
Information and Computation 194 (2004) 1–18

www.elsevier.com/locate/ic

Applicability of fair simulation

Doron Bustan∗, Orna Grumberg∗

Computer Science Department Technion, Haifa 32000, Israel

Received 29 September 2002; revised 5 November 2003

Abstract

In this paper we compare four notions of fair simulation: direct [9], delay [12], game [19], and exists [16].
Our comparison refers to three main aspects: The time complexity of constructing the fair simulation, the
ability to use it for minimization, and the relationship between the fair simulations and universal branching-
time logics. We developed a practical application that is based on this comparison. The application is a
new implementation for the assume-guarantee modular framework presented By Grumberg at al. in [ACM
Transactions on Programming Languages and Systems (TOPLAS), 16 (1994) 843]. The new implementation
significantly improves the complexity of the framework.
Published by Elsevier Inc.

Keywords: Fair simulation; Minimization; Branching time logics; Preorder; Assume-guarantee

1. Introduction

Temporal logic model checking is a method for verifying finite-state systems with respect to prop-
ositional temporal logic specifications. The method is fully automatic and quite efficient in time,
but is limited by its high space requirements. Many approaches for overcoming the state explosion
problem of model checking have been suggested, including abstraction, partial order reduction,

∗ Corresponding authors. Fax: +972 4 829 4353 (D. Bustan).
E-mail addresses: doron_b@cs.rice.edu (D. Bustan), orna@cs.technion.ac.il (O. Grumberg).

0890-5401/$ - see front matter. Published by Elsevier Inc.
doi:10.1016/j.ic.2004.02.005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82602558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

modular methods, and symmetry [7]. These approaches are often based on the idea that the model
of the verified system can be replaced by a more abstract model, smaller in size. The abstract and
concrete models are sufficiently similar so that properties that are verified on the abstract model
can be considered true for the concrete one. This idea is often formalized by relating models with
the simulation preorder [27], in which the greater, more abstract model has “more behaviors,” and
the verified properties are written in a universal branching time logic such as ACTL or ACTL∗
[16].

It often happens that during the construction of a reduced abstract model some unrealistic infi-
nite behaviors are added. A common way to avoid these behaviors is to add fairness constraints to
distinguish between wanted (fair) and unwanted (unfair) behaviors and to exclude unfair behaviors
from consideration.

The simulation preorder does not distinguish between fair and unfair behaviors. It is therefore
desirable to find an alternative definition that relates only fair behaviors of the two models. This
task, however, is not uniquely defined. Indeed, several distinct notions of fair simulation have been
suggested in the literature [9,12,19,16].

Researchers have addressed the question of which notion of fair simulation is preferable. In [19],
some of these notions are compared with respect to the complexity of checking for fair simulation.
In [12], a different set of notions is compared with respect to two criteria: The complexity of con-
structing the preorder, and the ability to minimize a fair model by constructing a quotient model
that is language equivalent to the original one. In [15,14] the definitions of three of these logics are
extended for alternating Büchi automata, and are compered with respect to their applicability to
minimization.

This paper is an extension of [6], in the paper we make a broader comparison of four notions of fair
simulation: direct [9], delay [12], game [19], and exists [16]. We refer to several criteria that emphasize
the advantages of each of the notions. The results of the comparison are summarized in Table 1.

In addition, we suggest a new implementation for the assume-guarantee [13,20,28,29] modular
framework presented in [16]. The new implementation, based on the game simulation rather than
the exists simulation, significantly improves the complexity of the framework.

Our comparison refers to three main aspects of fair simulation. The first is the time complexity of
constructing the preorder. There, we mainly summarize results of other works (see Table 1). We see
that constructing the direct, delay, and game simulations is polynomial in the number of states n and

Table 1
The properties of the different notions of fair simulation

Notion Time complexity
of constructing
the preorder

Minimization Relation to logic

Unique
smallest
model

Quotient
model

Little
brothers

Has logical
characteri-
zation

Max
model

Direct O(m · n) [12] true [11,5,30] true [11,5,30] true false false
Delay O(m · n3) [12] false truea false false false
Game O(m · n3) [12] false false [12] false ∀AFMC [19] true
Exists PSPACE complete [23] false false false ACTL∗ true [16]

a In [12] it is shown that the quotient model is language equivalent to the original model. Here, we show that they are
delay equivalent.

