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Abstract 

The cement industry is coming under increased scrutiny for its CO2 emissions. The industry has reduced its CO2 footprint 

through energy efficiency measures, reduction of clinker factor, and the use of alternative fuels. However in a carbon-constrained 

world, more significant reductions are anticipated and thus CEMEX has been investigating the deployment of CO2 capture and 

sequestration (CCS) technologies for its own cement plants. The goal of this paper is to present the groundwork for the 

development and demonstration of a commercial-scale CCS project at one of CEMEX Inc.’s U.S. cement plants. The first part of 

this paper presents the criteria to determine the most suitable CO2 capture technology in an integrated CCS system for a cement 

plant. The second part of this paper summarizes how CO2 sequestration potential in proximity to one of CEMEX’s cement plants 

was a critical factor in determining the suitability to host a commercial CCS demonstration. Findings of this work showed that 

the development and demonstration of a commercial-scale CCS in the cement industry is still far from deployment. Retrofitting a

very compatible CO2 capture technology for the cement industry is a limiting factor for early implementation of CCS. A pilot 

phase under actual cement plant flue gas conditions is a must to develop this technology to a commercial level. Uncertainties 

regarding the level of CO2 purity for transportation, geological sequestration, and enhanced oil recovery (EOR) warrant further 

investigation. 
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1. Introduction 

It is estimated that the cement industry is accountable for about 5% of the global anthropogenic CO2 emissions 

[1]. The cement industry has identified measures to reduce its carbon footprint through energy efficiency, reduction 

of clinker factor, and the use of alternative fuels (including carbon-neutral fuels) [2]. However, this industry 

recognizes that these measures will only go so far in mitigating CO2 emissions. There is a limit to how much CO2

emissions can be reduced by the very nature of cement production. One of the main reasons for this is that typically 

only around 40% of our emissions are related to combustion of fuels, the rest stems from a chemical reaction in our 

raw material, the calcination of limestone. Given the limited potential for the conventional levers to reduce 

emissions, it is clear that carbon capture and sequestration (CCS) will play a crucial role if the cement sector is to 

reduce its absolute emissions at a global scale [3].  

In late 2009, the U.S. Department of Energy (DOE) – National Energy Technology Laboratory (NETL) solicited 

applications for carbon capture and sequestration from industrial sources. CEMEX Inc. was awarded funding to 

�
Corresponding authors: Tel.: +1-713-650-6200; fax: +1-713-722-5121. 

E-mail addresses: mauricio.naranjo@cemex.com / darrellt.brownlow@cemex.com  

c⃝ 2011 Published by Elsevier Ltd.

Energy Procedia 4 (2011) 2716–2723

www.elsevier.com/locate/procedia

doi:10.1016/j.egypro.2011.02.173

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82602655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.egypro.2011.02.173
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 M. Naranjo et al./ Energy Procedia 00 (2010) 000–000 

conduct groundwork for the development and demonstration of a commercial-scale CCS project at one of CEMEX 

Inc.’s U.S. cement plants. The first part of this paper presents the criteria to determine the most suitable CO2 capture 

technology in an integrated CCS system for a cement plant. The second part of this paper summarizes how the CO2

sequestration potential in proximity to one of CEMEX Inc’s cement plants was a critical factor in determining the 

suitability to host a commercial CCS demonstration. 

2. CO2 Capture Technologies – The Cement Industry Application 

Three strategies for CO2 capture in new and existing cement plants are currently being considered: 1) pre-

combustion, 2) post-combustion, and 3) oxy-combustion [1, 3]. Pre-combustion CO2 capture will be more applicable 

to new cement plants integrated with gasification technologies to produce Syngas (a mixture of H2, CO, H2O, and 

CO2) from the main plant fuel. H2 would be then fired in the cement kiln after capturing CO2 from this Syngas. The 

main drawback of this approach is that only CO2 from the fuel will be captured; CO2 released by calcination of 

limestone will not. In addition, a new generation of burner technology and cement kiln lines will be required. Post-

combustion CO2 capture involves the separation of CO2 from the flue gas leaving the clinker kiln. The main 

advantage of this approach is that CO2 from fuel and calcination will be captured. New and existing cement plants 

can be retrofitted with this approach. Oxy-combustion involves the use of purified oxygen for combustion in the 

cement kiln to produce a N2-free flue gas (mainly consisting of CO2 and H2O). Upon condensation, a pure CO2

stream will be obtained. However, combustion with purified oxygen in existing cement kilns will require major 

modifications to burner design, kiln, and plant configuration. Therefore, post-combustion CO2 capture seems to be 

the easiest retrofit in a cement plant.  

