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a b s t r a c t

This paper explores the definition, applications, and limitations of concepts and concept
maps in C++, with a focus on library composition. We also compare and contrast concepts
to adaptation mechanisms in other languages.
Efficient, non-intrusive adaptation mechanisms are essential when adapting data

structures to a library’s API. Development with reusable components is a widely practiced
method of building software. Components vary in form, ranging from source code to
non-modifiable binary libraries. The Concepts language features, slated to appear in the
next version of C++, have been designed with such compositions in mind, promising
an improved ability to create generic, non-intrusive, efficient, and identity-preserving
adapters.
We report on two cases of data structure adaptation between different libraries, and

illustrate best practices and idioms. First, we adapt GUI widgets from several libraries, with
differing APIs, for use with a generic layout engine. We further develop this example to
describe the run-time concept idiom, extending the applicability of concepts to domains
where run-time polymorphism is required. Second, we compose an image processing
library and a graph algorithm library, by making use of a transparent adaptation layer,
enabling the efficient application of graph algorithms to the image processing domain. We
use the adaptation layer to realize a few key algorithms, and report little or no performance
degradation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Modern software systems commonly make use of components from a variety of software libraries. Software libraries
available to programmers are typically developed by different entities without centralized control. Consequently, different
libraries’ interfaces are seldom directly compatible. The cost and complexity of the code needed to combine libraries is
significant, and can be prohibitively expensive. It may be easier to rewrite the needed components than to reuse them, or
the performance overhead of the library composition mechanism may not be acceptable.
The language constructs and idioms for adaptation vary greatly between different programming languages, and can

impact the cost of library composition. This paper discusses programming with C++ ‘‘concepts’’ [18], a set of extensions
to the C++ template system likely to be included in the next revision of standard C++. We explore the applicability and
limitations of these new features, particularly focusing on the use of concepts for library composition via non-intrusive
component adaptation.
Concepts augment C++’s template system with constraints. In this paper, we will refer to C++ extended with concepts

as ConceptC++; C++ 2003 will be used to denote the language as specified in its current standard [28]. At the moment,
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ConceptGCC [23] is the only compiler for ConceptC++. Compiler and library vendors are meeting to finalize the feature,
and additional implementations are expected to begin appearing in the near future.
The C++ standard library’s collection of generic algorithms and data structures, formerly called the Standard Template

Library (STL) [60], was the central use case that influenced the design of ConceptC++. Consequently, the first application of
ConceptC++was the STL. Thenatural next step is to explore the applications of thenew language features to broader domains.
In this paper we report on several new applications of concepts, taken from both commercial software and programming
research, and on idioms that extend the use of concepts to support run-time polymorphism. Specifically, we (1) demonstrate
how to adapt components in a non-intrusive and efficientmanner using concepts, (2) show how to create systems that defer
decisions aboutwhich componentswill be used polymorphically until application composition time, (3) guide programmers
on how to effectively use the C++ concepts feature, (4) evaluate how ConceptC++ supports complex library composition
by exercising its new features in an industrial setting, (5) evaluate the performance implications of the new features, (6)
compare and relate the features to other adaptation mechanisms in C++ and in other languages, and (7) raise some issues
and describe challenges faced when programming with concepts.
The structure of the paper is as follows. Section 2 briefly summarizes the paradigm of generic programming that has

motivated the design of ConceptC++, and introduces the main features of ConceptC++. Section 3 begins by demonstrating
how one of these features, the concept map language construct, can be used to adapt generic components. Then it illustrates
howwe can recover support for run-time polymorphismwhile remaining consistent with the non-intrusive, pay-as-you-go
adaptation enjoyed when programming generically with concepts and concept maps. Section 4 describes a complex library
composition scenario, where a transparent adaptation layer enables the use of an open-ended set of image types as inputs
to a library of graph algorithms. Performance of such adaptations is discussed in Section 5. Section 6 relates concepts and
concept maps to other adaptation mechanisms, such as instance declarations in Haskell and inheritance in object-oriented
languages. Section 7 points out some limitations of concept maps. Conclusions follow in Section 8.

2. Background

Thedesign of ConceptC++hasmainly beenmotivatedby thedesire to better support theparadigmof generic programming,
as practiced, for example, in thedesign and implementation of the Standard Template Library, BoostGraph Library (BGL) [55],
Matrix Template Library [57], Adobe Source Library [1] and many other generic libraries in a variety of domains [2,7,13,
52]. Generic programming is a systematic approach to designing and organizing software, that focuses on finding the most
general (or abstract) formulations of algorithms together with their efficient implementations [32].
The generic programming approach to library design has been proven to support the production of efficient and reusable

libraries. The interfaces of these libraries are specified abstractly in terms of their syntactic and semantic requirements,
rather than in terms of concrete types and functions. Syntactic requirements specify which operations (and associated types,
see Section 2.1) must be supported by types to satisfy an interface, while semantic requirements place constraints on the
behavior and algorithmic complexity of the operations. Generic library interfaces are complete in the sense that they capture
the essential features necessary for implementing a class of efficient algorithms, and minimal in the sense that they are
satisfied by many different data structures. For example, the STL and the BGL are both large libraries providing extensive
functionality, yet the interfaces to these libraries are quite small. Through careful consideration of the essential requirements
for related classes of algorithms, the interface to a large number of library components has beenmade small and uniform. The
generic programming paradigm, and generic libraries, are of interest in the context of library composition, since adapting a
data structure to a particular library interface may open up a large part of the library for direct use. For example, the BGL,
with a few dozens of lines of code, implements a transparent adaptation layer on top of some graph data structures of the
LEDA library [43], making the entire BGL usable for LEDA graphs without requiring any explicit wrapping or adaptation [55,
Section 14.3.5].

2.1. From C++ 2003 to ConceptC++

In C++ 2003, templates are unconstrained. Generic C++ 2003 libraries, therefore, generally express constraints on type
parameters of generic algorithms as part of algorithms’ documentation and as names of template parameters. The STL
established a systematic documentation style for this [3,59], in which requirements on one or more types are collected
into tables. These tables describe the functions and operators that the types must support. They can also require a set
of other accessible types, called associated types. Naming conventions for template parameters are used to indicate the
corresponding requirements table. These conventions, however, do not serve as tangible interfaces to express a contract
between components—from the compiler’s perspective, they only exist in the mind of the programmer.
Tangible interfaces between components are a key element in successful composition strategies. When interfaces are

artifacts known to the compiler, a number of benefits result. First, it is possible for the compiler to check and enforce the
contract expressed in the interface, to various extents, depending on the language. Next, semantic properties captured in
interface specifications may enable code optimizations. Tangible interfaces also offer a place to bundle related signatures
and constraints. This gives programmers the ability to create coherent artifacts about which readers can reason. Finally,
tangible interfaces serve as places to collect documentation as part of programmer-friendly SDKs (software development
kits), or for use by documentation generation tools. For example, the popular Doxygen source documentation tool offers
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numerous features organized around classes, but the ‘‘defgroup’’ facilities1 that one would use to document generic
functions’ requirements that are not tied to interface constructs of the host language, are relatively weak by comparison.
When introduced to generic programming with C++ 2003, programmers accustomed to object-oriented languages have

difficulty when they fail to find component requirements in constructs analogous to the familiar abstract base classes. Such
challenges are exacerbated by lengthy compiler diagnostics2 that arise because the bulk of type checking of templates in
C++ 2003 occurs late, at the time of their instantiation. ConceptC++ at last changes this for generic programming in C++.
The concept language construct gives an explicit representation of the syntactic requirements tables, and it is precisely these
concept definitions that serve as the tangible interfaces. Since concepts are analyzed by the compiler (in addition to the
programmer), modular type checking of templates is possible; features such as concept-based overloading also become
easier to use. For example, ConceptC++ can provide notably more informative compiler error diagnostics [18].
Note that the development of ConceptC++ was preceded by cleverly designed template libraries that emulated concepts.

