|*—0 as [IT|—0.
As far as the integral 6J is concerned, we have that it is the classical limit of

v v 2,k
S;ITH = Z [‘/’(Xt,)u(X - Xt;) + 8K(P(Xt )#XSL;al zr,H]

liv1
KV

—Z[ (XX = X))+ 0p(X )UXEE  + g_ = Ocp(X,){ (ti1 — 1)

lit1
=Sh +7 > 0p(X)h(tisr — 1)
i

so that o
Ol = 0% = / Dp(X,)" du
N

as claimed and then, by the relationship between It6 and Stratonovich integration:

cv
511%0 st 5Igtrdt st / 8K(/)

we get 0J = Olgyar..

7. Relationship with Lyons’ theory of rough paths

The general abstract result given in Proposition 1 can also be used to provide
alternative proofs of the main results in Lyons’ theory of rough paths [7], i.e. the
extension of multiplicative paths to any degree and the construction of a
multiplicative path from an almost-multiplicative one. The main restriction is that
we only consider control functions w(,s) (cfr. Lyons [7] for details and definitions)
which are given by

o(t,s) = K|t — s
for some constant K.
Given an integer n, T") (V) denote the truncated tensor algebra up to degree

n:TW(V) = @_ VO, V® =R. A tensor-valued path Z:I*>->T" (V) is of
finite p-variation if

HZ‘HHW/pSKWv V/j |ﬂ‘<l’l, (53)
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where /i is a tensor multi-index. A path Z of degree n and finite p-variation is almost
multiplicative (of roughness p) if Z° =1, n>|p| and

NZF =" Z'ZF + R (54)

VR=[1

with RfeQ%5(I, T™ (V) for some z>1 uniformly for all 4. By convention the
summation » ;. i does not include the terms where either ¥ = () or ¥ = 0.

A path Z is multiplicative if Z° = 1 and

NZ'=Y" Z'Z". (55)

VR={1
Then the key result is contained in the following proposition:

Proposition 9. If Z is an almost-multiplicative path of degree n and finite p-variation,

n=|p|, then there exists a unique multiplicative path Z in TP D(V) with finite
p-variation such that

|27 - Z7|l.<k (56)
for some z>1 and all multi-index [i such that |i|<|p].
Proof. Let us prove that there exists a multiplicative path Z such that
Z=Z+Q (57)
with Qe Q%*, z>1. We proceed by induction: if |g| = 1:
NZ, = R,

which, given that R € Q%3, z> 1, implies that exists a unique ZF such that NZF =0
and

ZF=Z" + AR" = ZF + OF

with Q"€ Q%~. Then assume that Eq. (57) is true up to degree j — 1 and let us show
that it is true also for a multi-index i of degree j:

NZ'=>" Z'Z°+ R
VR={1

=Y Z+ONZ+ )+ R

VE=[l
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Z_ ZGZ!? + Z_ [QT'Z;E+ZVQIE+ QFQ}?} +Rﬁ

VE=[l VE=[
= § Z'Z* + RE.
v k=f1

If we can prove that RP is in the image of N, then writing
ZR— 70 _ ARF = Z~ + Qﬂ
we obtain the multiplicative property for Z*

su

NZF =Y 72
VR=[

with || =/, and we are done since uniqueness is obvious. To prove RicIm N we
must show that N, RF = 0:
N>R =N, =N,

Z ZGZ;@

VR=[

NZ'-N" Z'ZF
V=

S NZZ Y ZNZF
K=[

VR=f1 =

where we used the Leibnitz rule for N, (see Eq. (9)). i
To finish we can take for the constant K in Eq. (56) the maximum of ||Q"||, for all

lal<|pl O

Proposition 10. Let Z be a multiplicative path of degree n and finite p-variation such
that
_ g(k
> 12, <C g (58)
ft:|al=k

Jor all k<n and with o, C>0; then if (n+ 1)>p and C is small enough (see Eq. (60))
there exists a unique multiplicative extension of Z to any degree and Eq. (58) holds for
every k.

