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Abstract

In this paper a mixed method, which combines the state space method and the differential quadrature

method, is proposed for bending and free vibration of arbitrarily thick beams resting on a Pasternak elastic

foundation. Based on the two-dimensional state equation of elasticity, the domain along the axial direction

is discretized according to the principle of differential quadrature (DQ). As a result, the state equations
about the variables at discrete points are established. With consideration of the end conditions and the

upper and lower boundary conditions in the derived state equations, governing equations for bending and

free vibration problems are formulated. Numerical results prove that the present approach is very efficient

and reliable. The effects of Poisson’s ratio and foundation parameters on the natural frequencies are dis-

cussed.

� 2004 Elsevier Inc. All rights reserved.

Keywords: State space method; Differential quadrature method; Pasternak elastic foundation; State equation; Bending

and free vibration

1. Introduction

Beams resting on elastic foundations have wide application in modern engineering and pose
great technical problems in structural design. As a result, numerous research reports involving the
calculation and analysis approach for beams on elastic foundation have been presented.
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As is known to all, the Winkler model of elastic foundation is the most preliminary in which the
vertical displacement is assumed to be proportional to the contact pressure at an arbitrary point
[1]. A variety of investigations on the free vibration, buckling and stability behavior of Winkler
foundation beams have been conducted by many researchers. For instance, Eisenberger and
Clastornik [2] studied the vibration and buckling of beams on a variable Winkler foundation and
numerical results were obtained. Ding [3] investigated the free vibration of simply-supported
beams resting on a variable Winkler elastic foundation. Eisenberger et al. [4] employed the finite
element method to analyze the stability of elastic foundation beams. Au et al. [5] investigated the
axial-loaded vibration and stability of non-uniform beams with abrupt changes of cross-section
resting on a Winkler elastic foundation with arbitrary foundation stiffness, applying a unified
method in which C1 modified beams vibration functions were used. More reports on Winkler
foundation beams may also be found in literature, such as Refs. [6] and [7].
Although the Winkler model is simple and widely necessary, the assumption that the foun-

dation soil is composed of closely spaced, independent and linear elastic springs leads to the dis
continuity of the soil which was proved to be absent of enough accuracy [8]. To overcome this
sprawl, some researchers proposed various two-parameter foundation models, which may capture
the real behavior state of the soil more precisely, such as the generalized foundation [9], Pasternak
foundation [10] and Vlasov foundation [11]. Lee and Kes [12] conducted a study to determine the
natural frequencies of non-uniform Euler beams resting on a non-uniform foundation with
general elastic end restraints. Franciosi and Masi [13] employed a finite element method with the
hypotheses of exact shape function to investigate the free vibration of Bernoulli beams on elastic
foundations with two parameters. Wang et al. [14] presented an exact solution of Timoshenko
beams resting on two-parameter elastic foundations using Green’s functions, and performed the
numerical calculation for bending, free vibration and buckling of several beams. De Rosa and
Maurizi [15] investigated the influence of concentrated masses and Pasternak soil on free vibration
of beams and gave exact solutions for Bernoulli–Euler beams based on the beam theory. Free and
forced vibration of a general elastically end restrained non-uniform beam, resting on a non-
homogeneous elastic foundation and subjected to axial tensile and transverse forces, were studied
by Ho and Chen [16] using differential transform. Recently, Chen [17] developed a new approach
called the differential quadrature element method (DQEM) for the free vibration analysis of
shallow beams resting on elastic foundations. Analyses and calculating approaches as to elastic
foundation beams may also be found in references [18–20]. Note that all the above-mentioned
studies are based on various beam theories, in which more or less assumptions on deformation
along the thickness direction are introduced.
The differential quadrature method (DQM) has been proved adequately proficient coupled with

various beam or plate theories [21–25]. In this paper, a new approach using the DQ technique and
based on the state space formulations is developed for bending and free vibration analysis of
isotropic beams with arbitrary depth-to-length ratios (see Fig. 1) resting on a Pasternak elastic
foundation. In this model, the normal stress ryðx; 0Þ and vertical displacement vðx; 0Þ at an
arbitrary point of the lower boundary of a beam hold the following relation
ryðx; 0Þ ¼ Kwvðx; 0Þ � Kp
o2vðx; 0Þ