These libraries provide some support for expressing requirements tables programmatically, for enforcing constraints on
template parameters expressed using those tables, and for rudimentary ‘‘type checking’’ of template bodies [42,58]. These
techniques are brittle and expert-friendly, and have not found their way into wide use.
The STL’s requirements tables also specify semantic requirements, as algebraic laws that implementations of required

functions must satisfy, as well as upper bounds for the algorithmic complexity of these functions. ConceptC++ supports
expressing algebraic laws [22, Section 14.9.1.4] in concepts, as axioms. Type checking in ConceptC++, however, is not
concerned with concepts’ axioms (except for insisting that the expressions in axioms themselves are well-formed).
Compilers and programmers can use axioms to justify optimizations, and they serve as a hook for auxiliary language tools.
We do not further explore the usefulness of axioms in this article.

2.2. Generic programming in ConceptC++

This section briefly describes the new language constructs in ConceptC++. More detailed description is available in the
C++ concepts proposal overview [18], and in the current full specification of concepts [22]. The central new construct is
concept. It defines a set of requirements on a type, or on a tuple of types. We say that types that satisfy the requirements of a
conceptmodel that concept. For example, the following concept [20, Section 20.1.2] requires that the less-than operator (<),
and the other comparison operators, are defined for objects of type T:

concept LessThanComparable<typename T> {
bool operator<(const T& a, const T& b);
bool operator>(const T& a, const T& b) { return b < a; }
bool operator<=(const T& a, const T& b) { return !(b < a); }
bool operator>=(const T& a, const T& b) { return !(a < b); }

}

ConceptC++ requires an explicit declaration, a concept map,3 to establish that a particular type (or a parametrized class of
types) models a concept. For example, the following definition states that the type int is a model of the LessThanComparable
concept:

concept_map LessThanComparable<int> { }

Another concept map makes a user defined type name a model of LessThanComparable:

struct name { char∗ first; char∗ last; };

int namecmp(const name& n1, const name& n2) {
int c = strcmp(n1.last, n2.last);
if (c==0) return strcmp(n1.first, n2.first);
else return c;

};

concept_map LessThanComparable<name> {
bool operator<(const name& a, const name& b) {
return namecmp(a, b) < 0;

}
}

The two concept maps differ in how they satisfy the LessThanComparable concept’s requirements. For int, the body of the
conceptmap is empty; the built-in comparison operators for integers satisfy the four requirements of the LessThanComparable

1 www.stack.nl/∼dimitri/doxygen/grouping.html.
2 We have experienced a 20 MB error message from a single client error in the use of an, admittedly very complex, template library.
3 The possibly more descriptive keyword ‘‘model’’ that was used in preliminary designs of ConceptC++, was replaced with the keyword concept_map,
which occurs far less frequently in existing C++ code.

www.stack.nl/~dimitri/doxygen/grouping.html
www.stack.nl/~dimitri/doxygen/grouping.html
www.stack.nl/~dimitri/doxygen/grouping.html
www.stack.nl/~dimitri/doxygen/grouping.html
www.stack.nl/~dimitri/doxygen/grouping.html
www.stack.nl/~dimitri/doxygen/grouping.html
www.stack.nl/~dimitri/doxygen/grouping.html
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Fig. 1. Themin_element generic algorithm.

Fig. 2. The ForwardIterator concept (simplified from the one in the STL).

concept. For name, one of the required operations, the less-than operator, is defined in the body of the concept map. This
suffices tomake name amodel of the LessThanComparable concept, since the concept’s body provides default implementations,
defined in terms of the less-than operator, for the other three required operations. A type can satisfy a requirement, for
example the requirement for a less-than-operator, in any one of the following ways, in decreasing order of precedence:
(1) the concept map can define the less-than operator explicitly, (2) the less-than operator can be defined as a member or
non-member function (or in some cases as a built-in operation), (3) or a default implementation in the concept itself can
provide a definition. In a well-formed concept map, each required operation is defined in at least one of these ways.
Explicit definitions of functions in the bodies of concept maps are a powerful tool for adaptation. For example, here,

objects of the name class can be compared using the namecmp function, whose interface is similar to that of the strcmp
function. The concept map above adapts name to satisfy the requirements of the LessThanComparable concept, and defines
the less-than operator in terms of the existing namecmp function. In this adaptation, the definition of the type name does
not need to be modified, and the objects of type name do not need to be wrapped by other types, to be comparable with the
less-than operator.
Definitions in concept maps do not introduce functions or type names into the global scope. For example, the less-than

operator defined in the above concept map is only visible in generic definitions constrained by the LessThanComparable
concept.
Concept maps can be made generic with templates. For example, the following concept map declares all instances of the

standard template pair to be models of LessThanComparable—as long as the element types of the pair are LessThanComparable.
The constraints on the element types, the template parameters T and U, are stated in the requires clause, introduced with the
requires keyword:

template <typename T, typename U>
requires LessThanComparable<T> && LessThanComparable<U>

concept_map LessThanComparable<pair<T, U> > {
bool operator<(const pair<T, U>& a, const pair<T, U>& b) {
return a.first < b.first || (!(b.first < a.first) && a.second < b.second);

}
}

Fig. 1 shows a simple generic algorithm,min_element, that uses the LessThanComparable concept as a constraint. Constraints
in the requires clause are assumed to hold during type checking of the template’s body, and they are enforced at the time of
template instantiation. The ForwardIterator concept that appears in the constraints of min_element is shown in Fig. 2. This
concept provides basic iteration capabilities. The indirection operator (∗) gives the value that an iterator refers to. The
increment operator (++) advances an iterator to the next element. Equality comparison is used to decide when the end
of a sequence is reached. Finally, iterators can be copied and assigned. Requirements for the equality operator (==) and
the inequality operator (!=), as well as for copying and assignment, are not stated directly in the body of ForwardIterator,
but are obtained through refinement of another concept Regular. A concept, D, is said to refine another concept, B, when
all of D’s requirements are included in B’s requirements. The syntax for expressing refinement relationships resembles
that used for expressing class inheritance relationships. The Regular concept (not shown, see [20, Section 20.1.7]) collects
several common requirements supported bymost types, including equality comparison, and the abilities to copy and assign
objects. The associated type value_type denotes the type of values that the iterator refers to. A requires clause in the body
of a concept can place additional constraints on the parameters or associated types of a concept. Here, value_type must
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Fig. 3. A call to the genericmin_element function.

model CopyConstructible, a self-explanatory concept from the standard library draft of ConceptC++. Examples of models of
ForwardIterator include all pointer types and the iterator types of standard containers.
Themin_element algorithmworks for any sequence of values delimited by a pair of iterators, as long as the iterator type is

a model of the ForwardIterator concept and the iterator’s associated value_type is a model of the LessThanComparable concept.
In the next few paragraphs, we illustrate how type checking works for the call to min_element, shown in Fig. 3.
The C++ standard library specifies that vector’s begin and end member functions shall return types that satisfy the

ForwardIterator concept. (In fact, these types satisfy stronger constraints, but this is not important for our purposes.) This
satisfies the first requirement on types supplied to min_element. The second requirement, that the iterator’s associated
value_type is amodel of the LessThanComparable concept, is satisfied via the conceptmap for LessThanComparable<name> given
earlier. As both these requirements are, collectively, met by the vector<name>’s iterator type and the name type, the call to
min_element in Fig. 3 passes type checking.
To illustrate the role of concept maps in type checking, and as adapters, consider the call to the less-than operator,

‘‘∗first < ∗best’’, in the body of min_element. The type checker resolves this call to the LessThanComparable concept’s less-
than operator, looked up in the concept map LessThanComparable<Iter::value_type>. In the example of Fig. 3, at template
instantiation time the placeholder associated type Iter::value_type is bound to the name type, and thus the call to the less-
than operator is resolved to LessThanComparable<name>::operator<(∗first, ∗best), which is implemented in terms of namecmp
in the LessThanComparable<name> concept map.
Indirections through concept maps are efficient. Recall that in C++ 2003’s template compilation model distinct code

is generated whenever a template is instantiated with different types—this compilation model is used in ConceptC++
as well, after type checking a template instantiation. Once the type checker has accepted that the types bound
to the template arguments satisfy the template’s constraints, code specialized for the particular template instance,
min_element<vector<name>::iterator> is generated. Consequently, the calls that depend on template parameters, such as the
less-than operator call above, are statically resolved and subject to inlining and other compiler optimizations. This applies,
in particular, to calls directed through functions in concept maps. Gregor and Siek give a more detailed account of type
checking and compiling ConceptC++’s constrained templates [21].
A concept definition can be preceded with the keyword auto, signifying that no explicit concept map is necessary to

establish an is-a-model-of relation between a type and a concept—it suffices that all functions and operations required
by the concept are defined for the type. Concept maps can, however, also be written explicitly for auto concepts. Simple
concepts, with only a few requirements, are typically defined as auto; we could define LessThanComparable as:

auto concept LessThanComparable<typename T> { ... }

Throughout this article, we use ConceptC++’s syntactic shortcuts for succinct expression of constraints: instead of the
keyword typename, a concept name can precede a template parameter in a template parameter list, or an associated type in
the body of a concept. To demonstrate the former use of the shortcut, the signature ofmin_element in Fig. 1 can be re-written
as:

template <ForwardIterator Iter>
requires LessThanComparable<Iter::value_type>

Iter min_element(Iter first, Iter last);

As an example of the latter use, lines 2 and 3 in the body of the ForwardIterator concept in Fig. 2 can be replaced with the
declaration ‘‘CopyConstructible value_type;’’.