Post-combustion CO2 capture technologies exhibiting the following characteristics show the most promise for 

application to the cement industry: 1) technical compatibility with cement manufacturing operating conditions, 2) 

non-toxic, non-hazardous materials, 3) minimal impact on cement plant operations, and 4) affinity to operational 

experience of cement plants (equipment, materials, etc). Conventional solvent-based technologies are attractive from 

the perspective that they are commercially available and are effective at removing CO2 from flue gas. However, the 

energy-intensive nature and presence of hazardous materials on plant location make them less suitable for use at a 

cement plant. In addition, the cement industry, inherently a gas and solids handling/processing industry, has minimal 

experience with handling and processing liquid chemical processes operating liquid solvent-based systems (i.e. 

absorption columns). Membrane technologies are proven technologies to separate industrial gases but are still under 

development for separating and recovering CO2 from exhaust gases of stationary CO2 emission sources [4]. 

Therefore, solids-based technologies for CO2 capture apparently seem to offer less stringent process retrofit and flue 

gas conditions compared to other post-combustion CO2 capture technologies making it a good fit for the cement 

industry. A “suitability” comparison of general post-combustion CO2 captures technologies (including oxy-

combustion) for the cement industry is shown in Table 1.  

A solids-based CO2 capture technology was studied during this work. It is a calcium-based, high-temperature 

CO2 capture technology [5, 6] that follows the reversible chemical reaction (1). This calcium-based CO2 capture 

technology consists of the calcium oxide-carbonate cycle using limestone, an abundant and inexpensive raw material 

already found at most of the cement plants, to separate CO2 from cement kiln flue gas at elevated temperatures, 

approximately 650°C. By heating the calcium carbonate to 750 to 950oC firing the main plant fuel within an oxy-

fired reactor, the calcination reaction would release CO2 that can be converted into a CO2 pure stream after cooling 

and clean-up. 

)(3)(2)( sgs CaCOCOCaO �� (1) 

Integration of this calcium-based CO2 capture technology at a cement plant was conducted and is shown in 

Figure 1. Contrary to our initial reasoning, it can be noted from these block flow diagrams that this post-combustion 

solids-based CO2 capture technology would also require extensive retrofit compared to a solvent-based CO2 capture 

technology for full CCS integration. Seven process blocks were defined for a cement plant including: 1) CO2

capture, 2) fuel grinding, 3) air separation, 4) waste heat power generation, 5) CO2 purification and compression, 6) 

CO2 pipeline and injection and 7) cooling water systems. The CO2 capture block removes CO2 from the cement 

plant flue gases using CaO(s) to form CaCO3(s). CO2 is then released by decarbonation of CaCO3(s) while firing a 
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stream of the main plant fuel in a pure oxygen environment. Sorbent make-up and purge is supplied and used by the 

cement plant to produce clinker or cement (i.e. blended cements). The fuel grinding block supplies pulverized fuel to 

the CO2 capture system. This block can either be a stand-alone system or be part of the existing cement plant fuel 

grinding facility. Air separation is set to supply pure O2 (>97% purity) to the CO2 capture system for sorbent 

regeneration. Due to the high operating temperatures of the exhaust streams (lean-CO2 flue gas and CO2 product 

gas), waste heat recovery becomes essential as significant power generation can be obtained. The waste heat power 

generation block is added to generate power from waste heat to offset power consumption due to operation of 

additional process equipment, air separation and CO2 compression systems. The CO2 purification and compression 

cleans up CO2 coming off the CO2 capture system to deliver pipeline-ready CO2. A cooling water system is included 

for the cooling needs of the air waste heat power generation, air separation and CO2 purification and compression 

blocks.  