ox2
; ð1Þ
where Kw and Kp are the foundation moduli.
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Fig. 1. Geometry of a beam on Pasternak foundation.
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The main point of the present method is that the two-dimensional state equation is discretized
in x-direction according to the principle of DQ so that the state equations with respect to the state
variables at discrete points are established. End conditions are precisely incorporated and the
general solution to the state equations is derived. Introduction of Eq. (1) and the upper as well as
the lower boundary conditions into the derived general solution achieves the formulation of
equilibrium equation for bending or frequency equation for free vibration of Pasternak foun-
dation beams. Comparisons of mid-span deflection of uniformly loaded beams and natural fre-
quencies with the published results indicate that the present mixed method is highly efficient and
reliable. Influences of Poisson’s ratio and foundation constants on the natural frequencies are
discussed.
2. State equations and boundary conditions

Consider a straight beam of length L and depth H , having a rectangular cross-section of unit
width. A Cartesian coordinate system ðx; yÞ is defined as shown in Fig. 1, then the two-dimen-
sional constitutive relations for the elastic body can be expressed as
rx ¼ c11
ou
ox

þ c12
ov
oy

; ry ¼ c12
ou
ox

þ c22
ov
oy

; sxy ¼ c66
ov
ox

�
þ ou

oy

�
; ð2Þ
where rx and ry are the normal stresses in x and y-directions respectively, sxy is the shear stress, u
and v are the components of displacement in x and y-directions respectively, and the elastic
constants cij are defined as
c11 ¼ c22 ¼
E

1� m2
; c12 ¼

mE
1� m2

; c66 ¼
E

2ð1þ mÞ ; ð3Þ
where E is elastic modulus, and m is Poisson’s ratio. In the absence of body forces, the differential
equations of motion are
orx

ox
þ osxy

oy
¼ q

o2u
ot2

;
osxy
ox

þ ory

oy
¼ q

o2v
ot2

; ð4Þ
where q is the mass density of material. Assuming that the isotropic elastic body undergoes free
vibration with a circular frequency x, utilization of Eq. (2) and Eq. (4) leads to the following state
equation [26]
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ou
oy

¼ � ov
ox

þ 1

c66
sxy;

ory

oy
¼ �qx2v� osxy

ox
;

ov
oy

¼ � c12
c22

ou
ox

þ 1

c22
ry;

osxy
oy

¼ c212
c22

�
� c11

�
o2u
ox2

� qx2u� c12
c22

ory

ox
; ð5Þ
in which u, ry, v and s are state variables, and the induced variable rx is determined by
rx ¼ c11

�
� c212
c22

�
ou
ox

þ c12
c22

ry: ð6Þ
Note that for bending problems we can just set x ¼ 0 in Eq. (5).
According to the principle of DQ, the nth-order partial derivative of a continuous

function f ðx; yÞ with respect to x at a given point xi can be approximated by the Lagrange
polynomial:
onf ðx; yÞ
oxn

����
x¼xi

¼
XN
k¼1

W ðnÞ
ik f ðxk; yÞ ði ¼ 1; 2; . . . ;N ; n ¼ 1; 2; . . . ;N � 1Þ; ð7Þ
where N is the discrete points number, and W ðnÞ
ik are the weight coefficients determined as follows

[27]
W ð1Þ
ik ¼

QN
j¼1;j6¼iðxi � xjÞ

ðxi � xkÞ
QN

j¼1;j6¼kðxk � xjÞ
; ð8Þ

W ðnÞ
ik ¼ n W ðn�1Þ

ii W ð1Þ
ik

"
� W ðn�1Þ

ik

xi � xk

#
ðn ¼ 2; 3; . . . ;N � 1Þ; ð9Þ
for i; k ¼ 1; 2; . . . ;N , but i 6¼ k, while W ðnÞ
ii are defined by
W ðnÞ
ii ¼ �

XN
k¼1;k 6¼i

W ðnÞ
ik ði ¼ 1; 2; . . . ;N ; n ¼ 1; 2; . . . ;N � 1Þ: ð10Þ
Applying the above-mentioned procedure to Eq. (5) by discretizing the domain of x, the following
state equations at an arbitrary discrete point xi are derived
oui
oy