3. Non-intrusive composition of components

To succeed in building software from components, some of which may be unmodifiable, a non-intrusive composition
mechanism is necessary. In this section we take advantage of features of ConceptC++ (concepts and concept maps) that
support such compositions. We then go beyond what is directly supported by ConceptC++ to develop library techniques
that encapsulate run-time polymorphism as an additional non-intrusive adaptation layer.We illustrate our techniques using
library interfaces abstracted from a commercial software development code base.
An analysis carried out at a large commercial software development company revealed that roughly a third of the code

and up to half of the reported bugs were related to the management of Graphical User Interfaces (GUI) [49]. There is
little reuse across GUI-related code between applications, and the procedures exposed in GUI library APIs tend to be used
directly—higher-level abstractions are rare. One common task in the domain of GUIs is to place widgets in a dialog box in a
multi-lingual application. A single fixed layout is seldom suitable for multiple languages due, in part, to different glyph size
and alignment characteristics. The manual maintenance of multiple layouts incurs a high cost. This motivates the need for
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Fig. 4. The Placeable concept.

Fig. 5. A simplified layout engine modeled after Eve.

Fig. 6. Adapters for Carbon (a) and Win32 (b) widgets.

an automated layout engine component. We discuss one such layout engine based on Adobe’s Eve, a component of Adobe
Source Libraries (ASL) [1]. ASL is Adobe’s generic open source library used in dozens of Adobe products.
The layout engine’s task is to calculate positions for a collection ofwidgets in awindow, taking into account eachwidget’s

size and alignment requirements.We refer to this information as the ‘‘extents’’ of awidget. GUI libraries havewidely varying
interfaces for discovering the widgets’ extents and for positioning the widgets on screen. To support multiple platforms,
and as a result of software evolution over time, it is not unusual for a suite of applications to depend upon a half-dozen
GUI libraries. A generic layout engine must, therefore, be able to operate on different widget types from different libraries:
a unified interface to interact with widgets and an adaptation layer to adapt different widget types to this interface are
necessary. We represent this unified interface with the Placeable concept, shown in Fig. 4, whosemeasure and place functions
capture the ability to query a widget’s extents and to inform the widget of where it should ultimately place itself in the
layout.
Fig. 5 outlines our generic layout engine, a simplified version of the Eve engine. The engine is parametrized on its widget

type, whichmust satisfy the requirements imposed by the Placeable concept. The appendmember function adds widgets to a
layout ‘‘problem.’’ The solvemember function uses themeasure operation from Placeable to query the extents of each widget
(line 5), then it calculates a solution satisfying the layout constraints (not shown), and finally invokes the Placeable’s place
operation to inform eachwidget of its calculated location (line 7). The three vectors placeables_m, extents_m, and place_data_m,
defined on lines 9–11 hold, respectively, the widgets to be placed, their extents, and ultimately the positioning information
for the widgets, as computed by the layout engine.
To use the layout engine with a particular widget type, the widget-specific behavior must be adapted to the interface

defined by the Placeable concept. For example, when using Apple’s Carbon API one might employ a routine such as
GetBestControlRect to measure a widget’s size, whereas when using a Microsoft Win32 themed widget set, a key step in
this task is to invoke the GetThemePartSizePtr function. Code in Fig. 6 shows the concept maps that adapt widgets from each
of these libraries to satisfy the requirements of Placeable. Fig. 7 illustrates the role of these concept maps in a diagram.
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Fig. 7. Concept maps can non-intrusively adapt a given widget type to a particular generic library interface. The widget type is bound to the interface at
compile time.

Fig. 8. Layout engine client code (Carbon API).

With these definitions in place, we are ready to exercise our layout engine. Fig. 8 displays typical layout engine client
code when using the Carbon API. First the layout specification is parsed and a collection of Carbon widgets, with alignment
constraints in their user data area (line 3), is created. Second, the layout engine is populated with the widget collection
(line 4). When asked to solve (line 5), the engine queries each widget for its extents, solves the layout, and informs each
widget of its final location. Finally, the window is made visible (line 6).
In sum, the concept maps in Fig. 6 for the Placeable concept each adapt a particular GUI widget type to the API of the

generic layout engine. As a result, the layout engine can be directly instantiated and used with any single widget type for
which the appropriate concept map has been written.

3.1. From compile-time to run-time polymorphism

The above adaptation ofwidget types is transparent and non-intrusive but also limited since thewidget type of the layout
engine is determined at compile time. In practice, a single instantiation of a layout engine sometimes needs to support
multiple widget types. When we want to support more than one widget type at run time, concepts, concept maps, and
templates are not sufficient—they do not directly support run-time variability.
Most of the research and practice of generic programming in the context of C++ is concerned with the case where

types of the inputs to generic algorithms are fixed at compile time—less emphasis has been placed on programming with
concepts in cases where run-time variability is required. When programmers need run-time polymorphism they often turn
to inheritance and object-oriented programming rather than concepts and generic programming. Conversion of existing
libraries to support desired run-time polymorphic use cases by the addition of abstract base classes with appropriate virtual
functions involves significant changes to the library API and semantics; new base classes may be introduced and classes
which may have been written to be used with value semantics now must be used with reference or pointer semantics to
avoid slicing. This can lead to the introduction of smart-pointers (see, e.g. [11]) for object lifetime management, which as a
side-effect can lead to unintended shared value semantics.
Redesigning the library API can, however, be avoided. We describe the run-time concept idiom, an idiom that employs

type erasure to allow a single instantiation of a generic component to operate upon multiple types at run time—neither the
generic library component’s interface, nor its implementation or semantics are altered. This idiom involves the insertion of an
abstract interface, an associated concept map, and some auxiliary artifacts between a concrete model of a concept and a
generic component implemented against that concept. The presented machinery is an extension of work by Parent [48].
Wewill apply the run-time concept idiom to our layout engine.We describe the implementation of the run-time concept

machinery, in particular the poly class template, below. Before we introduce poly, we draw attention to the run-time concept
idiom’s principal benefit: the transformation from compile-time to run-time polymorphism requires nomodifications to the
engine’s API, nor to the engine’s principal client code. For example, if the first line in the code in Fig. 8 is changed to:

layout_engine<poly<placeable>> le;

the rest of the code works as before. Similarly, the code implementing the layout engine remains untouched. Now, widgets
from several libraries with different APIs can be added to a single instance of the layout engine, to be solved and placed. The
end result is that the decision of whether a generic component should use compile-time or run-time polymorphism is made
by the client of the generic component, not mandated by the component’s implementation.
These benefits do not come without a cost—auxiliary code is required for each concept that is to support run-time

polymorphism. In the remainder of this section, we describe the steps and code needed to create aminimal adaptation, from
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the ground up, for the specific case of the Placeable concept. Section 3.2 explains how the poly template and its accompanying
library reduce the amount of boilerplate, and describes some additional functionality that the library provides.
The adaptation of the Placeable concept requires three auxiliary classes and a concept map. The first class is an abstract

base class that represents the Placeable concept’s required functions as pure virtual functions; this placeable_runtime_concept
class can be defined as follows:

struct placeable_runtime_concept {
virtual void measure(extents_t& result) const = 0;
virtual void place(const place_data_t& place_data) = 0;

virtual ~placeable_runtime_concept() { }
};