Table 1.Qualitative Comparison of General CO2 Capture Technologies for the Cement Industry 

Post-combustion
Parameter 

Solid-based Solvent-based Membranes 
Oxy-combustion 

Energy Demand Intensive to 

regenerate sorbent 

Intensive to 

regenerate solvent 

Intensive to 

pressurize gases 

Intensive to operate 

air separation unit 

Equipment

Materials 

Processes 

In development Well-developed  In development Conceptual retrofit 

on cement kilns 

Flue Gas 

Conditioning  

Extensive to avoid 

sorbent 

contamination

Extensive to avoid 

solvent

contamination

Extensive gas to 

avoid membrane 

deterioration 

Removal of other gas 

constituents from 

CO2 product 

Other Gases (O2,

CO, NOx, H2O(v))

Insensitive Need inhibitors to 

avoid degradation  

May interfere with 

CO2 separation rate 

Need to assure CO2

purity 

Acid Gas Control 

(SO2, HCl)  

May be required  Required May not be required  May be required 

Hazardous

Toxic

Corrosive

No Yes No No 

Cement Plant 

Figure 1. Calcium-based CO2 capture technologies integrated to a cement plant. 

For comparative purposes, a full CCS integration scheme was set up for a cement plant using a conventional 

solvent-based CO2 capture technology as shown in figure 2. In this case, seven process blocks were also defined 

including: 1) flue gas conditioning, 2) CO2 capture, 3) fuel grinding, 4) steam generation, 5) CO2 purification and 

compression, 6) CO2 pipeline and injection and 7) cooling water systems. The flue gas conditioning block remove 

gas contaminants (Particulate Matter, SO2, HCl, etc.) known to deteriorate conventional amine solutions. The CO2

capture block removes CO2 from the conditioned cement plant flue gases by using a conventional amine solvent. 

O2
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Power
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CO2

Purification 

and/or 

Compression

CO2 Pipeline & 
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Using indirect heat, the amine solvent is regenerated to release the CO2 product. Due to the inherent lack of process 

steam at cement plants, a dedicated steam generation block is set to supply the steam for solvent regeneration.The 

main plant fuel is prepared in a fuel grinding system to supply fuel to this dedicated steam generation block. As 

previously mentioned, this block can either be a stand-alone system or be part of the existing cement plant fuel 

grinding facility. The CO2 purification and compression cleans up CO2 coming off the CO2 capture system to deliver 

pipeline-ready CO2. A cooling water system is included for the cooling needs of the steam generation and CO2

purification and compression blocks. 

Cement Plant 

Flue Gas 

Conditioning

Cooling Water 

System 

Figure 2. Solvent-based CO2 capture technology integrated to a cement plant. 

An engineering assessment of this calcium-based CO2 capture technology integrated to a cement plant showed 

that this technology requires: 

- A pilot testing program to better define: 

o Reactor and system designs, 

o Identify final auxiliary equipment needed for optimum operating conditions and, 

o Test long-term sorbent performance under actual cement kiln flue gas conditions.  

- Careful process design considerations to minimize the impact on the cement plant’s integration, operation 

and emissions 

- Considerable water availability to meet process demands of steam/power generation and cooling water 

system operation 

Another important finding of this engineering assessment was the high synergy with a cement plant configuration 

for the calcium-based CO2 capture technology due to the beneficial use of resources: 1) use of spent sorbent for 

clinker and cement production onsite and/or offsite, 2) recovery of available waste heat for onsite power generation 

to offset additional power consumption, and 3) use of the same main plant fuel to operate the CO2 capture system. 

Process engineering analysis of various process designs showed that the best set of retrofit conditions for the 

calcium-based CO2 capture technology offer flexibility to the use of different: 1) fuels (coal, petcoke, natural gas 

and/or alternative fuels (i.e., biomass), 2) oxygen purities, and 3) types of sorbents (i.e., onsite or offsite limestone 

sources).  