¼ �
XN
k¼1

W ð1Þ
ik vk þ

1

c66
si;

oryi

oy
¼ �qx2vi �

XN
k¼1

W ð1Þ
ik sk;

ovi
oy

¼ � c12
c22

XN
k¼1

W ð1Þ
ik uk þ

1

c22
ryi;

osi
oy

¼ c212
c22

�
� c11

�XN
k¼1

W ð2Þ
ik uk � qx2ui �

c12
c22

XN
k¼1

W ð1Þ
ik ryk;

ð11Þ

and Eq. (6) becomes
rxi ¼ c11

�
� c212
c22

�XN
k¼1

W ð1Þ
ik uk þ

c12
c22

ryi; ð12Þ
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in which ui ¼ uðxi; yÞ, vi ¼ vðxi; yÞ, ryi ¼ ryðxi; yÞ, si ¼ sxyðxi; yÞ and rxi ¼ rðxi; yÞ, and
i ¼ 1; 2; . . . ;N .
For a special problem, it is necessary to take account of the end conditions in Eq. (11) to obtain

the corresponding general solution. Three types of beams, i.e. simply supported–simply supported
(S–S) beam, clamped–clamped (C–C) beam and clamped-free (C–F) beam, are investigated for
examples in this paper with end conditions described as follows:
simply supported–simply supported (S-S) beam:
v1 ¼ rx1 ¼ 0; at x ¼ 0; ð13aÞ

vN ¼ rxN ¼ 0; at x ¼ L: ð13bÞ
To involve all the end conditions in the state equations, Eq. (11), it is necessary to express the
stress boundary conditions in Eq. (13) in terms of state variables. Hence, the following expression
is obtained from Eq. (12),
� c12
c22

ryi ¼ c11

�
� c212
c22

�XN
k¼1

W ð1Þ
ik uk ði ¼ 1;NÞ; ð14Þ
clamped–clamped (C–C) beam:
u1 ¼ v1 ¼ 0; at x ¼ 0; ð15aÞ

uN ¼ vN ¼ 0; at x ¼ L; ð15bÞ
clamped-free (C–F) beam:
u1 ¼ v1 ¼ 0; at x ¼ 0; ð16Þ

sN ¼ 0; � c12
c22

ryN ¼ c11

�
� c212
c22

�XN
k¼1

W ð1Þ
Nk uk; at x ¼ L: ð17Þ
The second expression in Eq. (17) is derived in the same manner as the case of Eq. (14).
Substitution of the end conditions of each case into Eq. (11) respectively gives the following

final state equations:
simply supported–simply supported (S–S) beam:
oui
oy

¼ �
XN�1

k¼2
W ð1Þ

ik vk þ
1

c66
si ði ¼ 1; . . . ;NÞ; oryi

oy
¼ �qx2vi �

XN
k¼1

W ð1Þ
ik sk ði ¼ 2; . . . ;N � 1Þ;

ovi
oy

¼ � c12
c22

XN
k¼1

W ð1Þ
ik uk þ

1

c22
ryi ði ¼ 2; . . . ;N � 1Þ; osi

oy
¼ c11

�
� c212
c22

�XN
k¼1

W ð1Þ
i1 W ð1Þ

1k

�

þ W ð1Þ
iN W ð1Þ

Nk � W ð2Þ
ik

	
uk � qx2ui �

c12
c22

XN�1

k¼2
W ð1Þ

ik ryk ði ¼ 1; . . . ;NÞ: ð18Þ
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clamped–clamped (C–C) beam:
oui
oy