The second class is an implementation class that inherits from placeable_runtime_concept. This class stores the concrete
widget in a member variable and implements the placeable_runtime_concept’s virtual member functions measure and place
by delegating to the corresponding operations upon the concrete widget type’s concept. A separate implementation class
is required for each different widget type, but since different widget types provide a uniform set of operations via their
Placeable concept maps, we can implement the classes as instances of a single class template placeable_model_adapter:

template <Placeable P>
struct placeable_model_adapter : placeable_runtime_concept {
placeable_model_adapter(const P& p) : concrete_placeable(p) { }

virtual void measure(extents_t& result) const { return Placeable<P>::measure(concrete_placeable, result); }
virtual void place(const place_data_t& place_data) {
return Placeable<P>::place(concrete_placeable, place_data);

}

P concrete_placeable;
};

For example, this template is instantiated as placeable_model_adapter<HIViewRef>when adapting Carbonwidgets; themember
variable concrete_placeable has type HIViewRef, and the member functions delegate to the operations defined in the concept
map Placeable<HIViewRef>, shown in Fig. 6(a).
With the two components described above, a pointer of type placeable_runtime_concept∗ can dynamically refer to different

widget types. A raw pointer, however, behaves in a different manner from a Placeable widget type required by the layout
engine. For example, the layout engine can copy objects that it stores, and it expects thatwhen copied they follow ‘‘deep copy
semantics’’, instead of creating aliases to the same objects. The task of the third class in the adaptation layer is to encapsulate
the rawpointer type in awrapper that provides the deep copy semantics: the lifetime of thewidget-specific adaptermatches
that of the wrapper, and the widget’s copy constructor and assignment operators copy and assign the objects pointed to,
not just the pointers. The definition of poly_placeable is as follows:

struct poly_placeable {
template <Placeable P>
poly_placeable(const P& p) : placeable_adapter_m(new placeable_model_adapter<P>(p)) { }

poly_placeable(const poly_placeable& x); // deep copy
poly_placeable& operator=(const poly_placeable& x);
~poly_placeable() { delete placeable_adapter_m; }

void measure(extents_t& result) const { return placeable_adapter_m−>measure(result); }
void place(const place_data_t& place_data) { return placeable_adapter_m−>place(place_data); }

private:
placeable_runtime_concept∗ placeable_adapter_m;

};

We omit the definitions of copy and assignment; their implementations rely on existence of clonemember functions in the
placeable_runtime_concept and placeable_model_adapter classes, which for simplicity are not shown either. This is boilerplate
that we can implement in a library, as described in Section 3.2.
The poly_placeable class serves another purpose. Its templated constructormakes any type thatmodels Placeable implicitly

convertible to poly_placeable, and hides the instantiation of the placeable_model_adapter template and the wrapping of the
widget object with that adapter. As the result, when an object of type poly_placeable is expected, any Placeable widget type
will do. For example, the appendmember function of layout_engine<poly_placeable> accepts objects of type HIViewRef or HWND
as parameters. Thus, the client of the layout engine only has to know about the poly_placeable type; the rest of themachinery
stays hidden.
One more task remains: poly_placeable itself is not yet a model of Placeable, which is required for the instantiation

layout_engine<poly_placeable> to succeed. The definition concept_map Placeable<poly_placeable> { ... } establishes this. However,
the poly_placeable class almost satisfies the requirements of Placeable already: it provides themeasure and place operations, but
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Fig. 9. The member to non-member function adaptation idiom.

Fig. 10. Adaptation layers to achieve run-time polymorphism with templates: the layout engine operates on a type that models Placeable; concept maps
adapt concrete widgets to satisfy these requirements; the run-time polymorphic poly_placeable wrapper can be constructed with any Placeable type;
and a concept map again adapts the wrapper itself to be a model of Placeable.

it provides them as member functions, whereas Placeable requires the operations to be available as non-member functions.
This disparity between member and non-member functions is a recurrent theme in C++. We can bridge this gap with an
additional concept and a more general concept map template. Fig. 9 shows the auto concept PlaceableMF that specifies the
requirements that measure and place operations are implemented as member functions. The Placeable<PlaceableMF> concept
map adapts all models of the PlaceableMF concept to satisfy the requirements of the Placeable concept. This completes the
remaining task, and makes poly_placeable a model of Placeable. In ASL we use the same idiom to allow thin wrappers, such
as the reference wrappers in the (draft) C++ standard library [5, Section 20] and various smart pointers [11], to satisfy the
requirements of a concept when their underlying type satisfies those requirements.
In summary, the machinery presented above provides a mechanism by which a programmer, acting as component

assembler, can build systems from algorithms and classes defined in one or more generic libraries. Without requiring any
modifications to these libraries, the component assembler enjoys the right to make decisions about which classes should
behave in a run-time polymorphic manner. This use case is supported by the run-time concept idiom. The adaptation layer
providing run-time polymorphism is independent of other adaptation layers; it can be ‘‘sandwiched’’ between multiple
static adaptation layers that are implemented using concept maps. The adaptations implemented using concept maps do
not impact object identity and minimize syntactic intrusion. In our example domain, as a result of the described idioms, we
can accommodate multiple GUI libraries at run time with no changes to the client code, the widgets, or the layout engine,
all of which may have originated as components of different software libraries. Fig. 10 illustrates the different layers of
adaptation diagrammatically.

3.2. The poly library

The implementation of the adaptation layer presented in Section 3.1 is a bit laborious and detail-oriented. The concept
being adapted, however, largely determines the implementation. The Placeable concept, for example, determines the
definitions of the placeable_runtime_concept, placeable_model_adapter, and poly_placeable, that constitute a large amount of
boilerplate. In practice the amount of boilerplate is even greater thanwhatwe sketched in our example—full support for run-
time concept refinement, dynamic_cast-like querying and coercion,move semantics [24], deep copy, and equality comparison
adds significant overhead. Besides the additional labor, the boilerplate is non-trivial code and thus a potential source of
errors.
Concepts cannot be reflected upon in ConceptC++, so it is impossible to entirely avoid the boilerplate. We have, however,

encapsulated a portion of the boilerplate in our poly library. The implementation of an adapter like poly_placeablewith the poly
library resembles the ‘‘hand-coded’’ implementation shown in Section 3.1—one still replicates the concept’s requirements
in an abstract class, provides a ‘‘model adapter’’ template, as well as a class similar to the poly_placeable handle class.
These classes, however, need to declare and define only the methods corresponding to the requirements of the particular
concept they represent; in the case of Placeable, these are measure and place. Moreover, the resulting adapter has additional
functionality and performance enhancements that the poly library provides, as outlined below.
The poly library applies small object optimization: a small template meta-program that decides whether to store the

concrete adaptee type in the body of the poly<placeable> adapter or allocate space for it on the heap. Support is also included
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for moving temporary objects instead of copying them, when such support exists for the underlying concrete type. Move
semantics, in the context of C++, refers tomoving an expensive object from one address inmemory to another withminimal
expense, by ‘‘stealing’’ resources of the source object and leaving it in a destructible-only state [25]. C++’s type system
provides means to detect many situations where a seemingly unsafe move operation can safely replace a (much more
expensive) copy operation. The forthcoming revision of the C++ standard library will support move semantics for a large
number of classes, such as the container classes.
In the poly library, inheritance of interfaces representing concepts is supported. In particular, poly objects conforming

to a refined concept interface can be used transparently where poly objects conforming to a base interface are expected.
The library also contains poly_cast operations that provide functionality for run-time concept refinement hierarchies that is
analogous to the querying and coercion facilities provided by dynamic_cast in object-oriented hierarchies.
Marcus et al. describe the poly template in details [40]; the programmer documentation [1] describes a version of the

library for C++ 2003. There are ways to optimize uses of the poly template so that virtual function dispatching is not always
necessary [51].

