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Abstract Sustained cell shrinkage is a major hallmark of apop-
totic cell death. In apoptotic cells, whole cell volume reduction,
called apoptotic volume decrease (AVD), proceeds until frag-
mentation of cells. Under non-apoptotic conditions, human epi-
thelial HeLa cells exhibited a slow regulatory volume increase
(RVI) after osmotic shrinkage induced by exposure to hypertonic
solution. When AVD was induced by treatment with a Fas
ligand, TNF-a or staurosporine, however, it was found that
HeLa cells failed to undergo RVI. When RVI was inhibited by
combined application of Na+/H+ exchanger (NHE) and anion
exchanger blockers, hypertonic stress induced prolonged shrink-
age followed by caspase-3 activation in HeLa cells. Hypertonic-
ity also induced apoptosis in NHE1-deficient PS120 fibroblasts,
which lack the RVI response. When RVI was restored by trans-
fection of these cells with NHE1, hypertonicity-induced apopto-
sis was completely prevented. Thus, it is concluded that RVI
dysfunction is indispensable for the persistence of AVD and
induction of apoptosis.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Apoptosis is an essential event for embryogenesis, organ

development, tissue homeostasis, somatic cell turnover, and

immune system maturation [1–3], and also underlies patho-

genesis of degenerative diseases, viral infections, cancer, AIDS

and autoimmune disorders [4–6]. A major hallmark of apop-

tosis is normotonic cell shrinkage [7,8]. A reduction of whole

cell volume called apoptotic volume decrease (AVD) [9,10]

continues until cell fragmentation in cells undergoing apopto-

sis. The AVD induction precedes cytochrome c release, cas-

pase-3 activation, DNA fragmentation, cell fragmentation
Abbreviations: AE, anion exchanger; AVD, apoptotic volume decrease;
CHX, cycloheximide; DIDS, 4,4 0-diisothiocyanostilbene-2,2 0-disul-
fonic acid; FasL, Fas ligand; NHE1, Na+/H+ exchanger isoform 1;
RVI, regulatory volume increase; STS, staurosporine; TNF-a, tumor
necrosis factor-a
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and eventual cell death [9,10]. The AVD is indispensable for

the apoptosis progression, because the succeeding apoptotic

events were prevented when the AVD induction was inhibited

[9,10].

Most types of normal cells regulate their volume after

shrinkage by a process called regulatory volume increase

(RVI) which is accomplished by NaCl uptake mediated by par-

allel operation of Na+/H+ exchanges (NHE) and Cl�=HCO�3
anion exchanges (AE), by operation of Na+–K+–2Cl� cotrans-

porters (NKCC) or Na+–Cl� contransporters (NCC), and/or

by shrinkage-induced activation of Na+-permeable cation

channels [11–14]. In apoptotic cells, however, persistent cell

shrinkage takes place. Thus, the RVI mechanism must be

either inhibited or overridden in apoptotic cells [15]. The first

purpose of the present study was to examine whether apoptotic

stimulation causes inhibition of RVI in human epithelial HeLa

cells.

Bortner and Cidlowski [15] demonstrated that hypertonicity-

induced shrinkage leads to apoptosis in lymphoid cells that

lack the RVI response but not in several other RVI-exhibiting

cells including HeLa cells. Their data suggest that not only the

induction of AVD, but also the dysfunction of RVI, are key

components of the apoptosis process. The second purpose of

the present study was to examine whether restoration of the

ability to undergo RVI rescues cells from hypertonicity-

induced apoptosis.
2. Materials and methods

2.1. Cell culture and apoptosis stimulation
HeLa cells were cultured in 10% FBS/MEM at 37 �C in 5% CO2/95%

air under humidified conditions. Chinese hamster ovary PS120 fibro-
blasts and PS120/NHE1 cells that were stably transfected with cDNA
encoding Na+/H+ exchanger isoform 1 (NHE1) were provided by Dr.
S. Wakabayashi (National Cardiovascular Center Research Institute,
Osaka, Japan) and cultured in 10% FBS/DMEM, as previously
described [16].

To stimulate apoptosis, HeLa cells were treated with 4 lM stauro-
sporine (STS), 500 ng/ml anti-Fas antibody, or 2 ng/ml tumor necrosis
factor-a (TNF-a) plus 1 lg/ml cycloheximide (CHX).