D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18 3

the number of transitionsm [12]. In contrast, constructing the exists simulation is PSPACE-complete
[23], which is a great disadvantage.

The second aspect that we consider is the ability to use the preorder for minimization. We say
that two models are equivalent with respect to a preorder if each is smaller by the preorder than the
other. The goal of minimization is to find the smallest in size model that is equivalent with respect
to the preorder to the original one. 1

For models with no fairness constraints there exists a unique smallest in size model which is
simulation equivalent to them [5]. This unique and smallest in size model is the result of eliminating
two types of redundancies. One is the existence of equivalent states. This redundancy is eliminated
by constructing a quotient model. The other is the existence of a successor of a state whose be-
havior is contained in the behavior of another successor of the same state. Such a state is called
a little brother. This redundancy is eliminated by disconnecting little brothers. For each of the fair
simulation preorders, we check the following:

(1) Is there a unique smallest in size model with respect to simulation equivalent?
(2) Is the quotient model of model M , simulation equivalent to M ?
(3) Is the result of disconnecting little brothers in a model M , simulation equivalent to M ?

The third aspect that we investigate is the relationship between the simulation preorders and univer-
sal branching-time logics. A basic requirement of using a preorder in verification is that it preserves
the specification logic, i.e., ifM1 � M2 then, for every formula � in the logic,M2 |= � impliesM1 |= �.
Indeed, all four notions of fair simulation satisfy this requirement. A stronger requirement is that
the preorder have a logical characterization by some logic. This means that M1 � M2 if and only if
for every formula � in the logic, M2 |= � implies M1 |= �.

Logical characterization of different specification logics is well studied [18,3,2,1,19]. For abstrac-
tion, this definition is useful in determining if model M2 can be used as an abstraction for is an
abstraction of model M1, when the logic L should be preserved. If the preorder � is logically char-
acterized by L then checking M1 � M2 is a necessary and sufficient condition and will never give a
false negative result.

Another important relationship between a logic and a preorder is the existence of a maximal
model T� for a formula � with respect to the preorder. The maximal model T� for a formula � is
such that for every model M ′, M ′ � T� if and only if M ′ |= �. Maximal structure of formula can
be used for abstracting an environment of a verified system, where we assume that the environment
satisfies some requirements specified by .

The results of our comparison direct us towards an improvement of a framework described in
[16] for the assume-guarantee paradigm. The assume-guarantee is an inductive modular verification
paradigm in which the environment of the verified part can be represented by a formula. The par-
adigm is used to create a proof schema which is based on the modular structure of the system. In
[16], a semi-automatic framework for the assume-guarantee paradigm is presented. The framework
uses the exists preorder and is defined with respect to the logic ACTL. We suggest that the game

1 Note that this is a stronger criterion than the one used in [12], where only language equivalence is required.

4 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

simulation should replace the exists simulation in the framework, thus reducing its complexity
dramatically.

The results of our comparison are presented in the Table 1. The rest of the paper is organized
as follows: In Section 2, we define the simulation preorder and the different notions of fair sim-
ulation. Section 3 investigates simulation minimization. In Section 4, each notion is checked for
logical characterization and for the existence of a maximal structure. In Section 5, we prove that the
game simulation can replace the exists simulation in the implementation of the assume-guarantee
paradigm. Finally, in Section 6 we discuss some conclusions.

2. Preliminaries

Let AP be a set of atomic propositions. We model systems by a fair Kripke structureM over AP ,
M = 〈S ,R, S0,L, F 〉, where S is a finite set of states, S0 ⊆ S is a set of initial states, and R ⊆ S × S

is the transition relation, which must be total. This means that for every state s ∈ S there is a state
s′ ∈ S such that (s, s′) ∈ R (states which do not satisfy this condition are deleted). L : S → 2AP is a
function that labels each state with the set of atomic propositions true in that state, and F ⊆ S is a
set of fair states.