4. Cross-domain composition

When a concept map adapts a particular type to model a concept, the concept map implements the concept’s operations
in terms of the functionality provided by that type. In this section we move beyond adaptation of individual types to
adaptation between entire library interfaces. In this situation, concept maps adapt collections of types: all types that model
concept A are adapted to model concept B by a concept map that implements B’s required operations in terms of the
operations provided by conceptA. This kind of adaptationwas already encountered in Fig. 9,where calls tomember functions
aremapped to calls to non-member functions.We now explore amore complexmapping between concepts, one that adapts
abstractions from one domain to those of another domain.
Our example is from the domains of image manipulation and graph algorithms. Many image algorithms can be viewed

as graph algorithms given a suitable representation of images as graphs [12,53,54]. In this section we present a partial
composition of the Boost Graph Library (BGL) [55] and the Generic Image Library (GIL) [7] that enables many image
processing algorithms to be implemented as simple wrapper functions over BGL algorithms. We show the mapping from
image-related concepts defined in the GIL to the graph concepts of the BGL. Concept maps are instrumental in such cross-
domain compositions. The adaptation code involves relatively few lines of code, is transparent to the client, and comes with
minimal performance cost.
Note that as part of the adaptation we define a handful of classes that are used as the associated types for the graph

concepts. For example, one of the graph concepts requires an associated type out_edge_iterator, used by the graph algorithms
to traverse the out edges of a node in a graph. The image concepts do not require or guarantee the existence of any types
that can directly satisfy the requirements for this associated type, so we create a new small class for this purpose. Objects
of this class maintain the state of iteration over a pixel’s immediate neighbors. The newly created class does not intrude on
the image library, and clients of the image library do not need to explicitly define objects of the iterator class, or even be
knowledgeable of its existence. This arrangement serves as an example of the division of labor, in the case when stateful
adaptation is needed, between concepts, concept maps, and traditional adaptation via the creation of new classes.

4.1. Background of GIL and BGL

The Generic Image Library is Adobe’s open source image processing library, and also part of the C++ Boost collection of
peer-reviewed C++ libraries (www.boost.org). The GIL defines concepts for raster images of any dimension, and provides
generic implementations of basic image algorithms, such as copying, comparing, and applying a convolution. The GIL’s
algorithms operate on an open-ended set of image types that may vary in color-space, pixel type, storage order, and other
image characteristics.
The Boost Graph Library [56] is a widely used library of generic algorithms for manipulating graphs. The BGL defines

concepts that describe different capabilities for graph data structures, such as incidence graphs that provide access to the
outgoing edges of each vertex, vertex list graphs that additionally allow access to all vertices in the graph, and edge list graphs
that add the ability to access all edges in the graph. The BGL also provides useful data structures modeling these concepts,
many implemented in terms of STL containers (essentially as compositions of vectors, lists, and maps).
Neither the BGL nor the GIL are yet implemented using ConceptC++. We reimplement a subset of these libraries in

ConceptC++ for our experiments. We omit support for mechanisms like the BGL’s ‘‘named parameters’’ [55, Section 2]. The
BGL describes its algorithms’ requirements using STL-like concept documentation, and the GIL uses pseudo-codemimicking
ConceptC++ to document its concepts; our concepts are translations of these documents into ConceptC++.
For the adaptation layer between the GIL and the BGL we defined concept maps for several GIL concepts, making those

conceptsmodels of various graph concepts in the BGL. Using the adaptation layer, many image processing algorithms can be
implemented as thin wrappers over the BGL’s graph algorithms. We describe the implementation of the adaptation layer,
along with the implementations of multiple algorithms. In particular, we focus on the flood-fill algorithm. This algorithm
modifies the color of a set of contiguous pixels that satisfy a predicate. The implementation of this algorithm performs

www.boost.org
www.boost.org
www.boost.org
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Fig. 11. The signature of the breadth_first_search function in the BGL. The same type constraint guarantees that types of the function arguments are
consistent, that is, that the type of the values in the queue argument and the key type of the color map, are the same as the type of the vertices in the graph.

a recursive search through neighboring pixels of an initial seed pixel. Applications of the flood-fill algorithm include
transformation of a block of one color to another, insertion of a background texture (green screening), and imagepartitioning.
We also report on using the adaptation layer to image segmentation. Graph-based image segmentation refers to a set of
techniques for finding a partition of an image by representing the image as a graph, then finding a partition of the graph
using, e.g., edge weights or minimal cuts as the partitioning criteria [14,54]. We chose to implement a basic segmentation
algorithmbased on pixel similarity. The third algorithmwedescribe is for findingminimal-energy paths between two points
in an image. This can be accomplished with the Bellman–Ford [6] shortest path graph algorithm when the input image is
represented as a graph.

4.2. GIL–BGL composition

In our adaptation of images to graphs, vertices correspond to pixels and each of the edges connect two vertices
corresponding to neighboring pixels. The flood-fill algorithm is essentially a breadth-first graph search. The BGL’s breadth-
first search algorithm imposes several concept requirements on the types of its inputs, which now have to be satisfied by the
image type. We could establish the image-to-graph correspondence directly with concept maps that adapt concrete image
types to the BGL graph concepts. However, a broader adaptation for an open ended class of image types is achieved if we
adapt generically all types thatmodel GIL image concepts tomodel BGL concepts. Furthermore, the adaptation is not specific
to breadth-first search and to flood-fill; many algorithms in the BGL use the same handful of concepts in their constraints.
The breadth_first_search function in our graph library is shown in Fig. 11. For brevity, in all code examples we omit header

includes, namespace prefixes of names from both the GIL and the BGL, and the prefix std:: for names defined in the standard
library. The breadth_first_search function is parametrized on the graph type, the type of queue used for storing references to
vertices tomaintain search state, a visitor type used for providing callback functions for various event points of the algorithm,
and the type of color map used for tracking which vertices have already been visited. The breadth_first_search function uses
four concepts to constrain its template parameters. The IncidenceGraph concept specifies the requirements for the graph type:
operations for enumerating out-edges of a given vertex, along with their incident vertices. The other concepts are Buffer,
which describes the operations of the vertex queue; BFSVisitor, which specifies the dictionary of the callback functions; and
ColorMap, which defines the interface to the data structure storing vertex visitation information.
We focus on the IncidenceGraph concept, shown in Fig. 12(a), in the description of the adaptation layer between images

and graphs. The Graph concept, also in Fig. 12(a), specifies associated vertex and edge types which, via refinement, become
requirements of IncidenceGraph. Directly, IncidenceGraph requires the out_edges, out_degree, source, and target operations
(lines 10–14). The out_edges function returns a pair of iterators that specify the sequence of edges emanating from a given
vertex, and out_degree is for querying how many such edges there are. The associated type out_edge_iterator on line 7 has its
expected meaning.
From the point of view of a type modeling a concept, operations specified in a concept are requirements that must be

satisfied. From the point of view of an algorithm constrained by a concept, the operations are capabilities that can be relied
upon. In our example, the GIL concepts’ capabilities are used to satisfy the BGL concepts’ requirements. The concepts in
Fig. 12(b) describe the interface that the GIL imposes on images, and thus provides as images’ capabilities. The ImageView
concept on line 7 provides capabilities of a container. The associated type value_type (line 10) is the type of the pixels. The
difference_type (line 9) represents the offsets between pixel locations, and can also be used as the position of a pixel. The
function dimensions (line 16) returns the extents of an image. The GIL ImageView concept has further requirements, such as
an iterator for linear traversal over the sequence of pixels. These capabilities are not necessary for the adaptation to graphs,
and are not shown.
The concept_map that adapts ImageView to IncidenceGraph is shown in Fig. 13. Lines 3–5 provide definitions for the

associated types of IncidenceGraph. We represent vertices as the image’s difference_type, a point type that specifies the
coordinates of a pixel. Edges are pairs consisting of two vertices: the source and target. The out_edges function on lines 6–10
constructs a pair of edge iterators that denotes the sequence of out edges. The number of neighboring pixels, i.e., the number
of out edges, for a given pixel is obtained as the distance between the beginning and end of the sequence of out edges, which
gives directly the implementation for the out_degree function on lines 13–16. The source and target functions on lines 11
and 12 are trivial.
To arrive at a flood-fill algorithm,wemake one additional adaptation: we use a colormap tailored for flood-fill, instead of