2.2. Cell volume measurements
Cell volume was measured by an electronic sizing technique with a

Coulter-type cell size analyzer (CDA-500; Sysmex, Kobe, Japan), as
previously described [17]. The mean volume of the population was cal-
culated by a computer from the cell volume distribution determined by
comparison with latex beads of known volume. Isoosmotic (300 mos-
mol/kg-H2O) solution was made of serum-free DMEM containing
20 mM NaHCO3 and 20 mM HEPES/ NaOH (pH 7.4). Hypertonic
solution (600 mosmol/kg-H2O) was prepared by adding 300 mM man-
nitol or 150 mM NaCl to the isotonic solution.
blished by Elsevier B.V. All rights reserved.
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2.3. Cell viability assays
To estimate total cell viability, mitochondrial dehydrogenase activity

was measured by a colorimetric MTT assay using the Cell Counting
Kit-8 (DOJINDO, Kumamoto, Japan) according to the manufac-
turer’s protocol, as previously described [9,18].
2.4. Apoptosis assays
Caspase-3 activity measurements and internucleosomal DNA frag-

mentation assays were performed, as previously described [9,18].
Briefly, caspase-3 activity was measured using the CaspACE Assay
System (Promega, Madison, WI). To exclude the involvement of other
related proteases, the difference in fluorescence when a specific inhibi-
tor of caspase-3 was absent compared to when it was present was
observed. For DNA ladder assays, cells cultured in 24-well plates were
digested and incubated in mammalian cell lysis buffer (0.1% SDS,
10 mM EDTA, 10 mM Tris, pH 8.0) containing 20 lg/ml RNase
(Nacalai Tesque, Kyoto, Japan) at 37 �C for 1 h and 0.5 mg/ml pro-
teinase K (Nacalai Tesque). The chromosomal DNA was analyzed
by agarose gel electrophoresis (2%) followed by staining with ethidium
bromide.
2.5. Statistical analysis
The data, presented as means ± S.E.M., were statistically analyzed

using the unpaired t-test or the Welch t-test when variances were
heterogeneous. Differences were considered significant when P was
<0.05.
3. Results

3.1. Impairment of RVI in apoptotic HeLa cells

When treated for 2 h with a death receptor-mediated apop-

tosis inducer, TNF-a (plus CHX) or Fas ligand (FasL), or with

a mitochondrion-mediated apoptosis inducer, STS, HeLa cells

exhibited AVD (data not shown), as previously observed

[9,10]. Both control and HeLa cells exhibiting AVD responded

to a hypertonic challenge with rapid shrinkage, as shown in

Fig. 1. In AVD-exhibiting cells treated with TNF-a
(Fig. 1A), FasL (Fig. 1B) or STS (Fig. 1C), osmotic shrinkage

persisted without subsequent volume regulation (filled sym-

bols), whereas control cells showed gradual volume recovery

whether or not they received CHX treatment (open symbols).

These data indicate that the RVI mechanisms are inhibited in

HeLa cells that are stimulated with either a death receptor- or

mitochondrion-mediated apoptosis inducer and are exhibiting

AVD.
Fig. 1. Effects of 2-h exposure to apoptosis inducers on the RVI after
osmotic cell shrinkage induced by a hypertonic challenge. Relative cell
volume, normalized to the cell volume under isotonic conditions
(300 mosmol/kg-H2O), was plotted against time after application of
hypertonic solution (600 mosmol/kg-H2O with 300 mM mannitol).
HeLa cells were pretreated with vehicle alone (control), CHX (control
(CHX)), TNF-a plus CHX (A), Fas ligand (FasL: B) or STS (C) for
2 h. Each symbol stands for the means ± S.E.M. (vertical bar) of 10
experiments. *P < 0.05 vs. control cell volume at the corresponding
time point.
3.2. Hypertonicity-induced caspase-3 activation in HeLa cells

treated with RVI inhibitors

Hypertonic stress alone was shown to lead to apoptosis in

lymphoid cells lacking the RVI mechanism but not in other

cell types that exhibit RVI, such as epithelial HeLa cells

[15]. However, it is not clear whether osmotic shrinkage

causes apoptosis in lymphoid cells only or whether it causes

apoptosis in other cell types as well when their RVI is inhib-

ited. Thus, we next examined the effect of RVI blockers on

caspase-3 activity in HeLa cells under isotonic and hypertonic

conditions.

In the presence of both an anion exchanger (AE) blocker, 4,4 0-

diisothiocyanostilbene-2,2 0-disulfonic acid (DIDS, 200 lM),

and an NHE blocker, amiloride (100 lM), it was found

that RVI after exposure to hypertonic solution (which was

prepared by adding 300 mM mannitol) was almost completely

suppressed (Fig. 2A, filled circles). As shown in Fig. 2B, signifi-

cant activation of caspase-3 was observed in the presence of
both blockers after 6-h exposure to hypertonic solution (fourth

column) but not isotonic solution (second column). In contrast,

significant activation of caspase-3 was not induced by

hypertonic stress in the absence of DIDS and amiloride

(Fig. 2B, third column) in HeLa cells that could exhibit RVI

under this condition (Fig. 2A, open squares). These data

indicate that even non-lymphoid HeLa cells subjected to

osmotic shrinkage undergo apoptosis when RVI is inhibited

by DIDS and amiloride.