Let s be a state in a Kripke structureM . A trace inM starting from s is an infinite sequence of states
� = s0s1s2 . . . such that s0 = s, and for every i � 0, (si, si+1) ∈ R. The ith state of trace � is denoted
�[i], and the suffix of � starts at �[i] is denoted �i . To capture the infinite behavior of �, we define

inf(�) = {s | s = �[i] for infinitely many i}.

We say that a trace � is fair according to the fair set F iff inf(�) ∩ F /= ∅.
In this work we refer to two branching-time logics, ACTL∗ and ACTL [16]. First, we define CTL∗

formulas in negation normal form, namely, negation is applied only to atomic propositions. CTL∗
contains trace formulas and state formulas and is defined inductively:

• Let p be an atomic proposition, then p and ¬p are both state formulas and trace formulas.
• Let ϕ and be trace formulas, then

◦ (ϕ ∧) and (ϕ ∨) are trace formulas.
◦ Xϕ, (ϕU), and (ϕR) are trace formulas.
◦ Aϕ and Eϕ are state formulas.

• Let ϕ and be state formulas, then
◦ (ϕ ∨) and (ϕ ∧) are state formulas.
◦ ϕ and are trace formulas.

Next we define the semantics of CTL∗ with respect to fair Kripke structures. A state formula � is
satisfied by a structure M at state s, denoted M , s |= �, if the following holds (M is omitted if clear
from the context):

• For p ∈ AP , s |= p iff p ∈ L(s); s |= ¬p iff p �∈ L(s).
• s |= � ∧ iff s |= � and s |= ; s |= � ∨ iff s |= � or s |= .

D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18 5

• s |= Aϕ iff for every fair trace � from s, � |= ϕ.
• s |= Eϕ iff there exists a fair trace � from s, such that � |= ϕ.

The conditions that a trace satisfies a trace formula ϕ, denoted � |= ϕ, are:

• � |= Xϕ iff �1 |= ϕ.
• � |= ϕU iff for some i � 0, �i |= and for all j < i, �j |= ϕ.
• � |= ϕR iff for all i � 0, if for every j < i, �j �|= ϕ then �i |= .

ACTL∗ is the universal fragment of CTL∗ where the only trace quantifier allowed is A. ACTL is a
subset of ACTL∗ where every temporal operator is immediately preceded by the A quantifier. The
modal logic as defined in [18] is equivalent to a subset of CTL∗ where the only temporal operator
is X and every X operator is immediately preceded by a quantifier. The universal fragment of the
modal logic is a restriction to the A quantifier only. We say that M |= � iff for every initial state
s0 ∈ S0, M , s0 |= �.

2.1. Simulation and fair simulation

We start by defining the simulation relation over Kripke structures with F = S (Kripke structures
with trivial fairness constraints).

Definition 2.1. Given two structures M1 and M2 over AP , a relation H ⊆ S1 × S2 is a simulation
relation [27] over M1 ×M2 iff the following holds:

(1) For every s01 ∈ S01 there exists s02 ∈ S02 such that (s01, s02) ∈ H .
(2) For all (s1, s2) ∈ H ,

(a) L1(s1) = L2(s2) and
(b) ∀s′1[(s1, s′1) ∈ R1 → ∃s′2[(s2, s′2) ∈ R2 ∧ (s′1, s′2) ∈ H]].

M2 simulates M1 (denoted by M1 � M2) if there exists a simulation relation H over M1 ×M2. We
say thatM1 andM2 are simulation equivalent ifM1 � M2 andM2 � M1. Similarly, (s1, s2) ∈ H , is de-
noted s1 � s2 and s1 and s2 are equivalent if s1 � s2 and s2 � s1. This equivalence is denoted s1 ≡ s2.
The relation � is a preorder on the set of structures. This means that it is reflexive and transitive.
Next, we define the different notions of fair simulation. The first notion is the direct simulation,
which is the most straightforward extension of the ordinary simulation.