Proof. By induction we can assume that Z is a multiplicative path of degree k for
which Eq. (58) holds up to degree k and prove that it can be extended to degree k + 1
with the same bound. Note that k >#n and then (k + 1) >p. For || = k 4+ 1 we should
have

NZF =" Z'ZFe a0, (59)

VR=[1
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Since (k 4 1) > p, this equation has a unique solution Z# € Q¢**1/?(T*+1(1/)). Then
observe that, from Eq. (59)

Zh = Zlh + ZE, + Z z,Zy,
VK=l

and taking as u the mid-point between ¢ and s we can bound Z# as follows:

2—=i/p p—(k+1-i)/p

1 2
§ 0 E i 2, k+1 E
||ZS[H(](+1)/17<2(]€+1)/17 ||ZST|| k+1 /p C l' (k+ 1 _ l)'.
|E)=k+1 |a|=k+1 ’ :

Now,
k1 n—ifp A—(k+1-i)/p  ktl H—i ~—(k+1-i) Lr] (k+1=i)/py—ifp _ H—(k+1—i)y—i
2 2 < Z 270 2 ) (2-( 2- 2- 271
i (k+1—i) &t (k+ 1) s illk+1—i)!
__ % (k+1)! PRGNS
(k1) ik +1—i)!
<1 4 Dpktpjz—(kH)/p
(k+1)!
which gives
Z 1ZE]| <C2(2(/€+1)/p _2( +Dpk[]}]27(k+1)/p)ak+lgc o
PR 200/ (k+1)! (k+1)!
whenever C is such that
. 2(k+1)/p
0<C< min . (60)

k>n (2(k+l)/17 -2)(1 + DpkLPJz—(kH)/p)

This concludes the proof of the induction step. [
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Appendix A. Some proofs
A.1. Proof of Proposition 1

The basic technique to prove the existence of the map A is borrowed form [2]. Let
n(x) be a smooth function on R with compact support and n,(x) = o 'n(x/a).

Define
(ApA),, / dx//d‘cdo:fﬁ (x,8;7,0)Arys,

9‘7/{(}67 S;‘E,G) = [n,[f(x - T) - ’7/3(5 - T)]arn[f(x - O-)

where

and the integrals in 7 and ¢ are extended over all R.
Given that A€ %, there exists Re Q% such that NR = 4 and

(ApA),, / dx//dr do 7 p(x,5;7,0)(Rec — Rex — Ryg)

= —/ dx//dr do 7 p(x,8;7,0)Req

since the other terms vanish after the integrations in 7 or ¢. Then the following
decomposition holds:

AgA = Ry + 6P4(R), (A1)

where

(Ry), = / / dt dong(s — Dnglt — 0) — nyls — )| Reg

o0Pp(R / dx//dad‘mﬂ T)Oxp(X — 0) Reg.

In Eq. (A.1) the Lh.s. depends only on 4 = NR while each of the terms in the r.h.s.
depends explicitly on R. We have NAg4 = N Ry and since limy_,oRs = R pointwise
we have that limg_,oNAgA4 = NR = A. So every accumulation point X of AgA4 will
solve the equation NX = 4. Moreover if it exists X € Q¢” with z>1 and NX = 4
then it is unique and lims_044R = X in Q%" since in this case

and

A/gA = ﬁ/j + (3(15/;(R) = /\7/; + (sd)/;(X)

and it is easy to prove that ®3(X)—0in €.
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Now we will prove that limg_, 0434 exists when 4 e 27 with z>1.

Define f,:R*x R, >V as fi(x,y,0) =n,(x—1) and g,:R*x R, -V as
gs(x,v,0) =n,(y — a). Apply Stokes Theorem to the exact differential 2-form w :=
df. ndg, = d(fidg,) on D= A, x [B,f] where A= {(x,y)eR?:s<x<y<t}.

Then
/ a):/dwzo,
oD D

where the boundary 9D = —¢| + ¢3 + ¢3 is composed of ¢; = 4, x {f}, ¢2 = 4,5 X

{B'}, 3 =04,5 x[B,p]. So

/ w|1:ﬁ:/ w|a:ﬁ/—|—/ @)
At.s Al,s 8Al.x><[ﬂ7ﬂ,]

giving
t t B t
/ .?’/;(x,s;‘c,o)dx:/ f/;r(x,s;r,o)dx—l—/ doc/ H (o, x,t,8;7,0) dx
s K p K
with
%/(OC,X, Z S;‘L’7O') = ax[na(x - G) - ’11(5 - a)]@xnm(x - T)

+ O, (1 = 1) = 1, (x = 1)]0un, (x = 9).