Fig. 3. Effects of hypertonic stress on caspase-3 activity in PS120 cells
which lack RVI (A) and PS120/NHE1 cells which exhibit RVI (B).
Time courses of changes in caspase-3 activity were observed in PS120
and PS120/NHE1 cells in isotonic solution (control: open squares) or
hypertonic solution (600 mosmol//kg-H2O) containing 150 mM NaCl
(filled circles) or 300 mM mannitol (filled triangles). Each symbol
represents the means ± S.E.M. (vertical bar) of 10 observations.
*P < 0.05 vs. control (isotonic) at the corresponding time point.

Fig. 2. Effects of combined application of DIDS and amiloride on the
RVI (A) and caspase-3 activity (B) in HeLa cells. Each symbol
represents the means ± S.E.M. (vertical bar) of 10 experiments.
*P < 0.05 vs. control (vehicle alone). (A) Cell volume was measured
immediately upon application of hypertonic stress (300 fi 600 mos-
mol/kg-H2O) in the absence (control: open squares) or presence of
DIDS + amiloride (filled circles). (B) Caspase-3 activity measured at 6-
h after incubation in isotonic (300 mosmol/kg-H2O) or hypertonic
(600 mosmol/kg-H2O with 300 mM mannitol) solution in the presence
of vehicle alone (open column) or together with DIDS and amiloride
(filled column).
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3.3. Rescue from hypertonicity-induced apoptosis in PS120 cells

by restoration of RVI

It was shown that PS120 cells, which are deficient in NHE1

expression [19], fail to exhibit volume regulation after osmotic

shrinkage, but that overexpression of NHE1 can restore the

ability to undergo RVI [16]. We confirmed that RVI occurs

in PS120/NHE1 cells but not in PS120 cells under hypertonic

conditions (600 mosmol/kg-H2O; data not shown). We then

examined whether hypertonic stress induces apoptosis in

PS120 cells which lack RVI and whether hypertonicity-induced

apoptosis is prevented in PS120/NHE1 cells which exhibit RVI.

As shown in Fig. 3, activation of caspase-3 was observed

over 2 h after exposure to hypertonic solution prepared with

either 150 mM NaCl or 300 mM mannitol in PS120 cells (A)

but not in PS120/NHE1 cells (B). Laddering of DNA was also

observed after more than 4 h of hypertonic stress in PS120 cells

but was never observed in PS120/NHE1 cells (Fig. 4). Expo-
sure to hypertonic solution (containing either 150 mM NaCl

or 300 mM mannitol) resulted in the reduction, in a time-

dependent manner, of cell viability in PS120 cells, as assessed

by the MTT assay. On the other hand, hypertonic stress never

induced significant reduction of cell viability in PS120/NHE1

cells, as shown in Fig. 5. These data indicate that conferment

of the ability to undergo RVI on PS120 fibroblasts prevented

apoptotic cell death under hypertonic conditions.
4. Discussion

Most cell types are known to exhibit volume regulation after

osmotic shrinkage by the RVI mechanism [11–14]. In contrast,

cell shrinkage persists in cells undergoing apoptosis [7–10]. In

the present study, we have, for the first time, demonstrated

that the ability to undergo RVI is impaired in human epithelial

HeLa cells stimulated with either a death receptor- or mito-

chondrion-mediated apoptosis inducer (Fig. 1). Thus, there ex-

ists a possibility that not only the induction of AVD [9,10], but

also the dysfunction of RVI, are essential elements of apopto-

sis. This hypothesis was suggested by previous observations



Fig. 4. Effects of hypertonic stress (600 mosmol/kg-H2O with 300 mM
mannitol) on DNA integrity in PS120 cells which lack RVI (A) and
PS120/NHE1 cells which exhibit RVI (B). Internucleosomal DNA
cleavage (DNA ladder) was observed as early as 5 h after a hypertonic
challenge in PS120 cells but never in PS120/NHE1 cells up to 8 h after
hypertonic treatment. Data are representative of triplicate experi-
ments. M: 100 bp marker.