the BGL’s default color map for breadth_first_search. The color map stores the search state: unseen, in progress, and processed
vertices are respectively marked with white, gray, or black. Only white vertices are added to the work queue. The default
queue and visitor parameters of breadth_first_search that the BGL provides need no customization. With these adaptations,
the generic implementation of flood-fill in terms of breadth_first_search becomes:
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Fig. 12. Figure (a) shows the IncidenceGraph concept. The Regular concept, defined in the draft standard library of ConceptC++, describes a type
that is ‘‘well-behaved’’, that is, it can be constructed, destructed, copied, assigned, and compared for equality. Furthermore, these operations adhere to
fundamental laws, such as after assigning a value x to a variable y, then y == x returns true. The ForwardIterator (outlined in Fig. 2) is also a standard
concept. Figure (b) shows capabilities provided by the GIL concepts that are relevant for the adaptation. The IntegralLike concept (not shown) is a standard
concept. The Locator concept provides traversal capabilities through the values, i.e., pixels, of GIL images—we omit this concept since Locators offer no
generic way to determine the validity of the position of a locator. Our adaptationmaintains current location in algorithms with values of the ImageView’s
difference_type.

Fig. 13. The concept_map adapting models of GIL ImageView to become models of BGL IncidenceGraph.

template <ImageView Img, typename P>
requires Predicate<P, Img::value_type>

void flood_fill(Img& img, const Img::difference_type& seed, P p, const Img::value_type& replacement) {
if (!p(img[seed])) return;
vector<Img::difference_type> buffer;

breadth_first_search(img, seed, buffer, basic_bfs_visitor(), color_map<Img, P>(img, p, replacement));
}

The queue and visitor parameters are those used in the BGL by default, butwe need to specify them explicitly since our graph
library does not implement the BGL’s named parametersmechanism that provides support for default values for parameters.
The image segmentation algorithm mentioned in Section 4 can also be implemented in terms of a breadth-first graph

search. The task of an image segmentation algorithm is to partition an image into contiguous regions according to some
criteria; its central building block is a generic partition algorithm that forms a single partition in an image; repeated
invocations with different initial seed locations will segment the entire image. Implementation of the segmentation
algorithm uses the same concept map adapters, but a different color map class. The default queue type suffices, but the
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BGL’s visitor type is customized to respond to the event of discovering a vertex by adding that vertex to a data structure
representing a partition.
To further evaluate the usability of cross-domain adaptation between images and graphs, we implemented the backbone-

healing algorithm [17]. This is a practical image processing algorithm from the TEXTAL automatic model-building protein
crystallography package [26], and is used in improving the results of image skeletonization. The algorithm can be
implemented in terms of the Bellman–Ford shortest-path graph algorithm, which places stronger requirements on its input
graphs than merely IncidenceGraph. The BGL’s bellman_ford algorithm requires the capability to iterate over all edges and all
vertices omitting the adjacency structure of the graph, and thus requires that its graph parameter type be a model of the
EdgeAndVertexListGraph concept.
To allow GIL images to be used as inputs of the bellman_ford algorithm, a slightly more capable adaptation is necessary,

one that supports iteration over all vertices and all edges of a graph. We define two auxiliary classes, analogous to the
out_edge_iterator_adaptor class discussed above, that masquerade traversal through an image’s pixels and its neighboring
pixel pairs as iteration over vertices and edges. With these classes, the adaptation between the GIL’s ImageView concept and
the BGL’s EdgeAndVertexListGraph concept, is expressed with the concept map:

template <ImageView Img> concept_map EdgeAndVertexListGraph<Img> { ... }

The implementation of the adaptation is similar to that between the ImageView and IncidenceGraph concepts; we experienced
no notable difficulties in realizing it. We make the full code of the adaptions described above available.4

5. Performance

Adaptation mechanisms can have a negative impact on performance. Mitchell et al. [44] give a detailed analysis of a
case where multiple inefficient adaptation layers had a major effect on the performance of a large software system. In our
examples we have used adaptation freely, adding layers as appropriate to meet our design goals. In this section we explore
the performance costs of adaptation implemented using concept maps.
We use the flood-fill, segmentation, and backbone-healing algorithms as test cases, and compare the execution times

of two different programs for each algorithm. The first program for each algorithm is written directly in terms of the GIL
concepts. Essentially, the flood-fill performs a breadth-first search tailored for images, and the segmentation algorithm a
series of such searches. The backbone-healing algorithm searches for all shortest paths using the Bellman–Ford algorithm
that was directly written for GIL’s image types. The second program for each algorithm uses concept maps to adapt GIL
concepts to BGL concepts as described in Section 4.2, and uses BGL’s breadth_first_search function for the flood-fill and
segmentation algorithms, and bellman_ford for backbone-healing.
We compiled all of the test programs using the ConceptGCC [23] compiler’s Alpha 7 Prerelease version5 with the -O3 flag

on two platforms: MacBook Pro (Intel Core 2 Duo), 2.2 GHz, with 2 GB of RAM, and iMac G5 (PowerPC G5), 2.1 GHz, with
1 GB of RAM. The reported timings were obtained by executing the test programs ten times, and computing the average of
the measured running times. The test sets for flood-fill and segmentation algorithms consist of 50 square images each, from
the size of 20× 20 pixels to 1000× 1000 pixels. To make the image size directly determine the size of the problem, we use
computer-generated images where the number of reachable pixels is proportional to the image size. The test images consist
of amazewith vertical, horizontal, and diagonal lines, aswell as corners and dead-ends. Fig. 14(a) and (b) show the results for
flood-fill, and Fig. 14(c) and (d) the results for segmentation. The test set for the backbone-healing algorithm consists of ten
square images, from the size of 10×10pixels to 100×100pixels. The test images are a topographical representation of a com-
plex terrainwith a non-trivial shortest path between the start and target pixels. The length of the optimal path grows linearly
with the side lengths of the image, increasing the size of the problem accordingly; Fig. 14(e) and (f) show the timing results.
For each algorithmwe tested, performance of the two implementations is close to the same. The averaged (over different

image sizes) abstraction penalties, defined as the ratio of an abstracted implementation over a direct implementation [29,
Section D.3], due to the adaptation were as follows: for the Intel architecture, flood-fill 0.92, segmentation 0.96, and
backbone-healing 1.07; for the PowerPC architecture, flood-fill 1.11, segmentation 1.01, and backbone-healing 1.08. The
implementation using cross-domain adaptation thus, in all cases, achieves performance roughly on a parwith a handwritten
GIL algorithm. In two cases the implementation via adaptation was faster. This (close to) zero-overhead adaptation is due
to C++’s template compilation model, where specialized code is generated for each different template instantiation. As
discussed in Section 2.2, calls to functions defined in concept maps can be statically resolved, and often inlined, allowing
the optimizer to see through adaptation layers.
Our tests compared the performance of algorithms written in terms of different data structures: images and graphs. To

minimize noise, we were careful to ensure that the compared algorithms nevertheless employed a common strategy, for
example for updating work lists. In a few cases, the control structure of the code differs because the direct implementation
can take advantage of properties specific to images. Factors such as the use of auxiliary data structures, differences in cache
locality, and the success of the compiler’s inliner, all have an impact on the final observed performance. The experiments

4 parasol.cs.tamu.edu/groups/pttlgroup/programming-with-c++-concepts.
5 Conceptgcc (GCC) 4.3.0 20070330 (experimental) (Indiana University ConceptGCC Alpha 7 Prerelease), checkout 681.
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Fig. 14. The timing results for the functions flood_fill, (a) and (b), segmentation, (c) and (d), and backbone_healing, (e) and (f). The results obtained
from the Intel architecture are shown in charts (a), (c), and (e), and those from the PowerPC architecture in charts (b), (d), and (f). The x-axes of all charts
are the number of pixels in the image, the y-axes the algorithms’ running times in seconds. Each chart depicts the timing results of executing two test
programs, the first written directly using GIL concepts (‘‘GIL Custom’’), and the second written to use the adaptation between the GIL and the BGL (‘‘BGL
Adaptation’’).

suggest that the composition mechanism itself incurs no significant penalties; other factors have a larger impact on
performance. Furthermore, a generic algorithm in a widely used software library can be expected to be well tuned and
tested; reusing such an algorithm even via a complex adaptation layer retains these benefits.