¼ �
XN�1

k¼2
W ð1Þ

ik vk þ
1

c66
si ði ¼ 2; . . . ;N � 1Þ; oryi

oy
¼ �qx2vi �

XN
k¼1

W ð1Þ
ik sk ði ¼ 1; . . . ;NÞ;

ovi
oy

¼ � c12
c22

XN�1

k¼2
W ð1Þ

ik uk þ
1

c22
ryi ði ¼ 2; . . . ;N � 1Þ;

osi
oy

¼ c212
c22

�
� c11

�XN�1

k¼2
W ð2Þ

ik uk � qx2ui �
c12
c22

XN
k¼1

W ð1Þ
ik ryk ði ¼ 1; . . . ;NÞ: ð19Þ
clamped–free (C–F) beam:
oui
oy

¼ �
XN
k¼2

W ð1Þ
ik vk þ

1

c66
si ði ¼ 2; . . . ;NÞ; oryi

oy
¼ �qx2vi �

XN�1

k¼1
W ð1Þ

ik sk ði ¼ 1; . . . ;N � 1Þ;

ovi
oy

¼ � c12
c22

XN
k¼2

W ð1Þ
ik uk þ

1

c22
ryi ði ¼ 2; . . . ;NÞ; osi

oy
¼ c11

�
� c212
c22

�XN
k¼2

W ð1Þ
i1 W ð1Þ

1k

�

� W ð2Þ
ik

	
uk � qx2ui �

c12
c22

XN�1

k¼1
W ð1Þ

ik ryk ði ¼ 1; . . . ;N � 1Þ: ð20Þ
3. Formulation of governing equations

For convenience, the final state Eqs. (18)–(20) can be written in a uniform matrix notation as
o

oy
fdg ¼ Mfdg; ð21Þ
where fdg ¼ fdðyÞg ¼ ½uTrTy vTsT

T
, u, v and ry, s are column vectors which in consecutive manner

consist of the unknown displacement and stress components for an arbitrary vertical coordinate y
at all discrete points, and the coefficient matrix M can be obtained directly from Eqs. (18)–(20).
The general solution to Eq. (21) can be expressed as
fdðyÞg ¼ eMyfdð0Þg: ð22Þ

Setting y ¼ H in Eq. (22) yields
fdðHÞg ¼ Sfdð0Þg; ð23Þ

where S ¼ expðMHÞ. Eq. (23) establishes the transfer relationship of the state variable vectors at
the upper and lower boundaries. As for the case of Pasternak foundation beams, Eq. (1) should be
considered. To do so, Eq. (1) is also discretized by using the principle of DQ as
ryið0Þ ¼ Kwvið0Þ � Kp

X
k

W ð2Þ
ik vkð0Þ; ð24Þ
where the initial and terminal values of the subscript k depend on the specific end conditions. For
example, we should take k ¼ 2; 3; . . . ;N � 1 for the cases of S–S and C–C beams, and
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k ¼ 2; 3; . . . ;N for C–F beam. Substituting Eq. (24) into Eq. (23), with proper rearrangement,
gives
uðHÞ
ryðHÞ
vðHÞ
sðHÞ

8>><
>>:

9>>=
>>; ¼ T

uð0Þ
vð0Þ
sð0Þ

8<
:

9=
; ¼

T11 T12 T13
T21 T22 T23
T31 T32 T33
T41 T42 T43

2
664

3
775

uð0Þ
vð0Þ
sð0Þ

8<
:

9=
;: ð25Þ
The formulation of Eq. (25) and the expression of matrix T are presented in Appendix A(taking
S–S beam as an example). For free vibration, the upper and lower stress components are known as
sðHÞ ¼ sð0Þ ¼ 0; ryðHÞ ¼ 0: ð26Þ

Introduction of Eq. (26) into Eq. (25) and elimination of uðHÞ, vðHÞ and sð0Þ from Eq. (25) result
in
T21 T22
T41 T42

� �
uð0Þ
vð0Þ

� �
¼ P

uð0Þ
vð0Þ

� �
¼ 0

0

� �
: ð27Þ
For the non-trial solution of Eq. (27), it is essential that the determinant of matrix P be zero at the
correct natural frequencies, i.e.
jPj ¼ 0: ð28Þ

