TCT-152

ALLogeneic Heart Stem Cells To Achieve Myocardial Regeneration (ALLSTAR): The Six Month Phase I Safety Results

Raj Mahkar1, Richard Schatz2, Jay H. Traverse3, Andrew Hamer4, Katherine Beatie4, Rachel R. Smith4, Frances Kivel4, Linda Marban1, Eduardo Marban1, Timothy D. Henry5

1 Cedars-Sinai Heart Institute, Los Angeles, CA, 2 Scripps Clinic, La Jolla, USA, 3 Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis, MN, 4 Capricor, Inc., Beverly Hills, CA

Background: In CADUCEUS, autologous cardiomyoblasts were grown in the presence of bFGF and LIF from patients with dilated cardiomyopathy (DCM) and infused into their hearts. To assess tumor formation, we also infused autologous cells into nude mice. Now we performed a first-in-human Phase I ALLSTAR trial designed to test the safety and feasibility of intramyocardial infusion of allogeneic cell populations in patients with DCM and DCM-LV dysfunction.

Methods: A total of 14 adult subjects (mean age = 55.6 yr; range 40-66 years) with chronic heart failure (MI) over the prior 12 months with scar size > 50% by MRI were treated with 10 × 10^6 human mesenchymal stem cells (MSC) via transmyocardial injection at the basal, mid, and apical levels of the LV, with a total of 3 injections per subject. Importantly, safety endpoints were: MACE events (recurrent MI, hospitalization or ER treatment for heart failure, LVAD placement or heart transplantation), acute myocarditis, death due to arrhythmias or unexplained death in persons otherwise well. Humoral and cellular immunologic responses were assessed via single antigen bead and ELISPOT assays.

Results: No pre-specified safety endpoint occurred. Only two adverse events were treatment-related, both transient hypotension related to nitroglycerin. There were no clinically significant rises in peri-procedural cardiac enzymes. Donor specific antibodies (DSAs) were present in four subjects prior to infusion; one resolved and three persisted during 6 months of follow up. In this study, the subjects were divided into four in vivo groups, three resolved during follow up and one persisted at 6 months of follow up. All DSA levels observed were low (MFI < 1000). ELISPOT revealed no de novo cellular immune responses.

Conclusions: Intramyocardial infusion of allogeneic cardiomyoblasts-derived cells (CAP-1002) appears to be safe and feasible. On the basis of the present findings, the ALLSTAR trial has completed a Phase II randomized, double-blind component, powered to assess reduction of scar size by MRI.

TCT-153

Safety and efficacy of transcendocardial injection of mesenchymal and induced pluripotent stem cells in a swine subacute model of myocardial ischemia

Ricardo Sanz-Bustí1, Verónica Cristosomo Ayala2, Claudia Baez Diaz2, Saraya Suarez, Sanchez3, Andrew M. Climen2, Francisco Miguel Sanchez Margallo2, Francisco Fdez-Aviles3

1 Hospital General Universitario Gregorio Marañón, Madrid, Spain, 2 Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain, 3 Hospital General Universitario Gregorio Marañón, Madrid, Spain

Background: Mesenchymal stem cells (MSC) are the most promising cells for ischemic myocardial repair. Nowadays we can obtain them from induced pluripotent cells. Nowadays we can obtain them from induced pluripotent cells. Nowadays we can obtain them from induced pluripotent cells. Nowadays we can obtain them from induced pluripotent cells.

Methods: Phase III/II preclinical randomized, placebo-controlled trial, with 30 large white pigs included. Acute myocardial infarction (AMI) will be created after 90-min occlusion of the LAD. The 3 groups are: injection of 20x10^6 MSC from human adipose tissue (n = 10); injection of 20x10^6 MSC from human iPS (n = 10); injection of saline (n = 10). Injections will be performed in the scar border with the NOGA XP platform, 7 days after AMI. Safety endpoints include MACE, malignant arrhythmias and lab parameters (intra procedural and for 5 weeks). Efficacy endpoints include scar size and LV parameters (MRI) and myocardial repair by histology (fibrosis and capillary density, staining with human nuclear antibodies) at 5 weeks.

Results: So far 10 pigs have been included, weight 34.8±6.2 kg. Troponin and CPK values (µg/L) were preinjection 0.41±0.61 and 47.7±3.0, and postinjection 0.44±0.33 and 8.6±1.51, respectively. Cell injection was successful in all cases, with 1 episode of ventricular fibrillation successfully cardioverted and no other events during the procedures or in the follow-up.