Definition 2.2. H ⊆ S1 × S2 is a direct simulation relation [9] (�di) over M1 ×M2 iff it satisfies the
conditions of Definition 2.1, except that here 2a is replaced by:

2(a′)L1(s1) = L2(s2) and s1 ∈ F1 implies s2 ∈ F2.

We now define the exists simulation:

Definition 2.3 ([16]). H ⊆ S1 × S2 is an exists simulation (�∃) over M1 ×M2 iff it satisfies the condi-
tions of Definition 2.1, except that here 2b is replaced by:

6 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

2(b′) for every fair trace �1 from s1 in M1 there exists a fair trace �2 from s2 in M2 such that for
all i ∈ IN , (�1[i], �2[i]) ∈ H . 2

The next definitions are based on games over Kripke structures. We start with a game for ordinary
simulation. A game is played by two players over M1,M2, the players are called the adversary and
the protagonist, where the adversary plays on M1 and the protagonist plays on M2.

Definition 2.4. Given two Kripke structures, M1 and M2, a simulation game consists of a finite or
infinite number of rounds. At the beginning, the adversary selects an initial state s01 in M1, and
the protagonist responds by selecting an initial state s02 in M2 such that L1(s01) = L2(s02). In each
round, assume that the adversary is at s1 and the protagonist is at s2. The adversary then moves to
a successor s′1 of s1 onM1, after which the protagonist moves to a successor s′2 of s2 onM2 such that
L1(s

′
1) = L2(s

′
2).

If the protagonist does not have a matching state, the game terminates and the protagonist
fails. Otherwise, if the protagonist always has a matching successor to move to, the game pro-
ceeds ad infinitum for ω rounds and the protagonist wins. The adversary wins iff the protagonist
fails.

Definition 2.5. Given two Kripke structuresM1 andM2, a strategy � of the protagonist is a function
� : (S1 × S2 → S2) ∪ (S01 × {⊥} → S02). The function� should satisfy the following: If s′2 = �(s′1, s2)
then (s2, s′2) ∈ R2.

The protagonist plays according to a strategy � if when the adversary initially selects s01 ∈ S01 ,
the protagonist selects s02 = �(s01 , ⊥) and, for every round i, when the adversary moves to s′1 and
the protagonist is in s2, the protagonist moves to s′2 = �(s′1, s2). � is a winning strategy for the pro-
tagonist if the protagonist wins whenever it plays according to �. We can now present an alternative
definition to the simulation preorder. This definition is equivalent to Definition 2.1 [19].

Definition 2.6. Given two Kripke structures,M1 andM2,M2 simulatesM1 (M1 � M2) iff the protag-
onist has a winning strategy in a simulation gameover M1,M2.

To extend the simulation gameto fair simulation, we add a winning condition which refers to the
infinite properties of the game. We now give the definitions of the delay (�de) and the game (�g)
simulations.

Definition 2.7 ([12]). The protagonist delay wins a game over two fair Kripke structures M1
and M2 iff the game is played for infinitely many rounds. Moreover, whenever the adversary
reaches a fair state then the protagonist reaches a fair state within a finite number of rounds
thereafter.

2 In such a case we use the notation (�1, �2) ∈ H .

D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18 7

Definition 2.8 ([19]). The protagonist game wins a game over two fair Kripke structures M1 and M2
iff the game is played for infinitely many rounds. Moreover, if the adversary moves along a fair
trace, then the protagonist moves along a fair trace as well.

We say that � is a delay/game winning strategy for the protagonist if the protagonist delay/game
wins whenever it plays according to �.

Definition 2.9 ([19,12]). Given two fair Kripke structures, M1 and M2, M2 delay/game simulates M1
iff the protagonist has a delay/game winning strategy over M1,M2.

Definitions 2.2, 2.3, and 2.9 are extensions of Definition 2.1 and its equivalent Definition 2.6. Con-
sequently, on structures with trivial fairness constraints (F = S), all four definitions are equivalent.
In [19,12] the following relationships over the fair simulation preorders are shown:

M1 �di M2 ⇒ M1 �de M2 ⇒ M1 �g M2 ⇒ M1 �∃ M2.