Overall, results of this engineering assessment suggested that the calcium-based CO2 capture technology has 

large opportunities to retrofit the CO2 capture component of an integrated CCS system in a cement plant. However, 
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maximization of waste heat power generation and the extent of CO2 purity (minimum CO2 purification requirement) 

for a particular CO2 sequestration setting are technological areas that require further research and development work 

to optimize the technology design, integration and cost. This latter challenge is very important because this calcium-

based cycle is unlikely to deliver a raw CO2 stream that meets current specifications for pipeline transportation, 

sequestration, or EOR, that typically require oxygen concentrations in the range of parts per million (ppm). The 

resulting costs for purification of this raw CO2 stream are expected to be significant. Understanding to what level 

these extremely stringent requirements could be relaxed and/or to develop novel oxygen removal technologies is a 

key component of the development of this technology. 

3. CO2 Sequestration Potential – The Right Cement Plant 

While the earlier part of this paper described the most suitable CO2 capture technology in an integrated CCS 

system for a cement plant, this section details the CO2 sequestration potential of one of CEMEX’s cement plants and 

its suitability in hosting a commercial CCS demonstration project as well as the process used in selecting the 

specific cement plant.   

CEMEX Inc. owns and operates 14 cement plants in the United States representing approximately 15% of the 

domestic USA cement production capacity [7]. These 14 plants are located in 10 different states with each site 

offering different geologic settings as well as varying regulatory, legal, and public relations environments. In 

general, CEMEX owns the property where the cement plants are located and also owns the land where the adjoining 

limestone quarry rests. This ownership ranges from a few hundred acres at some sites to over thousands acres at 

other sites. Because of CEMEX’s significant land ownership, combined with the expedited nature of the DOE CCS 

demonstration project, one of the key focuses of the project was being able to maintain the sequestered CO2 plume 

beneath property which CEMEX owned.  In other words, while the subsurface geology of the site is most critical, 

the site also had to be large enough to contain the subsurface CO2 plume vertically extrapolated to CEMEX’s 

surface controlled boundaries. While ownership of the surface and how the land’s surface is utilized is usually quite 

clear, ownership of the subsurface is often complicated due to the fact that oil, gas and other subsurface mineral 

entitlements can and often are separated from the surface ownership.   

To select the host cement plant site, a multi-phase process of increasingly specific and detailed data analysis was 

created. As it is illustrated in Figure 3, the initial phase involved a screening of the general geologic setting as it 

pertains to CCS potential.  Using the DOE-NETL’s 2008 Carbon Sequestration Atlas for the United States [8], the 

location of CEMEX’s 14 plants were overlain onto detailed maps depicting the three most common geologic setting 

for which CO2 can be stored, those being:  1) Oil and Gas Reservoirs; 2) Unmineable Coal Seams; and 3) Deep 

Saline Formations. 

Figure 3.  Multi-phase screening process 

Because oil and gas reservoirs have many of the same attributes that make for ideal CO2 storage areas, the 

presence of both existing and depleted oil and gas reservoirs at or adjacent to the cement plant was considered a 

positive.  Existence of oil and gas reservoirs also created an added potential benefit for utilization of the captured 

CO2 for enhanced oil recovery (EOR).  However, there are two potential drawbacks to having oil and gas operations 

on or near site, these are: 1) compromising and/or complicating the necessary monitoring, verification and 

accounting (MVA) of a CCS site; and 2) interference with subsurface oil and gas mineral recovery. The location of 

the 14 CEMEX cement plant sites superimposed on a map displaying the oil and gas reservoirs within the Unites 

States is shown in Figure 3. Identified on the map are the two CEMEX plants overlying or adjacent to oil and gas 

reservoirs:  1) CEMEX Odessa Plant in the Permian Basin of West Texas; and 2) CEMEX Wampum Plant in 

western Pennsylvania. 
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Utilization of Unmineable Coal seams (those coal deposits which are too deep to be conventionally mined) as a 

CCS site via coal-bed methane recovery methods (CBM) was also considered.  Because this particular CCS site 

would require methane gas recovery systems in addition to the CO2 injection systems, CEMEX did not believe that 

the short duration of the demonstration project would allow for full development of such sites and as such did not 

pursue Unmineable Coal seams as a viable screening component.   