It is worth noting that Eqs. (18)–(20) become the state equations for static analysis by setting
x ¼ 0. Assuming that the beam is subject to a distributed load qðxÞ at the upper boundary,
Eq. (26) becomes
sðHÞ ¼ sð0Þ ¼ 0; ryðHÞ ¼ q; ð29Þ

where q is a column vector consisting of qðxiÞ consecutively in which the subscript i is consistent
with that in the second expression in Eqs. (18)–(20). Utilizing Eq. (29) and Eq. (25), we get
T21 T22
T41 T42

� �
uð0Þ
vð0Þ

� �
¼ q

0

� �
: ð30Þ
By incorporating the displacement components of the lower boundary obtained from Eq. (30), as
well as Eqs. (24) and (29) into Eq. (22), the state variable vector for an arbitrary vertical coor-
dinate y can subsequently be derived.
4. Numerical results

In this paper, several examples are performed concerning bending and free vibration of beams
with unit width rectangular cross section resting on an elastic foundation. Noting that the DQM
has an excellent characteristic of convergence [28], the discrete points in the following examples
are sampled with N ¼ 9. Unequally spaced sampling points, the so-called Chebyshev–Gauss–
Lobatto points, given by [29]
xi ¼
1� cos½ði� 1Þp=ðN � 1Þ


2
L ði ¼ 1; 2; . . . ;NÞ; ð31Þ
are adopted for the calculation hereafter.
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Tables 1 and 2 list the numerical results of the non-dimensional mid-span deflection
�vðx ¼ L=2; y ¼ H=2Þ for uniformly loaded S–S beams and C–C beams respectively, and Tables 3
and 4 tabulate the natural frequency parameters

ffiffiffiffi
�x

p
of the two beams, respectively. A compar-

ison with the published results is also presented. The non-dimensional deflection �v, frequency
parameter

ffiffiffiffi
�x

p
and the other parameters in the tables are defined as
Table

Mid-s

Fou

Kw

0

10

100

Table

Mid-s

Fou

Kw

0

10

100
�v ¼ vEI
qL4

;
ffiffiffiffi
�x

p
¼

ffiffiffiffi
x

p qAL4

EI

� �1
4

; k ¼ H
L
; Kw ¼ KwL4

EI
; Kp ¼

KpL2

EI
;

where A is the cross-sectional area, and I is the second moment of the cross-sectional area. The
Poisson’s ratio is taken as m ¼ 0:3 currently.
It is worth pointing out that, for S–S beams, the variations of state variables along x direction

may be assumed as trigonometric functions to precisely satisfy the end conditions in Eq. (13), and
then the exact solutions can be obtained based on Eq. (5). The procedure is very similar to the
1

pan deflection �v 10�2 ðx ¼ L=2; y ¼ H=2Þ of uniformly loaded S–S beams
ndation parameters k ¼ 1=120 k ¼ 1=15 k ¼ 1=5

Kp Present Exact Ref. [14] Present Exact Present Exact

0 1.302290 1.302290 1.3033 1.315277 1.315271 1.420261 1. 420243

10 0.644827 0.644827 0.6457 0.648347 0.648299 0.678202 0.674505

25 0.366111 0.366111 0.3671 0.367416 0.367353 0.381703 0.376671

0 1.180567 1.180567 1.1814 1.191402 1.191335 1.282598 1.277311

10 0.613325 0.613326 0.6141 0.616562 0.616485 0.646391 0.640247

25 0.355668 0.355668 0.3566 0.356923 0.356843 0.372064 0.365680

0 0.640074 0.640074 0.6403 0.643767 0.643428 0.696100 0.668478

10 0.425582 0.425582 0.4261 0.427409 0.427156 0.459267 0.438808

25 0.282846 0.282846 0.2836 0.283799 0.283603 0.305161 0.289436

2

pan deflection �v 10�2 ðx ¼ L=2; y ¼ H=2Þ of uniformly loaded C–C beams
ndation parameters k ¼ 1=120 k ¼ 1=15 k ¼ 1=5