Then
B t
ApAy :Aﬁ/AS,—/ doc/ dx//dr do A (o, x,t,8;7,0)Res. (A.2)
p K

Assume we can write A = ,A; where 4;€Q%5""" for a choice of n and
p;>0, i=1, .. ,n Write p; =z — p,.
Then consider

I(x) = —/St dx//drda%”(oc,mas;r?a)Rw
= [ [ drdotom,is - o)ine— o) - (s~ )

= Oy (1 = 1), (1 = 0) = 0, (s — 0) |} Reo

+ / " / / dr oo, (x — 0w (x — ) — A, (x — )0 (x — )] Reo
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= / / dt do0,n, (o)1, () [Ritrst6 — Retrsto — Riterto + Rigrsiol
f Cix [ [ v o010 Ressee ~ Ressed
_ / / dt dod,n, (o)1, (1) NR i sresro + NRiiersosso]
[ e [ [ e o0n @000 VR s = NR e
so that we can bound
1l [ [ dedoioun (@)l IV Rssssesecl + VR s
4 / Cax / / dt dol0n, ()] 0(0) [INR s mwsel + INRyecaol]

n
<D il / / dt do|0,1,(0) | In, (D[]t — s |x — ol + ¢ — o]t — 51"
i=1

n

t
+ Z\IAfl\p,-,p;/ dx//dfdﬂlﬁxm(f)l|3an(6)\[|6|”"|1|”"+|f|””|0|”"],

i=1

where each term can be bounded as follows:

/ / dt daldn, (o) In, ()|t — ol = 2! / / dvdoln(o) — o/ (&) ||n(0)| |t — of <Ko,

/ / dt|By, (D)ol = 0! / / deln(z) — o (O] <K'/

for a suitable constant K >0 and obtain
n
(@< K Y (@ o= s ot e — s[4,
i=1
+ K|t — S|Zof‘2||A,~\|p‘_p;.
Upon integration in o we get:

1 n
| i<k y il ,
i=1

if | — s|<1. By dominated convergence of the integral in Eq. (A.2),

lim Apd =: A4
f=0
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exists (in Q% uniformly in bounded intervals). If we also observe that
n
-1
(A A <KB) e =5 D (14l
i=1
we get that

n
‘(AA)rs‘gK Z ||Ai||p,7p;
i=1

for |t — 5| < 1.
Finally, let J,5(x) =s+ (t —5)(0v(xal)) and (J;S‘X)uvw = X7, )0y (0) Js(w) fOT
all X eQ%,. Then

~y oy
5 X <l = s 1Kl -

Since A/;A,’S = (J:SA\tfslﬂA)(),I = A|t*S\ﬁ(Jt>tsA)0,1 and

n
(AR ol <K Y 15l

i=1

this is enough to obtain the desired regularity:

n
|(AA)I,V|<K|Z - S|Z Z ||Ai||pi,p;‘
i=1

=

The constant K can be chosen to be equal to 1/(27 —2). Let ® = Z?:lHAiHﬂ,.,pt-
and R = A4 and since NR = A write

Rsr - Rut + Rsu + Z Ai,sut
i

with t>u>s and u = s+ |t — 5|/2. Then estimate
|Rst| < |Rut| + |Rvu| + Z |Ai,sut|
i

Y S 1Al gl — 5171t~
i

o}

< IR (17— u

Tt lu—s

2R AP
22

so that

1
Rl|.<—= .
IRIL<3—
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A.2. Some proofs for Section 4
A.2.1. Proof of Lemma 1
Proof. Write down the decomposition for Z and Y:
0Z' = F'oY" + RSy,
oY* = GoX" + Ry

where Fe@""(I,V®V*), Ge€*'(I,V), RzyeQ¥"(I,V) and RyeQ¥°(I,V),
then

0Z" = FI'G™0X" + Ry + FIRY, = Z}'oX" + Ry

with Z* = FIG) and R}, = RY, + F'RY,. Let = min(o,#) and note that for Rzy
we have