The third and final CCS geologic setting considered by CEMEX was the presence of deep saline formations 

under or adjacent to the cement plant boundaries.  The 7 CEMEX plants that reside over areas of deep saline 

formations are also shown in Figure 4. 

The Phase 1 screening effort involved analysis of general data from the respective Regional Carbon 

Sequestration Partnerships in which the cement plants reside.  The conclusion of the Phase 1 portion of the project 

identified 7 potential CCS host sites.  The goal of Phase 2 was to reduce these 7 sites down to 3 and eventually in 

Phase 3 to the single cement plant site that offers the greatest potential for success.   

The types of information analyzed in Phase 2 consisted primarily of regional geologic maps and review of 

technical literature journals and research documents pertinent to the subsurface. The focus was on identifying porous 

and saline water filled geological formations at depths ranging from 4,000 feet at minimum to depths not exceeding 

10,000 feet below ground surface.  The minimum depth of 4,000 feet was based upon a desire to insure that there 

would be adequate seals to prevent possible CO2 migration to the surface, as well as to prevent contamination of any 

freshwater aquifers.  The maximum depth of 10,000 feet was simply the practical limit for economics and 

engineering.  However, geologic data alone would not be the basis for reducing the 7 sites down to 3 and ultimately 

1. A screening matrix was developed to score each site against criteria affecting the potential viability for on-site 

sequestration or for EOR.  The list of 12 specific criteria developed for the project along with a basis for scoring the 

criteria for the individual plant site are shown in Table 2. 

Figure 4.Cemex Plants and North American Deep Saline Formations (up) and Oil & Gas Fields (down) 
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Using these screening criteria, each plant was “scored” and consequently ranked in terms of CCS potential.  The 

higher the score, the greater the potential for CCS.  Using this approach, the 14 plants could be trimmed down to 3 

with the highest potential for on-site CCS. While appearing straightforward, the scoring basis may in certain 

circumstances appear somewhat subjective. It is also arguable that some criteria are more important than others and 

that some criteria directly influence other criteria. However, for this project, each criteria was weighted equivalently. 

With 12 criteria and a scoring system based upon a 1 to 10 scale, the maximum score a plant could achieve was 120 

and the minimum score would be 12.  For the 14 cement plants analyzed, the scoring results ranged from a high of 

94 to a low of 48. CEMEX Odessa Plant ranked highest with a score of 94 followed by two more CEMEX USA 

cement plants with scores of 93 and 76. 

The Phase 3 analysis involved extracting higher levels of data including site specific legal and technical data for 

the highest 3 ranked sites.  Data analysis included procurement and development of regional and local geologic 

cross sections for the plant sites as well as creating maps of local and regional water supply sources and other key 

factors affecting the CCS potential. Through this process, it became evident that the CEMEX Odessa plant site had 

clear advantages over the other 2 sites. These advantages included the fact that the immediate area around the 

Odessa site was undergoing significant EOR operations, and a CO2 pipeline used in the regional EOR projects was 

actually present on the CEMEX Odessa plant site.  The existence of a local EOR project meant that even if on-site 

sequestration proved too costly, there was an alternative mechanism for handling the CO2 generated from the 

capture technology.