Kp Present Ref. [14] Present Present

0 0.26064 0.2616 0.27493 0.38814

10 0.20862 0.2095 0.21893 0.29426

25 0.16081 0.1617 0.16811 0.21760

0 0.25547 0.2565 0.26921 0.37817

10 0.20528 0.2062 0.21526 0.28874

25 0.15880 0.1597 0.16593 0.21478

0 0.21670 0.2174 0.22662 0.30908

10 0.17935 0.1800 0.18701 0.24823

25 0.14273 0.1435 0.14853 0.19299



Table 3

Fundamental frequency parameter
ffiffiffiffi
�x

p
of S–S beams

Foundation parameters k ¼ 1=120 k ¼ 1=15 k ¼ 1=5
Kw Kp=p2 Present Exact Ref. [15] Present Exact Present Exact

0 0 3.141434 3.141417 3.1415 3.1302472 3.1302475 3.0479950 3.0479950

0.5 3.476594 3.476589 3.4767 3.4667120 3.4667123 3.3945840 3.3945841

1.0 3.735876 3.735859 3.7360 3.7265663 3.7265663 3.6580220 3.6580220

2.5 4.296866 4.296879 4.2970 4.2880927 4.2880929 4.2183416 4.2183417

102 0 3.748233 3.748219 3.7483 3.7389476 3.7389477 3.6705002 3.6705003

0.5 3.960677 3.960669 3.9608 3.9516805 3.9516807 3.8839761 3.8839762

1.0 4.143563 4.143565 4.1437 4.1347186 4.1347188 4.0663636 4.0663637

2.5 4.582266 4.582264 4.5824 4.5734720 4.5734720 4.4991384 4.4991384

104 0 10.02403 10.02404 10.024 9.9958218 9.9958219 7.3408114 7.3408115

0.5 10.03610 10.03610 10.036 10.007782 10.007782 7.3408839 7.3408839

1.0 10.04813 10.04813 10.048 10.019699 10.019699 7.3409553 7.3409553

2.5 10.08394 10.08394 10.084 10.055193 10.055193 7.3411635 7.3411636

106 0 31.62172 31.62172 31.623 12.772265 12.772265 7.3508112 7.3508113

0.5 31.62211 31.62211 31.623 12.772265 12.772265 7.3508112 7.3508113

1.0 31.62249 31.62249 31.624 12.772265 12.772265 7.3508112 7.3508113

2.5 31.62364 31.62365 31.625 12.772265 12.772265 7.3508112 7.3508113
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analysis of a simply-supported plate (see Ref. [30]) for example, and is omitted here for brev-
ity. From Tables 1 and 3, it is shown that the present numerical results have an excellent
agreement with the exact solutions both for slender thin beams and short thick beams. It can
also be seen from the comparison in Tables 1–4 that the mid-span deflections and natural fre-
quencies of Bernoulli–Euler beams agree well with the results in Ref. [14] and Ref. [15] respec-
tively.
Since the conventional beam theories can not involve the effect of Poisson’s ratio, it is rather

interesting to take a deep insight into it using the present mixed approach. Table 5 gives the
variation of the first three natural frequency parameters ð

ffiffiffiffi
�x

p
Þ of C–C beams with the Poisson’s

ratio. It is shown that the natural frequency decreases gradually with the increasing of Poisson’s
ratio. We can see that the natural frequencies for m ¼ 0:5 have an apparent derivation (between
7% and 8%) from that for m ¼ 0:1. From this point of view, the Poisson’s ratio is of great sig-
nificance in structural design especially for composite material beams.
It is also interesting to investigate the variation of the deformation along the thickness direc-

tion, which can not be described exactly and completely by any beam theory. For example, the
deflection of a beam at an arbitrary point x is usually assumed to be independent of the coordinate
y in the conventional beam theories. Fig. 2 shows the curves of the non-dimensional mid-span
deflection �vðx ¼ L=2Þ versus y=H of a C–C beam for different depth-to-length ratios. From Fig. 2,
we can conclude that the deflections at different vertical coordinates y are almost the same for a
slender thin beam, while for a short thick beam they are quite different from each other. Con-
sequently, the present method is superior to any beam theory in investigating the variation of the
deflection along the thickness direction.