1Rzl <IZl ey .00

I[Rzyll,;<|Z

b1 FEN G AY

r <NZl vy (LY )
and by interpolation we obtain (a = (5 —9)/(n —y)<1)
IRz lls.r <Rz IRz |15 1 < HZ gy s (U 1Y 1) <2 gy s (U Y1)
and similarly
Ry (151 <Yl g0, (T 1XT 03

moreover,

[F o, = sup |F, — Fo|< sup (|Fi| + [Fy|) = 2||F[ . ; <2 Zllpy s
tsel tsel

0, again by interpolation, we find
1 50 SUZIpgy a2 <2 Z iy
and
G-, <2 Yl p(x y.0).1-
To finish bound the norm of Z,Z’ as
W(Z, Z)px yoys =112 M ot + 1 Z 5y + 1Rz l5 1 + 11211,

Sl 1G] oo 1 + 15, 1G] oo 1
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+ 1 F o 1G5 + [ Rzyllsr + [1F] 1+ 120

< Kl 2 py s (LY pex .o, ) (T NIXL ). O

A.2.2. Proof of Proposition 4
Let y(r) = (Y; — Y,)r + Y; so that

1
7t~ 7 = p(y(1))" — p(y(0))" = /0 By (r)'Y ()" dr

1
—(v - ) / oy (1)) dr

1
=0p(Y)" (Y = Y{) + (Y] - YS’)/O [0vp ()" — 0 (Yy)"] dr

Then if 0Y* = Y*0X" + R" we have

1

Zi = Z = 0,0(Y,)" Y (X7 = X7) + 00 (YR, + (Y, — Y,v")/ [0vp ()" — Oy (Yy)"] dr
0

:ZZLS(XtK _Xsh) +RZst (A3)

with Z¥ = 0,0 (Y)Y

1215, < 100(Y )],
< (100 (Y)ll5, + 100 (Y)Y Ile + 100 (Y], (Y]], + 1Y 1lo)

0
<llollisUY1E + 2] + 2ol s (Y], +211Y]L,)

Yl + 100Vl 1Y,

140
< Klloll s (1Y 1pe s + 1Y gm)-

)

As far as Ry is concerned we have
1
Rzl =1%,= 1| [ 100(60) ~ 00(1.)1]

1
/ dr
0

140 1 (140
<lloll, Y= Y <Kol Il VIl — s

)

and

1
Rzl = Y, — i [ [ 10000 —a<p<Ys>|dr} <Klloll sl ¥IL I~ sf"



M. Gubinelli | Journal of Functional Analysis 216 (2004) 86140 131

Interpolating these two inequalities we get

IRz]|, < <Kol 5l1Y 1175

D(X,y,0)

which together with the obvious bound
ZIl, <llell sl Y1l
implies
121 0 3.0) KNI U ¥ p0rm + 1Y ) + YN )-

IfoYH = 17",“5)(” + R* is another path, Z, = q)(f’t) and H = Z — Z we have (see
Eq. (A.3)):

SH" = H"6X" + A" + B" (A.4)
with
HY' = 0,0(Y)" Y = 0,(T)' T,
Al = 8.9(Y)'R, - 0,0(T,)'R,
and

1 1
B, =67, [ 1000:0) = 0000 dr = 67, [ 10.0G()" - 0,0G(0)) )
0 0
_ 1
=o(Y = 7 [ 0000 - 000(0)]dr
ot
+ 07, [ 0a0r) - 2061 - 210 0(0)" + 80(GT0))]dr

Let y(r,r') = (»(r) — y(r))¥ + y(r) and bound the second integral as

/0 oy (1) — 8,0 — 0,0((0))" + 0,0 (7(0))]

1 1
dr | dr'[0:0,0(y(r,1"))" = 00, (y(0,))" (¥ (r) — ¥(r))"

1 1 )
<\|<0||z,5/0 dV/O d’'|y(r,7') — y(0,7)|y(r) — 3(r)|
oyt o ol 70
< Kol (1Y, + 1Y) Y = Y|, 2 — s,
then

- _
| SUNXIL +HYILY = Yl
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and in the same way it is possible to obtain

1Bl <ll@lls (1Y = Y|, + [ YI[[[Y = YI[.,).