Note that the definitions of game/exists simulation are not limited to specific types of fairness
constraints. They hold even if M1 and M2 have different types of fairness constraints. Finally, we
extend the delay/game simulations for states.

Definition 2.10. For all states s1 and s2 in a structureM , s1 �de/g s2 if the protagonist has a winning
delay/game strategy in a game over M ×M where the adversary starts at s1 and the protagonist
starts at s2.

Other relations we use are, language equivalence and language containment.

Definition 2.11.

• The language of s1 is contained in the language of s2(s1 ⊆ s2) if for every fair trace �1 from s1
there is a fair trace �2 from s2 such that ∀i � 0, L(�1[i]) = L(�2[i]).

• M1 ⊆ M2 if for every fair trace �1 starting at an initial state of M1, there is a fair trace �2 starting
at an initial state of M2 such that ∀i � 0, L1(�1[i]) = L2(�2[i]).

• M1 is language equivalent to M2 if M1 ⊆ M2 and M2 ⊆ M1.

Clearly, all notions of fair simulation imply language containment.

3. Simulation minimization

In this section we compare the applicability of the different notions of fair simulation for state
space reduction. In [5], the use of ordinary simulation, for state space reduction is investigated thor-
oughly. It is shown in [5] that for ordinary simulation and structures with trivial fairness constraints,
there are two forms of redundancy. The first is the existence of simulation equivalent states. This
redundancy is being eliminated by unifying all equivalent states. The result of unifying all equivalent
states is a quotient structure. The other redundancy is the existence of transition to little brothers,
meaning successors that are not maximal with respect to the simulation preorder. This redundancy

8 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

is eliminated simply by removing these transitions (also called disconnecting little brothers). For
a structure M , with trivial fairness constraints, eliminating these redundancies and removing un-
reachable states, results in a unique, smallest in size structure that is simulation equivalent toM [5].
In the following, we determine for every simulation notion, whether or not these useful properties
of the ordinary simulation hold.

We start with direct simulation. In [11,30], reduction algorithms that uses the direct simulation
are presented. These algorithms eliminate both redundancies. Then, it is shown that the result is
language equivalent to the original. Lemma 3.1 can be easily deduced from [11,30].

Lemma 3.1. For every structure M , the following holds:

(1) The quotient structure ofM with respect to direct simulation is direct simulation equivalent toM.
(2) The result of removing transitions to little brothers inM using direct simulation is direct simulation

equivalent to M.

The direct simulation can also be considered as an ordinary simulation over structures with ad-
ditional proposition F that is true in the fair states. Thus, Lemma 3.1 is also a direct consequence
of the result in [5]. Another direct consequence of [5] is the following lemma:

Lemma 3.2. For every structure, there exists a unique, smallest in size structure that is direct simulation
equivalent to it.

Unfortunately, performing the same operations for the other notions of fair simulations might re-
sult in an inequivalent structure. We continue our investigation by checking for the delay/game/exists
simulations whether the quotient structure is equivalent to the original one. The quotient structure
is the result of unifying all equivalent states into equivalence classes. Recall that states s1 and s2
are equivalent if s1 � s2 and s2 � s1. The equivalence classes are the states of the quotient structure.
There is a transition from one equivalence class to another iff there exists a transition from a state
in the former to a state in the latter. An equivalence class is initial if it contains an initial state and
is fair if it contains a fair state.

In [12], it is shown that for delay simulation the quotient structure is language equivalent to the
original structure. The proof of the following lemma is similar to the proof in [12], and thus omitted.
The full proof is presented in [4].

Lemma 3.3. Let MQ be the quotient structure of a structure M. Then M ≡de M
Q.

Etessami et al. [12] shows a Büchi automaton Mn with n states that its quotient automaton with
respect to game simulation has one state, and there is no automaton with fewer than n states that is
language equivalent to Mn. Lemma 3.4 extends this result for all the preorders �♣ that lie between
game simulation and language containment.

Lemma 3.4. Let �♣ be any preorder such that for every M1, M2,
M1 �g M2 ⇒ M1 �♣ M2 ⇒ M1 ⊆ M2.