Table 2.  Screening Criteria for Cement Plant CCS Potential 

Criteria Scoring Basis: Range 10 (high) – 1 (low) 

1. Reservoir type 10 = Thick sands at good depth; 1 = No viable reservoirs  

2. EOR potential 10 = EOR projects nearby and pipelines available 

5 = EOR projects potentially available >50miles away 

1= No EOR projects within 200 miles 

3. Primary Storage Potential 10 = Reservoir thickness > 1500’ 

5 = Reservoir thickness 500’ 

1 = Reservoir thickness < 100’ 

4. Secondary Storage Potential 10 = Reservoir thickness > 1500’ 

5 = Reservoir thickness 500’ 

1 = Reservoir thickness < 100’ 

5. Number of Seals Above Injection Zones  10 = > 3 and/or thousands of feet; 1 = No seals 

6. Confidence in Existing Data 10 = large amount of on-site data; 1= regional data only 

7. Pre-existing Wells with Potential to 

Create Leaking Points 

10 = Few in any water wells and no oil wells penetrating zones of injection 

5 = some nearby water wells and a few oil wells 

1 = many nearby water wells, several oil wells 

8. Land Ownership 10 = Full ownership of land; 1= Leases on surface land 

9. Public/Political Acceptance 10 = Existing CCS projects nearby; 1 = Public rejection of CCS projects 

10. Subsurface Mineral Ownership 10 = Full ownership of subsurface minerals; 1 = No ownership of minerals 

11. Risk of Tectonic Activity 10 = Very low threat of earthquakes; 1 = High risk of earthquakes 

12. Capture Potential 10 = Cement plant can be easily retrofit with capture technology 

1 = Cement plant cannot be easily modified for capture technology 

The Odessa site also had two other clear advantages over the other two sites: 1) a major DOE sponsored CCS 

project had been evaluated nearby and consequently a large and high quality database of geologic information 

already existed; and 2) the Odessa plant site had active oil production within and immediately surrounding 

CEMEX’s property.   The existence of oil activity was viewed as “good news” and “bad news” at the same time.  

The “good news” was that with oil activity comes a great deal of data including geophysical and seismic data that is 

critical in evaluating on site sequestration potential, specifically as it pertains to identifying key injection zone 

targets and the reservoir characteristics which are fundamental in modelling storage potential.  Areas without oil 

activity rarely if ever have such data available.  On the “bad news” side, the existence of oil activity on site and 

around the area can complicate the selection of the desired injection zones because there is a concern that the CO2

injection could migrate into the oil producing areas or that improperly abandoned oil wells could represent potential 

CO2 leakage pathways.  Additionally, because the use of the subsurface as a CO2 storage facility could impair future 
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oil and gas exploration and development on the property, serious legal and economic considerations could arise.  

Simply put, in the future pursuit of oil and gas, the operator would not want to drill through a CO2 plume resting 

above the oil and gas target. Despite the stated complications, the CEMEX Odessa site had clear benefits over all 

other sites including the important consideration that the particular cement plant technology and layout at this plant 

would make the retrofit of a CO2 capture process easier. 

The last phase of the analysis involved creating detailed modelling of the selected reservoirs at the Odessa site 

and then performing computer simulations on various CO2 storage scenarios with variable reservoir characteristics. 

Locations for two potential injector wells were chosen by CEMEX at the Odessa site. Using publically available and 

acquired well data and 2D seismic lines, an initial geologic subsurface model was constructed to ascertain potential 

storage for 300,000 tons per year of CO2 for a three year injection period.   

4. Conclusions 

The development and demonstration of a commercial-scale CCS in the cement industry is still far from 

deployment. The groundwork conducted during this study showed that retrofitting a very compatible CO2 capture 

technology for the cement industry is a limiting factor for early implementation of CCS. This calcium-based sorbent 

technology is in its infancy to advance with design and construction of an industrial-scale demo CCS plant. A pilot 

phase under actual cement plant flue gas conditions is a must to develop this technology to a commercial level. 

Research and development in areas of sorbent regeneration using pure oxygen, waste heat power generation, plant 

integration and CO2 purity is needed. In general, CO2 sequestration seems to be technically viable for the cement 

industry (particularly for CEMEX Odessa plant). However, very careful considerations must be taken when 

planning for CO2 storage. Uncertainties regarding the effect of impurities (O2, N2, Ar, NOx, SOx, etc.) in the CO2

product on transportation and storage in geological reservoirs, and CO2 storage in areas of oil and gas exploration 

due to potential CO2 leakage and access to subsurface minerals are areas that warrant further investigation.  
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