Table 4

The first three natural frequency parameters
ffiffiffiffi
�x

p
of C–C beams

k Kw Kp=p2

0 0.5 1.0 2.5

1/120 0 4.7314 (4.73) 4.8683 (4.869) 4.9938 (4.994) 5.3195 (5.32)

7.8533 (7.854) 7.9680 (7.968) 8.0777 (8.078) 8.3812 (8.38)

10.9908 (10.996) 11.0815 (11.086) 11.1700 (11.174) 11.4233 (11.43)

100 4.9515 (4.95) 5.0718 (5.071) 5.1834 (5.182) 5.4783 (5.477)

7.9044 (7.904) 8.0169 (8.017) 8.1247 (8.124) 8.4234 (8.423)

11.0096 (11.014) 11.0998 (11.104) 11.1878 (11.192) 11.4400 (11.444)

10 000 10.1227 (10.123) 10.1373 (10.137) 10.1517 (10.152) 10.1942 (10.194)

10.8384 (10.839) 10.8827 (10.883) 10.9264 (10.927) 11.0539 (11.055)

12.5216 (12.526) 12.5832 (12.588) 12.6439 (12.648) 12.8209 (12.825)

1/15 0 4.66554 4.80385 4.93027 5.25671

7.61037 7.72927 7.84259 8.15441

10.42711 10.52435 10.61889 10.88791

100 4.89268 5.01352 5.12542 5.41981

7.66521 7.78165 7.89277 8.19912

10.44810 10.54476 10.63876 10.90635

10 000 10.04899 10.06400 10.07881 10.12225

10.70252 10.74610 10.78903 10.91414

12.08187 12.14487 12.20684 12.38693

1/5 0 4.26343 4.41970 4.55951 4.91020

6.46481 6.62631 6.77597 7.16627

7.40127 7.40477 7.40820 7.42199

100 4.54177 4.67208 4.79099 5.09741

6.54716 6.70266 6.84714 7.22280

7.40183 7.40543 7.40905 7.42612

10 000 7.40541 7.40733 7.40909 7.41353

8.54580 8.60124 8.64917 8.76160

10.11249 10.15262 10.19198 10.30595

The results in parentheses were calculated by De Rosa and Maurizi [15].

Table 5

Effect of Poisson’s ratios on the first three natural frequency parameters
ffiffiffiffi
�x

p
of C–C beams ðKw ¼ 1000, Kp=p2 ¼ 1:0Þ

k Poisson’s ratio (m)

0.1 0.2 0.3 0.4 0.5

1/120 6.6159 6.4748 6.3487 6.2352 6.1325

8.8753 8.6879 8.5217 8.3738 8.2420

11.8220 11.5698 11.3443 11.1412 10.9574

1/15 6.5768 6.3456 6.3092 6.1954 6.0924

8.6587 8.4744 8.3106 8.1642 8.0330

11.2652 11.0262 10.8124 10.6199 10.4457

1/5 6.2920 6.1469 6.0165 5.8992 5.7942

7.6877 7.5117 7.3492 7.2002 7.0634

7.7483 7.5955 7.4697 7.3638 7.2734
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Fig. 2. Curve of �vðx ¼ L=2Þ versus y=H for a C–C beam.
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Fig. 3. Curve of
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W.Q. Chen et al. / Appl. Math. Modelling 28 (2004) 877–890 887
The curve of the fundamental frequency parameter
ffiffiffiffi
�x

p
with the change of foundation

parameter Kw is shown in Fig. 3 for a C–F beam. It can easily be seen that the increasing of
ffiffiffiffi
�x

p
is

relatively apparent when Kw 6 800, whereas it becomes considerably slow when Kw > 800. Fur-
ther study indicates that it is also the case for S–S and C–C beams. This observation was also
reported for a spherical shell embedded in an elastic foundation [31].
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5. Conclusions