Then the quotient structure of Mn with respect to �♣ is not equivalent to Mn with respect to �♣.

D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18 9

Proof. Let �♣ be a preorder that lies between language equivalent and game simulation. Since �g⇒
�♣, the quotient structureMQ

n ofMn with respect to �♣ has only one state. This implies thatL(Mn) /=
L(M

Q
n). Since �♣ implies language containment,Mn is not equivalent toMQ

n with respect to �♣. �

Corollary 3.5. For the game and exists simulations, the quotient structure is not necessarily equivalent
to the original structure.

Next, we show that for the delay/game/exists simulations, disconnecting little brothers may not
result in an equivalent structure. Formally, a state s2 is a little brother of another state s3 if both
states are successors of the same state s1, s2 � s3, and s3 �� s2. A little brother s2 is being disconnected
by removing the transition (s1, s2) from R.

Lemma 3.6. Let �♠ be a preorder such that

M1 �de M2 ⇒ M1 �♠ M2 ⇒ M1 ⊆ M2.

LetM ′ be the result of disconnecting little brothers in structureM with respect to �♠. M ′ might not
be equivalent to M with respect to �♠.

As an example observe the structure M1 in Fig. 1. State 2 is a little brother of state 1 with re-
spect to delay/game/exists simulation. However, the result of removing the transition (0, 2) is not
delay/game/exists simulation equivalent to M1. This is because disconnecting state 2 results in a
structure with no fair traces from state 0. The full proof is presented in [4]. A generalization of this
lemma has been independently developed in [15].

Corollary 3.7. The structure that results when little brothers are disconnected with respect to de-
lay/game/exists simulation might not be equivalent to the original structure with respect to delay/
game/ exists simulation.

The example in Fig. 1 also demonstrates the following result:

Lemma 3.8. Let �♠ be a preorder such that

M1 �de M2 ⇒ M1 �♠ M2 ⇒ M1 ⊆ M2.

Then there exists a structure M that has no unique smallest in size structure with respect to �♠.

Fig. 1. The structures M1 and M2 are equivalent with respect to delay/game/exists simulation to M , and they are both
minimal. Note that state 2 (4′) is a little brother of 1 (0′) but cannot be disconnected.

10 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

Fig. 2. The structuresM1 andM2 are equivalent toM with respect to game/exists simulation, and they are both minimal.
Note that states 0 and 2 (0′ and 2′) are equivalent but cannot be unified. (Double circles denote fair states.)

Corollary 3.9. There is no unique smallest in size structure with respect to delay/game/exists simulation.

An interesting observation is that the minimization operations are not independent 3 [21]. For
example, in structure M in Fig. 2, states 0 and 1 are game/exists equivalent to states 2 and 3,
respectively. Unifying states 0 and 2 results in structure M2. Unifying states 1 and 3 results in
structure M1. Both structures are equivalent to M and neither can be further minimized. A sim-
ilar phenomenon occurs in structure M of Fig. 2: for delay/exists/game simulation, states 4 and
2 are little brothers of states 0 and 1, respectively. Disconnecting state 4 from state 1 results in
M1, and disconnecting state 2 from state 0 results in M2. Again, both structures are equivalent
to M , and neither structure can be further minimized. In [5], two efficient procedures for min-
imizing with respect to ordinary simulation are presented. In the above, we have shown that
these procedures cannot be used for delay/game/exists simulation. Furthermore, we have shown
that there is no equivalent unique smallest in size structure with respect to these simulations.
These results implies that heuristics for finding minimal but not necessarily smallest structure are
appropriate. An example for an algorithm that uses such heuristics is presented in [17]. The al-
gorithm constructs a reduced automaton that is game simulation equivalent to the original one
and is minimal in the sense that no equivalent state can be unified and no little brothers can be
disconnected.

4. Relating the simulation notions to logics

In this section we investigate the relationships between the different notions of fair simulation
and specification languages. First, we check for each notion whether it has a logical character-
ization. Then, we check whether there exists a maximal structure for ACTL with respect to each
notion.