Moreover
H'[] . <ol Y = Yl + 1Yl lellsllY = Yl
|7’ }'5<||@||2,5||Y/_ Y/||~,-5 +Y' 76 |(/’H2,5||Y_ Y,
and
1411, < ol sl1R = R, + [[RI]|olls1 Y = Y],

S el (1Y = Y XN, + 1Y = YIL) + (Y NXAL + 1Y) el 1Y = Yl

141 (1407, <@l 126lIR = Rll1ssy, + 1Rl @161 Y = Pl
And collecting all these results together we end up with
1Z = Zl|pixy 1400 < CNNY = Yllpx (150
with
1+0

C=Kllolls(L+ [[XI[,) L+ Y| pxy 120 + I }7||D(X,y,(1+¢s)y))

To finish consider the case in which 6 Y* = 2’,“51{’ v+ ﬁ”? is a path controlled by
X. If we let again Z, = ¢(Y,) and H = Z — Z we have

OH" = 8,p(Y ) Y"6(X* — X*) + HFOX* + A + B

where the only difference with the expression in Eq. (A.4) is in the first term in the
r.h.s. then

NZ = Z||, +1Z' = Z'||5, + IRz = Rl (115, + 12 = Z'|| , <C(e + [|1X = X]|,)
with
e=|IY = Y[, +||Y = Y'lls, + IRy = Ryll(115), + 1Y = Y[,

and this concludes the proof of Proposition 4. [
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A.3. Some proofs and lemmata used in Section 5
A.3.1. Proof of Lemma 3

Proof. Take uelInJ:

el Xl + Xl (VX))
rendsent [t—=SI" " enssess [t =]
X, X, NX
< sup | "[|,, +  sup | mly sup Ki)”j"
tergsent [t—=SI" iergsens [t —sI" ienssens |t—s|
< wp el el (VX
tengsent [E—ul" " epngsens lu—sl" ienssens |t —ul?|s —ul”®
< HX”",',I + HX 7 + ||X||y1,y2,luJ
then
X, X X X
) = su su + su
Xl b | Xsi| . | Xy . | Xy | Xye|

tselud |t — S|""\ el [t—=s|"  ises [t = tenJsenl |t — sl

< 2([[X1L, ; + 11XTL, ) + [1X

Pyl OJ

as claimed. 0O

A.3.2. Lemmata for some bounds on the map G
With the notation in the proof of Proposition 5 we have

Lemma A.1. For any interval I = [ty,ty + T|=J such that T <1 the following bound
holds

e21<KCx1CYy /(1 + ol 5)p; + Ty 1] (A.5)
Proof. Consider first the case when ¢ = @. Eq. (A.6) is a statement of continuity of
the integral defined in Proposition 3 is a bounded bilinear application

(4, B)— [ AdB then it is also continuous in both arguments and it is easy to check
that

110z — QEH(H(S)N <K(CXJ‘S*W,I + Cy.1p1), (A.6)
where we used the shorthands (defined in the proof of Proposition 6):

ezt =2 =2l ewr =W =Wl ey =Y =Yl 5 ey, =Y =Yl



134 M. Gubinelli | Journal of Functional Analysis 216 (2004) 86140
pr=11X - X/H,I + Yo — }70|
Cxr=||X],; + ||A7||;1
Cyr=|Y]l,;+ H?H,I
Observe that

[0(Y) = @(V)llo 1 < l0(Y0) = @(Yo)| + T7[|0(Y) = @)l

< |lolly 501 + TEVST/V,I’

e21< |lo(Y)oX — (Y)oX||,, + |0z — O51I,,
<llo(Y) = o), XL, + e X = XL, + 7102 = Q3111514
< llelli sp1Cx.r + T&/'S?V,I + KTM(CXJST/V,I + Cyapy)
<ol sp1(Cxs+1+KCy ) + T, ;(Cxs + KCy ).