Fig. 5. Effects of hypertonic stress on cell viability in PS120 cells which
lack RVI (A) and PS120/NHE1 cells which exhibit RVI (B). Time
courses of changes in cell viability were monitored by the MTT assay
in PS120 and PS120/NHE1 cells in isotonic solution (control: open
squares) or hypertonic solution (600 mosmol/kg-H2O) containing
150 mM NaCl (filled circles) or 300 mM mannitol (filled triangles).
Each symbol represents the means ± S.E.M. (vertical bar) of 10
experiments. *P < 0.05 vs. control (isotonic) at the corresponding time
point.
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that osmotic cell shrinkage per se leads to apoptosis in cells

that lack RVI, but not cells that exhibit RVI [15]. Here, we

have substantiated this hypothesis by the following observa-

tions: first, even in HeLa cells with the ability to undergo

RVI, apoptosis was induced by hypertonic stimulation when

the RVI was pharmacologically blocked (Fig. 2); and second,

hypertonicity-induced apoptosis was prevented even in

NHE1-deficient PS120 fibroblasts, when the ability to undergo

RVI was conferred on the cells by transfection with NHE1

(Figs. 3–5).

RVI occurs by uptake of NaCl and osmotically obligated

water, and volume-regulatory NaCl influx is mediated by par-

allel activation of NHE and AE, by operation of NKCC or

NCC, and/or by shrinkage-induced activation of a Na+-perme-

able cation channel [11–14]. Thus, the dysfunction of RVI

associated with apoptosis may be the result of impaired activ-

ity of the above transporters or channels. Impaired parallel

activation of NHE and AE in apoptotic cells was suggested

by the present observation that similar RVI inhibition was

induced by application of an NHE blocker, amiloride, and

an AE blocker, DIDS (Fig. 2A). Furthermore, our preliminary

results showed that the effect of staurosporine and that of com-

bined applications of amiloride and DIDS were not additive

(N. Takahashi and Y. Okada, unpublished observations).

Above all, inhibition of NHE activity seems to be the most

probable component, because the present study showed that

restoration of molecular expression of NHE1 not only con-
ferred the ability to undergo RVI on PS120 fibroblasts but also

rescued the cells from hypertonicity-induced apoptosis (Figs.

3–5). In fact, it was found that inhibition of an NHE induced

apoptosis parallel to that induced by withdrawal of interleu-

kin-2 [20] and by stimulation of Fas [21] in lymphocytes. Also,

it was found that NHE1 overexpression largely prevented STS-

induced apoptosis in HEK293 cells [22]. Apoptosis-associated

inhibition of an NHE might be induced by a mechanism which

depends on the activation of Src-like kinase Lck56 [21] and/or

caspase-3 [22]. In the present study, however, the dysfunction

of RVI was observed after a 2-h exposure to apoptotic induc-

ers (Fig. 1), at a time before caspase-3 activation would occur

[9]. Since apoptosis is frequently coupled to intracellular acid-

ification [23,24], there is a possibility that the dysfunction of

RVI in HeLa cells stimulated with an apoptosis inducer is

mediated by intracellular acidification. However, Tafani

et al. [25] showed that apoptosis induction with staurosporine

increased the intracellular pH (pHi), whereas apoptosis induc-

tion with TNF-a lowered the pHi value in HeLa cells. Thus, it

is likely that the RVI inhibition induced by stimulation with

either a death receptor- or mitochondrion-mediated apoptosis

inducer is independent of pH changes in HeLa cells.

Hypertonic stimulation is known to stimulate NHE, thereby

eliciting significant intracellular alkalinization in HCO�3 -free

conditions [16,26–28]. Thus, there exists a possibility that im-

paired intracellular alkalinization upon hypertonic stimulation

is involved in apoptosis induction in HeLa cells treated with an

NHE1 blocker (amiloride) together with an AE blocker

(DIDS) and in NHE1-deficient PS120 cells. However, the
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present experiments were conducted under HCO�3 -containing

conditions where pHi can be controlled by parallel functions

of NHE and AE, and may not largely be affected by simulta-

neous inhibition of NHE and AE. In fact, our preliminary

studies with a fluorescent pHi indicator (BCECF) revealed that

the pHi value observed in the presence of HCO�3 under hyper-

tonic conditions was not significantly affected by combined

applications of amiloride and DIDS in HeLa cells (pH

7.22 ± 0.04 (n = 7) and 7.20 ± 0.01 (n = 5) without and with

amiloride and DIDS, respectively: N. Takahashi, unpublished

observations) and by NHE1 transfection in PS120 cells (pH

7.42 ± 0.03 (n = 6) and 7.41 ± 0.04 (n = 6), respectively: N.

Takahashi, unpublished observations). Therefore, it appears

that hypertonic stress-induced apoptosis under RVI-lacking

conditions is independent of pHi changes in both HeLa and

PS120 cells.

In conclusion, apoptotic stimulation induces inhibition of

RVI, at least in part by impairing activity of an NHE. The dys-

function of RVI is essential for the induction of apoptosis, pre-

sumably by promoting sustained cell shrinkage.
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