6. Concept maps and other adaptation mechanisms

This section relates the adaptation capabilities offered by ConceptC++’s concepts and concept maps to those of several
other mainstream languages, including C++ 2003.
Concept maps are a non-intrusive mechanism for adapting operations on a type (or collection of types) to model a

concept. That is, a given collection of operations and associated types might offer the essential functionality required by
an interface (concept), but these operations might not have the required names or signatures, and some associated types
might not exist with the correct names. Such a collection can be made conform to the new interface using a concept map.
No changes to the original operations or types are needed.
Concept maps adapt types rather than individual objects. They do not offer direct facilities to store state. All state is

maintained in the objects whose types concept maps adapt. New types and operations may need to be introduced before
the concept map adaptation facilities come into play, if a collection of types does not provide the essential functionality
required to model a concept. We saw this in Section 4, where it was necessary to introduce a new class for traversing sets
of pixels in an image, in order to satisfy the requirement for an associated type modeling edge iterators. Once all of the
necessary functionality has been implemented with appropriate types and functions, concept maps can be applied in their
intended role as non-intrusive identity-preserving adapters.
The template system of C++ 2003, and ConceptC++, is based on instantiating templates with full type information

at compile time, allowing all functions defined in concept maps to be statically resolved, possibly inlined, and further
optimized. Several concept map adapters can be layered without the adaptation mechanism causing performance
degradation. The downside is that all template instantiations to be used in a programmust be known at compile time.While
thismay be acceptable in domains like graph algorithms or linear algebra – indeed, generic C++ 2003 template libraries have
found widespread use in these domains – more ‘‘dynamic’’ domains, such as GUIs, necessitate run-time polymorphism.
In object-oriented languages, libraries publish their interfaces as abstract classes. (Here, this term covers the ‘‘interface’’

language construct found in some languages.) To satisfy the requirements of an interface then means to define a class that
inherits from a particular abstract base class. This achieves run-time polymorphism but, in mainstream object-oriented
languages, the subclass relation is established at the time of defining a class, which makes inheritance a relatively rigid
mechanism for library composition. A class cannot retroactively, without altering its definition, be made to be a subclass of
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another class. Variations of structural subtyping have beenproposed as cures for problems of rigid class hierarchies [4,36] but
have not found wide use. Outside of mainstream object-oriented languages, Cecil [38] lets one define subtype relationships
external to class definition. This feature was found beneficial for adapting existing types for use with generic libraries in
a comparative study of programming languages’ suitability for generic programming [16]. Aspect-oriented programming
systems can be used to modify classes retroactively, independently of their original definitions, e.g., to implement new
interfaces using ‘‘static crosscutting’’ [34].
The adapter pattern [15] is widely used to work around problems of rigid class hierarchies when composing libraries.

Adapters can be divided into object and class adapters. Both kinds of adapters inherit an abstract base class that defines the
desired interface. Object adapters store the adaptee as a member (as a reference to a distinct object), whereas class adapters
inherit from the adaptee, storing both the adapter and adaptee as a single object. The problems of library composition and
adaptation in object-oriented programming are widely studied and recognized. For example, if there is a need to adapt a
class with new functionality, but neither the definition of that class nor code that is hard-wired to use that class can be
changed, an adapter is not an adequate solution (see, e.g., [41,61]). Class adapters suffer from hierarchy hardening and object
adapters from inconsistency problems caused by breaking the state of a single entity into multiple objects [27].
We demonstrate the techniques to combine run-time polymorphismwith concepts in Section 3.1. Essential in our idioms

is that we avoid the use of an abstract base class to describe the library interface. Instead, the library interface is specified in
terms of concepts. As concept maps are entirely external to both the types they adapt from and the concepts they adapt to,
the problems of object-oriented adapters are avoided. We use concept maps to adapt client code to and from the abstract
base class interface, which is provided for the sole purpose of run-time polymorphism. The constructions to achieve this are
somewhat involved, see [40], but can be hidden behind simple abstractions. The benefit is that the choice of whether to use
run-timepolymorphism is deferred to the timewhen the components are composed, rather thandictated by the library. Run-
time dispatching may incur a performance penalty, which is thus avoided in the cases where run-time polymorphism is not
needed. If we ignore for the moment concept refinement relationships, some ability to test whether operations are present
(via down-casting), and performance optimizations (see Section 3.2), the central design feature of the poly<> template that
we presented is that it behaves as a type constructor for defining existential types [37], where the hidden type is constrained
to be amodel of a particular concept. In this regard, poly<> is similar to Haskell’s ‘‘forall’’ construct, which allows the definition
of types with a hidden part constrained to be a type belonging to a given type class, or classes.
Concepts are in many ways similar to Haskell type classes [63], and concept maps to Haskell’s instance declarations. A

Haskell type class defines the signatures of the functions that instances (models) of the type class must implement. Instance
declarations establish that a type, or a sequence of types in the case of multi-parameter type classes, belong to a particular
type class. Analogous to concept maps, instance declarations are non-intrusive: external to both the definitions of the types
and the definition of the type class. Lämmel and Ostermann collect formulations of problems reported in the object-oriented
integrationmechanisms [35], and demonstrate how type classes are effective solutions tomany of them. Essential in evading
the problems is the non-intrusive adaptationwith instance declarations. Our experienceswith non-intrusiveness of concept
maps support this view.
In their standard form, type classes have a few obvious restrictions, which have largely been remedied in non-standard

but common extensions. First, standard type classes only accept one parameter. Multi-parameter type classes, however,
are widely supported by Haskell compilers and interpreters. Second, standard type classes do not support associated types.
They can, however, be emulated to an extent with functional dependencies [33], a well-established extension, or expressed
directly using more recent extensions [9,10].
There are also less obvious differences between concepts and type classes, some of which affect adaptation and library

composition. We explain those differences, but refrain from a comparative evaluation; we have not produced Haskell
implementations of any of the library composition and adaptation scenarios described in this paper. Garcia et al. compare
the suitability of different mainstream languages for generic programming [16].
Haskell can infer the type class constraints of polymorphic functions automatically, while ConceptC++ does not support

the analogous ‘‘concept inference.’’ To ensure that the constraints of a generic function can be uniquely determined, Haskell
requires that an overloaded function name (when called without module qualification) is declared in exactly one type class.
When composing independently developed libraries, it is possible that the same function name is accidentally used in two
type classes in different modules. Fig. 15 translates the classic example of accidental conformance [39] to ConceptC++ and
to Haskell. The Haskell version is erroneous and is fixed by qualifying the calls to draw and shoot with the module prefix as
Cowboy.draw and Cowboy.shoot; the ConceptC++ version is inevitably valid because ConceptC++ requires a disambiguating
annotation, the ‘‘Cowboy C’’ constraint, even if there are no conflicting concepts.
An instance declaration in Haskell is in effect in all functions in which the declaration is visible. A concept map, however,

is only in effect in a context where a type is constrained with the corresponding concept. The example in Fig. 16 illustrates
this. The multiplication operator (∗) for integers is given different semantics in the two concept maps. The first concept
map retains the multiplication operator’s original meaning, the second maps the operator to perform addition. Neither
mapping has an effect outside generic functions. One or the other of the mappings, neither of them, or both can be in effect
within a particular generic function, depending on the function’s constraints. In our slightly contrived example function,
both meanings apply. The fact that concept maps define views that are only active when requested is a desirable trait for
adaptation and library composition. However, this may prove to be confusing as well, as it creates a rift between generic
and non-generic functions.
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Fig. 15. Accidental use of the same function name in two different type classes (left column) and in two different concepts (right column).

Fig. 16. Concept maps are only in effect in contexts constrained by the corresponding concept. In the inner_product function, the multiplication
between ∗i1 and ∗i2 comes fromMonoid<U, additive>, and is therefore integer addition as defined by the concept mapMonoid<int, additive>. The
multiplication between init and the result of the ‘‘additive’’ element-wise multiplication comes fromMonoid<It::value_type, multiplicative>, and is
thus integer multiplications as defined by the concept map Monoid<int, multiplicative>. The Assignable, Convertible, and InputIterator concepts
come from ConceptGCC’s implementation of the draft standard library. The inner_product function computes the inner product of two sequences,
accumulating to an initial seed value init. When executed, the program outputs 134.