It remains to bound &j, ;: Write

1
P(x) —o(y) = /0 doede(ox + (1 —a)y)(x — p) = Ro(x,y)(x — y)
then

IRoll,, = sup [Ro(x,p)[<lleol]
x,yelV

and
1
[Ro(x,3) — Ro(x',)/)| = \ [ @0+ (1= ) — (e + (1 = 21 s
1 N
< ||<p||1,5/0 ja(x — ) + (1 — ) (p — )|° d
< llollisllx = 2P+ Iy —¥'P)
so that

eiws =10(Y) = o(Y)ll5,1 = [Ro(Y, Y)(Y = Y)lls,,;

<IRo(Y, V)l o 1Y = Yllg s + IR(Y, Y)llg )| Y = Yl
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<ol llY = Yl + 1Y = Il fllell UYL+ Y11,
K||(PH15CY18YI
< K||(p|‘]75C§/,18y,]
concluding:
e21<Kl|oll sCx.1Cy 1(pr + Ty 1). (A.7)

The general case in which ¢ # ¢ can be easily derived from Eq. (A.7) and the
continuity of the integral, giving:

ez1<KCx Cy (1 + ol 5)p + TPy ). O

Using the notation in the proof of Proposition 7 we have

Lemma A.2. For any interval I = [ty,ty + T|=J such that T <1 the following bound
holds

32.1<K||‘P||z,5(C§(,1C§I,1P1 + Ta}lCif,IC%’,ISYJ) + Kllp — @||2,5CX.,IC§7,1~ (A.8)

Proof. To begin assume that ¢ = ¢. Let W = ¢(Y), W = o ) and write their
decomposition as

SWH = WISX' + Ry, SW'=WIoX" + R,
with W = 8.p(Y)" Y, W' = 8,.0(Y)"Y*. Moreover let
Eis = W = Wl g+ W = Wlls, s + [ Rw + Ripll 1oy, + 1V = W1,
Using the bound (29) we have

19 = O3l 245y, <K(Di + D2) (A9)

*
D] = CXSW,I

Dy = (llolpge g rsoms + 1O @ rasyy ) X = Xlp + 11 = X1, 1)
< K||(P||2,5C§/,IPI

where we used Eq. (40) to bound [|@(Y)||p(x ; (1+s),)s and H(p(Y)HD(?,y,(H&)y),I in

terms of Cy ;.
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By Proposition 4 we have
€ <KllollsCxsCy 7 (11X = XI|,; + &y 1) <KllollsCxaCh (o +evs)  (A.10)
with

ey =11V =Y, + 1Y = Y'll5, + IRy = Ryllrsy, + 1Y = Y1,
and
Cr= K||(P||2,5CXJC§/+,15~

Taking T'<1 we can bound &%} ;<ey; +|[|Y — f’||},,, and

gy <Y = Y|, + 1Y = Y|, +|[Ry = Ryll, + Cxuevs + Cyil|lX — X||.,

<2Cxyevi+ Cyapy, (A.11)

where we used the following majorization for || Y — Y e

1Y = P, <[|Y'5X — ¥'6X|l,, + IRy — Ryl
<Y = L X1+ 1Y s + 1 F 1] DX = XL + 1Ry = Ryl

< Cyreyy + Cryapg- (A.12)
Eq. (A.11) together with Eq. (A.10) imply
ey <K| ‘@||2,6(CXJC§’,IPI + Cg(,IC%,ISYJ)
and so

102 — Q5ll(215), < KCxew.s + K|loll5,5C5 101
< K(CxCr(1+2Cy) + l|@ll,sCy )pr + 2KC Crey s

< K|lgllo,s (CXCypy + Cy Cieva) (A.13)

e21 =lo(Y) = (Yl o s + l9(Y) = @(Y)|],; + IRz = Rzl

< |p(Yo) — o(Yo)| +2[lo(Y) — ()|l , + IRz — Rzl ;.
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Proceed step by step:
100(Y) = 0p(V)||.. ;< [00(Yy,) = 0p(Yy,)| + T7|00(Y) = dp(Y)|l, ;

S ollasl Y = Yol + T o]l Y — Y]

7

< T7|opllhsCxpeya + 2|0l 5Croapy

Next:
IRz — R§||2~,~,1< Ha(l’(y)xz - 8@(?)%2%%1 + 110z — QZsz.I
<100(Y) = 00(V)[] 0 (I ]y + 11X, 1)
+ (100(V)]] s + [100(D)]] NI =X,
+ T7|Qz — O (220y1
2 3 5y 3 12
< Klloll,5(p,Cy Cy + ey 1 T Cy Cy)
and

lo(Y) = o(Y)I],; < 100(Y)6X — dp(Y)oX ||, ; + [|Rw — Rz, ;