A two-dimensional elasticity approach is introduced in this paper for bending and free
vibration analysis of beams resting on a Pasternak elastic foundation. On the basis of two-
dimensional elasticity, the state space concept makes no hypothesis of deformation along
the thickness direction and does not use the Saint-Venant principle when treating the end con-
ditions by discretizing using the DQ technique. Thus, the current method can precisely analyze
foundation beams with arbitrary depth-to-length ratio, and can deal with arbitrary end condi-
tions.
As regards DQM, although equally spaced sampling points scheme is very convenient, it has

been shown that the convergence characteristic is not satisfactory when disposing the bending of
slender thin C–C beams. Hence, unequally spaced discrete points are generally preferred.
Numerical comparisons indicate that the current numerical results have a perfect agreement

with that obtained from other methods. In fact, the present mixed method is more accurate
than other numerical methods as compared to the exact elasticity solutions for S–S beams shown
in Tables 1 and 3. Hence, the present approach can undoubtedly serve as a good reference
for future numerical research. The present method also has advantages over any beam theories
in describing the exact and complete variation of the beam deformations along the thick-
ness direction. Investigation also shows that the Poisson’s ratio has a great influence on the
natural frequencies, which renders an important hint in selecting the materials for structural
design.
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Appendix A

Here, we take an S–S beam for an example to illustrate the derivation of Eq. (25) and
the expression of matrix T. Partitioning the matrix S into four sub-matrices, Eq. (23) can be
written as
fdðHÞg ¼ Sfdð0Þg ¼ S1 S2 S3 S4½ 
fdð0Þg ¼ S1uð0Þ þ S2ryð0Þ þ S3vð0Þ þ S4sð0Þ: ðA:1Þ

Similarly, S2ryð0Þ can be written in the partitioned matrix notation as
S2ryð0Þ ¼ A2 A3 � � � AN�1½ 


ry2ð0Þ
ry3ð0Þ

..

.

ryðN�1Þð0Þ

8>>><
>>>:

9>>>=
>>>;

¼
XN�1

i¼2
Airyið0Þ; ðA:2Þ
in which Ai is the column vector corresponding to ryið0Þ. Elimination of ryið0Þ from Eq. (A.2)
using Eq. (24) yields
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XN�1

i¼2
Airyið0Þ ¼

XN�1

i¼2
Ai Kwvið0Þ
"

� Kp

XN�1

k¼2
W ð2Þ

ik vkð0Þ
#

¼ Kw

XN�1

i¼2
Aivið0Þ � Kp

XN�1

i¼2
Ai

XN¼1

k¼2
W ð2Þ

ik vkð0Þ

¼ KwS2vð0Þ � Kp

XN�1

i¼2
Aiw

ð2Þ
i vð0Þ

¼ KwS2vð0Þ � KpS2w
ð2Þvð0Þ:

ðA:3Þ
Hence, we obtain
S2ryð0Þ ¼ S2ðKwIN�1 � Kpw
ð2ÞÞvð0Þ; ðA:4Þ
in which IN�1 is the ðN � 1Þth-order unit matrix, and wð2Þ is determined by
wð2Þ ¼

W ð2Þ
22 W ð2Þ

23 � � � W ð2Þ
2ðN�1Þ

W ð2Þ
32 W ð2Þ

33 � � � W ð2Þ
3ðN�1Þ

..

. ..
. . .

. ..
.

W ð2Þ
ðN�1Þ2 W ð2Þ

ðN�1Þ3 � � � W ð2Þ
ðN�1ÞðN�1Þ

2
66664

3
77775 ¼

w
ð2Þ
2

w
ð2Þ
3

..

.

w
ð2Þ
N�1

2
6664

3
7775: ðA:5Þ
Substitution of Eq. (A.4) into Eq. (A.1) gives
fdðHÞg ¼

uðHÞ
ryðHÞ
vðHÞ
sðHÞ

8>><
>>:

9>>=
>>; ¼ T

uð0Þ
vð0Þ
sð0Þ

8<
:

9=
;; ðA:6Þ
where
T ¼ S1 S2ðKwIN�1 � Kpw
ð2ÞÞ S4

� �
: ðA:7Þ
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