4.1. Logical characterization

Equivalence relations and preorders over Kripke structures can be naturally expressed using
specification languages in the following way: Two structuresM2 andM1 are equivalent with respect

3 Operations are not independent if one operation disables another.

D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18 11

to a specification language L (M1 ≡L M2), if for every formula in L we have M1 |= iff M2 |= .
A structureM1 is smaller than structureM2 with respect to specification language L (M1 �L M2), iff
for every formula in L we have that M2 |= implies M1 |= . Thus, the specification language L
determines whether an abstract model can replace an equivalent or smaller w.r.t. L, concrete model.
However, this natural definition, does not implies an algorithm for checking whether M1 �L M2.
Obviously we cannot check for every formula in L that M2 |= implies M1 |= . Fortunately, for
some specification languages, ≡L and �L coincides with different notions of bisimulation and sim-
ulation respectively. We say that a specification language L characterizes a bisimulation relation ≡∗
(simulation relation �∗), if ≡L and ≡∗ (�L and �∗) are the same relations [18].

In [18], it is shown that the modal logic characterizes the ordinary bisimulation, and that universal
modal logic characterizes the ordinary simulation. In [3,2,26], it is shown that if a structure M1 is
smaller than M2 by the ordinary simulation, then for every ∀-MC/∀-AFMC/ACTL∗/ACTL 4 for-
mula we have M2 |= implies M1 |= . Since ∀-MC, ∀-AFMC, ACTL∗, and ACTL are more
expressive than the universal modal logic, this implies that ∀-MC, ∀-AFMC, ACTL∗ and ACTL
characterize the ordinary simulation. Thus, for structures without fairness constraints the preor-
ders that are implied by the ∀-MC, ∀-AFMC, ACTL∗, ACTL and the universal modal logic are
identical.

This however, is not true for structures with fairness constraints. In [1,19], it is shown that
�∀AFMC⊂�ACTL∗⊂�ACTL, where, the containments are strict. Thus, each specification language in-
duces different preorder. Lemma 4.1 is proven in [19].

Lemma 4.1. The game simulation is characterized by the ∀-AFMC logic.

In [16], it is shown that ifM1 �∃ M2, thenM1 �ACTL∗ M2. Lemma 4.2 implies that the exists simu-
lation is characterized by the ACTL∗ logic.

Lemma 4.2. If M �ACTL∗ M ′, then M �∃ M ′.

The proof of Lemma 4.2 is an adaptation of the proof for the exists bisimulation [1] and thus
omitted. The full proof is presented in [4]. In [1], a bisimulation relation that is characterized by the
CTL logic is shown. We conjecture that their definition can be adapted to characterize the �ACTL

preorder, however, this is still an open question.
The question arises whether the direct/delay simulation can be characterized by any specifica-

tion language. We show that no reasonable logic that describes the fair branching behavior of
a structure characterizes the direct/delay simulation. Consider the structures M1 and M2 in Fig. 3.
M1 and M2 cannot be distinguished by a temporal logic formula. This is because they have
computation trees, with exactly the same fair traces. However,M1 ��de M2 and therefore,M1 ��di M2.
To see thatM1 ��de M2 note that if the adversary chooses the path 123∞ the protagonist must choose
the path 1′2′3′∞. However, 2 is a fair state while 2′ and 3′ are not. Thus neither simulation can be
characterized by any such logic.

4 The ∀-MC and ∀-AFMC are the universal fragments of the �-calculus logic and the alternating free �-calculus logic,
respectively [22,10].

12 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

Fig. 3. No temporal logic characterizes the direct/delay simulations.

4.2. Maximal structures

Another important relationship between preorders and specification languages is the existence
of maximal structures. A maximal structure M with respect to formula is considered as an ab-
straction of the set of structures that satisfy . Usually, we use a maximal structure of formula for
abstracting the environment of the verified structure, when the environment is assumed to satisfies
 . Formally:

Definition 4.3. A structure M� is maximal for formula � with respect to preorder � if for every
structure M , M |= � ⇔ M � M�.

Given a specification language L and a simulation relation �∗, we would like to know whether
for every formula in L there exists a maximal structure of with respect to �∗. Lemma 4.4 is
presented in [25].