< 109(Y) = 0o(Y)Il.,. /(X1 + 1X1], ;)

+ (100N, ; + 100X, NIX = X||,, + T7||Rw — R,
< (ol Y = Yl + T7ll@l]55Cx sey.s
+ [l sCral1X = X1, )(IX1),, + 11X11,.,)
+ 2ol X = XL, + T7e},
< Kl[@ll55(Cx.r Cyupr+ T C%(,IC%/,IS y.1)-
Finally we have
&7,1 <KH(PH2,5(C§(J C;’,Ipl +T7 CB}(,IC?J& Y.1)- (A.14)

When ¢ # ¢ rewrite the difference Z — Z as

! t
Zi~2,=Y,-Y, +/ [p(Y) = @(Y)] dX+/ [p(Y) — @(Y)]dX
to to
the contribution to ¢z ; from the first integral is bounded by Eq. (A.14) while the last
integral can be bounded by K||¢ — ||, 5Cx 1 C?% , (cf. Eq. (46)) giving the final result
(A5). O
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A.4. Proof of Lemma 4

Proof. Let B(u,r) = {weT :|w—u|<r}. Observe that by the monotonicity and
convexity of iy for any couple of measurable sets 4, BT we have

dt ds | A )dlds)
|, R <A B Ay (‘”<p d(t.)/%) ) TA]IB]

< p(d(4, B)/ 4y (Wlfm) (A15)

where d(A4, B) = sup, 4 e plt — 5. Let

_ du dv
R(t,ri,mm :/ Ry,
(rer) = | B s B

Take t,s€T, a = |t — s|, define the decreasing sequence of numbers 4,0 as 1y =
a, Ju.1 such that

() = 2(Oni1)
then
P + 21) /) < () = 2p (A1)
=4p(Zns1) = 2p(2nt1)
=4[p(Ans1) — P(Ans2)].

Using Eq. (A.15) and the fact that |B(¢, 4;)| = 4; for every i>0 we have

R 2 ) | < P+ i) /40 ( : )

/“n)‘nJrl

<4Ln(/1n+1)—1’(’1"+2)wl< U >

jvn/an
An+1 B U
< 4/) Y 1<r—2)dp(r)~

Take a sequence {7;},~, of variables in T and note that, for every n>0,

Ry, = Ry, + Ry, 1, + (NR)

Hnt1tn

so that, by induction,

Ryy = Ry, + Z [Ri 1t + (NR),,, ]
i—0



M. Gubinelli | Journal of Functional Analysis 216 (2004) 86140 139

Average each ¢; over the ball B(¢, ;) and bound as follows:

n

R(1,0,20) = R(£,0, Js1) + ditt, 2 +Z t,hiv1, ), (A.16)
i=0

where

- dv du
B(t, Ay, A =/ 7/ ————NRyy
(8 i1, &) B 1Bt 2is)| S B )

which, using (50), can be majorized by

|B(t, i1, Ai) | < b~ (2 ) (Zi/2)<4y”! (A_C;) [P(Aiv1) — p(Lir2)]

vH»l C
-1
<[ (F)e

Then, taking the limit as n— oo in Eq. (A.16), using the continuity of R and that
R, =0, we get

st o (G ol (o
o e (e
<4 [T (5) o (§)]w (A17)

and of course the analogous estimate

IR(5,0, 70)| <4 /0 . [w—l (%) +y! (g)}dp(lf). (A.18)

Rst = Rsu + Rm' + th + NRsut + NRuvr

Moreover,

SO

|Rst| < |Rm| + |th| + |Ruv‘ + sup ‘NRsrt| + sup |NRurt|-

res.t reu,]

By averaging u over the ball B(s,a) and v over the ball B(z,a) we get

S e et <rGarw (g) < [0 ()t
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and

du L /(C =l /C
Tare 7 Sup [NRux|<p(a/2)y (—>< Y| = )dp(r).
/B(s,a) |B(Sa a)|re[u,t] | t| ( / ) a? 0 r? ( )

Putting all together we end up with

iz [0 () o (G
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