Conclusions: This is the first stem cell study designed to assess the cardiac repair ability of iPS-derived MSC. Now we guided injections 7 days after AMI were safe. No efficacy data are available, but will be during the conference.

TCT-154

Impact of Intracoronary Injection of CD133+ Bone Marrow Stem Cells on Coronary Atherosclerotic Progression in Patients with STEMI: A COMPAR-A-MI IVUS Substudy

Fuyu Qiu1, Akiko Maehara2, Ramez El Khoury3, Philippe Genereux4, Laura LaSalle5, Gary S. Mintz6, Nicolas Notteux7, François Gobeil8, Louis-Mathieu Stevens9, Francois Reeves10, Alain Rivard9, Samer Mansour11

1 Cardiovascular Research Foundation and Columbia University Medical Center, New York, NY, 2Cardiovascular Research Foundation and Columbia University Medical Center, New York, United States, 3 Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, 4 Columbia University Medical Center, New York, United States, 5 Cardiovascular Research Foundation, New-York, NY, 6 Cardiovascular Research Foundation, Washington, United States, 7 University of Montreal, Montréal, Quebec, 8 CHUM, Montréal, Quebec, 9 Centre Hospitalier de l’Université de Montréal, Montreal, Canada

Background: In CADUCEUS, autologous cardiomyoblasts were grown in the presence of bFGF and LIF from patients with dilated cardiomyopathy (DCM) and infused into their hearts. To assess tumor formation, we also infused autologous cells into nude mice. Now we performed a first-in-human Phase I ALLSTAR trial designed to test the safety and feasibility of intramyocardial infusion of allogeneic cell populations in patients with DCM and DCM-LV dysfunction.

Methods: Baseline and 4 month follow-up IVUS images were obtained in 17 SC and 20 Placebo pts. In culprit vessels stented and 5mm proximal and distal reference segments, and proximal and distal non-stented segments were analyzed every mm; in non-culprit vessels the entire segment length was analyzed every mm. In culprit vessels the entire segment length was analyzed every mm. In culprit vessels the entire segment length was analyzed every mm. In culprit vessels the entire segment length was analyzed every mm. In culprit vessels the entire segment length was analyzed every mm.

Results: In the culprit vessel analysis, in-stent median ± nontumoral hyperplasia (NIH) (=NIH/stent volume) (12.1% ± 7.6%, p = 0.05), reduction of minimal lumen area (MLA) (1.2 mm² vs 1.5 mm², p = 0.07), and MLA at follow-up (4.3 mm² vs 5.3 mm², p = 0.22) were similar between SC and Placebo. Changes in proximal and distal non-stented segment lumens areas and %plaque volume (= plaques/vessel volume) were also similar between SC and Placebo pts. However, there was a decrease in the maximum arc of attenuated plaque behind the stent from baseline to follow-up in Placebo, but not in SC pts (12.4% ± 10.0%, p = 0.004). In the non-culprit vessel analysis, there were no differences in changes of MLA, %plaque volume, or attenuated plaque between SC and Placebo pts.

Conclusions: CD133+ bone marrow stem cells (SC) injection through the coronary artery has no effect on disease progression in both culprit and non-culprit vessels.

TCT-155

A Novel Multi Lumen Compliant Balloon Catheter (ND® Infusion Catheter) Pressures Stem Cell Viability and Improves Dispersion When Compared to a Standard Single Lumen Balloon Angioplasty Catheter

Nabil Dib1, John P. Abraham2, Brian D. Plourde3, Dillon Schwallback1, DeAnn Dana4, Lester Myers2, Katherine Hunker1, Siddharth R D’Silva1, Todd R. Flower1, Robert E. Kohler1

1 Mercy Gilbert Medical Centers/Dignity Health, Gilbert, Arizona, United States, 2 University of St Thomas, St Paul, MN, 3 Translational Research Institute, Gilbert, AZ, 4 Celebration Stem Cell Centre, Gilbert, AZ, 5 Celebration Stem Cell Center, Gilbert, AZ

Background: Intramyocardial infusion of stem cells (SC) is typically administered through a single lumen balloon angioplasty catheter (SLC). These catheters are not optimized for SC delivery and potentially compromise SC viability and effectiveness. A multi-lumen catheter (MLC), (ND® Infusion Catheter, Translational Research Institute Gilbert, AZ) may preserve cell viability (CV) and improve dispersion.

Methods: A standard 0.014” over the wire SLC was compared to a novel MLC 3 Fr. 0.014” rapid exchange catheter with 6 micro-lumens that act as cell separators.