As an incremental addition to an evolving C++ language, concept maps and concept-based overloading must co-exist,
and sometimes compete, with the existing overloading mechanism of C++ 2003. This results in tension between the needs
of traditional ad-hoc function template overloading and the desire to treat concrete types and operations as implementation
details, and only expose required functionality through concept maps. In Section 7 we illustrate some insidious failure cases
that can arise from this competition.
The Scala programming language [47] provides external adaptation with rather different mechanics, implicit parameters,

but with an outcome that is close to adaptation using type classes or concepts. An implicit parameter to a method can be
left out in a call to the method. The Scala compiler attempts to find a unique best matching value for that parameter in the
call’s context. A fairly faithful emulation of type classes is possible with implicit parameters that represent dictionaries of
functions [46]. Furthermore, Scala views utilize implicit parameters to non-intrusively define implicit conversions between
types, which seems promising for implementing cross-domain compositions like we discussed in Section 4.
C++ 2003 allows the definition of efficient non-intrusive adaptation layers. As an example, we mentioned BGL’s

transparent adapters for LEDA graphs in Section 2. Breuer et al. [8] report on a cross-domain library composition between
the domains of linear algebra and graph theory. They adapt several concepts from the Parallel Boost Graph Library [19] to
concepts found in the Iterative Eigensolver Template Library [62]. Their implementation is in C++ 2003, and uses overloading
and template specialization to achieve the necessary adaptation, not concept and concept_map constructs of ConceptC++. Non-
intrusive adaptation in C++ 2003 relies on a host of tricky template techniques, such as traits classes [45] and conditional
overloading using the enable_if template [31]. ThoughC++ 2003 can support complex non-intrusive adaptation, the resulting
code is brittle; ConceptC++ offers improved support for non-intrusive adaptation.

7. Adaptation and overloading

We have demonstrated many benefits that mechanisms like concepts and concept maps provide when composing
software components. There are, however, some stumbling blocks. In this section we illustrate some of the difficulties that
arise when using these language features.
One of BGL’s graph adapters, vector_as_graph, adapts all instances of vector<list<T>> to satisfy the requirements in the

IncidenceGraph table. Adaptation is accomplished by overloading the function templates required by IncidenceGraph for
vector<list<T>>. In ConceptC++, the analogous adaptation is accomplished with a concept map



612 J. Järvi et al. / Science of Computer Programming 75 (2010) 596–614

template <class T>
concept_map IncidenceGraph<vector<list<T>>>;

C++’s ad-hoc polymorphismdefines a partial ordering amongst a set of overloaded functions based on specialization ordering
of type patterns. In a nutshell, a function is selected from a set of overloads when it is ‘‘at least as specialized as’’ all other
candidates and no other candidate is at least as specialized as it. This relationship considers a type pattern A to be at least
as specialized as another type pattern B when A is substitutable for B. ConceptC++ defines an analogous specialization
order between concept constraints [30]. For example, one can expect the size function below to match and be applied to
all IncidenceGraphs, calculating the total number of edges in a graph, including calls with arguments of type vector<list<T>>,
as shown:

template <IncidenceGraph G> int size(const G&);
...
vector<list<int>> g;
int total_num_edges = size(g);

When executed, the above code will use graph operations to calculate and return the total number of edges in the graph.
For the purposes of determining the partial ordering of constrained function templates, concept constraints, however,

are subordinate to type patterns—constraints are only considered in case a ‘‘tie-breaker’’ is needed. For example, the type
pattern vector<T> is considered strictly more specialized than, say, the constraint IncidenceGraph<T>.
Later in the software’s life-cycle, another overloaded size function may be introduced, for example, to return the size of

an arbitrary vector:

template <typename A>
int size(const vector<A>& a) { return a.size(); }

Now, when we invoke size on a vector<list<T>> this new overload is considered to be the unique best-matching candidate
since the type pattern in the overload defined for IncidenceGraph<T> is nomore specialized than a plain type variable. That is,
the size(vector<T>) overload has silently hijacked the call to size(IncidenceGraph<T>). The codewill compile butwill erroneously
only return the number of lists in the vector representing the graph.
Type patterns are the primary overloading criteria in several other mainstream languages. For example, in C# and Java,

overloading is based exclusively on type patterns: constraints on type parameters must be satisfied but they do not affect
specialization ordering. Overloading rules in various languages support the notion that themost specific knowledge prevails.
ConceptC++ offers two mechanisms for specialization, type patterns and constraints, and by subordinating one mechanism
to the otherwe compromise this notion. A change to the function template partial ordering rules could reinstate the principle
that the most specific type knowledge is used for dispatch. In particular, programs with silent failures like the one in the
example above could be rejected, if for the purpose of function overload partial ordering, conceptmap specialization patterns
were considered at the same time as function type pattern specializations, rather than as tie-breakers. These issues are
currently under consideration in the C++ standards committee.
The unrestricted non-intrusive adaptation allowed by current languages leads to conflicting adaptation layers, and even

with the above modification to function overloading rules, surprises and ambiguities seem still possible. A situation akin to
the one we demonstrated in C++ arises with Haskell’s specialization ordering amongst instance declarations, with language
extensions that allow definition of ‘‘overlapping instance declarations’’ [50, Section 3.7].
Non-intrusive adaptation helps to avoid much of the pre-planning and coordination that is necessary in the use of

software libraries when component adaptation is intrusive. For this flexibility, one needs not give up efficiency: our
work demonstrates that non-intrusive adaptation and efficiency are not mutually exclusive. The possibility of accidentally
adapting the same component to a given interface in multiple ways exists, but can be controlled with language designs
that support detecting conflicts and offer means for resolving them; further programming language research in this area is
required.

8. Conclusions

This paper reports on programming with ‘‘concepts’’, a forthcoming set of new features of C++, and explains their use,
benefits, and costs. In particular, concepts offer powerful mechanisms for adapting data types to specific library interfaces—
we provide an analysis of this aspect of C++ concepts, and a description of their use in complex cases of non-intrusive library
composition. We demonstrate that transparent adaptation of data structures to multiple library interfaces is possible and
straightforward. We conclude from our performance evaluations that such adaptations impose minimal penalties.
The main benefits of ConceptC++’s adaptation mechanisms are non-intrusiveness (a type can be adapted to one or more

interfaces without altering the definition of the type), flexibility (instead of single data types, a generic family of data types,
or classes of data types described using concepts, can be adapted with a single adapter), and performance (adaptation is
implemented using small functions whose addresses are statically resolved, and are thus inlineable and optimizeable).
The generic library interfaces defined in ConceptC++ do not directly support run-time polymorphism. We describe the

idioms needed to combine run-time polymorphism and concepts. As a result, run-time polymorphism can be introduced
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non-intrusively as simply another adaptation layer that can be used by clients of the library if and when they need it. Clients
that do not need run-time polymorphism can instantiate library components directly.
The generic programming paradigm, introduced into C++ via the STL, supports the non-intrusive design of efficient

families of algorithms specified in terms of common abstractions. There is little language support, however, for rigorously
specifying these abstractions. C++ is now evolving to raise such specifications from the level of naming conventions to
compiler checkable artifacts. C++0x comeswith language support for concepts, and the standard library has been re-specified
to take advantage of this, while retaining backward compatibility. The backward compatibility requirement, considered
essential for the evolutionary acceptance of C++0x, has had an impact on the concepts in the library, but the effort is
nevertheless a significant step forward. The guidance for programmingwith concepts, as well as the libraries and adaptation
idioms presented in this paper, unburdened by legacy compatibility concerns, are further advances towards leveraging the
generic programming approach in constructing reusable software libraries. The utility of these idioms will further increase
once the concepts language feature becomeswidely available:we expect to see algorithm families designed from the ground
up with this support in mind, and to see generic programming emerge as a central tool in the design of modern reusable
libraries.
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