Lemma 4.4. For every ACTL∗ formula there exists a maximal structure for with respect to �∃.

Lemma 4.5 is presented in [16].

Lemma 4.5. For every ACTL formula there exists a maximal structure for with respect to �∃.

Note that Lemma 4.5 is implied by Lemma 4.4. Nevertheless, the construction of the maximal
structure for ACTL formulas as presented in [16] is exponential in the size of the formula, while the
construction of the maximal structure for ACTL∗ formulas as presented in [25] is double exponen-
tial in the size of the formula. Lemma 4.6 implies that there exists a maximal structure with respect
to ACTL and game simulation. The lemma is proved by showing that the maximal structure which
is defined in [16] is also a maximal structure with respect to game simulation. The proof is similar
to the proof Lemma 4.5 in [16], and is presented in [4].

Lemma 4.6. For every ACTL formula there exists a maximal structure for with respect to �g.

We now show that it is impossible to construct a maximal structure for the formula � = A[aU b]
with respect to the direct/delay simulations. Thus, any logic that contains this formula or an equiv-
alent formula, in particular ACTL and ACTL∗, does not have a maximal structure with respect to
these simulations. More specifically, we show that there is no finite structure T� such that T� |= �

and T� is greater by the direct/delay simulation than any structure that satisfies �. Since the direct

D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18 13

simulation implies the delay simulation, it is sufficient to prove this result for the delay simulation.
In Fig. 4 we present a sequence of structures M0,M1, . . . such that for every n in IN , Mn |= A(aUb).
Lemma 4.7 implies that every structure that satisfies A[aU b] and is greater by the delay simulation
than all the structures in the sequence has to be infinite.

Lemma 4.7. For every n > 0 and every structureM ′, ifMn �de M
′ andM ′ |= A[aU b], then |M ′| � n.

The proof of Lemma 4.7 is presented in Appendix.

5. A new implementation for the assume-guarantee framework

This section shows that the game simulation can replace the exists simulation in the implemen-
tation of the assume-guarantee paradigm [13,20,28,29], as suggested in [16].

In the assume-guarantee paradigm, properties of different parts of the system are verified sepa-
rately. The environment of the verified part is represented by a formula that describes its properties.
The formula either has been verified or is given by the user. The method proves assertions of the form
 M�, meaning that if the environment satisfies then the composition ofM with the environment
satisfies �. The method enables the creation of a proof schema which is based on the structure of
the system. [16] suggests a framework that uses the assume-guarantee paradigm for semi-automatic
verification. It presents a general method that uses models as assumptions; the models are either
generated from a formula as a tableau or are abstract models given by the user. The proof of M�
is done automatically by verifying that the composition of the tableau for with M satisfies �.
The method requires a preorder �, a composition operator ||, and a specification language L which
satisfy the following properties:

(1) For every two structures M1,M2, if M1 � M2, then for every formula in L, M2 |= implies
M1 |= .

(2) For every two structures M1,M2, M1‖M2 � M1.
(3) For every three structures M1,M2,M3, M1 � M2 implies M1‖M3 � M2‖M3.

Fig. 4. There is no finite structure M ′ such that for every n in IN , M ′ is greater by direct/delay simulation than Mn, and
M ′ |= A[aU b].

14 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

(4) Let be a formula in L and T be a tableau for . Then T is the maximal structure for with
respect to the preorder �.

(5) For every structure M , M � M‖M .

An implementation for this framework was presented in [16]. The implementation uses the ACTL
logic as the specification language, the exists simulation preorder, and a composition operator
which satisfy the properties above. We now show that the game simulation can replace the exists
simulation in the framework presented in [16]. As we have stated, the game simulation preserves the
ACTL logic, and thus property 1 is satisfied. Lemma 4.6 proves that the game simulation satisfies
property 4. Thus, it is left to show that the game simulation preorder and the composition operator
as defined in [16] satisfy properties 2, 3 and 5. Lemma 5.2, Lemma 5.3, and Lemma 5.4 prove these
properties. The proofs for these lemmas are simple, thus we only give some intuition for them. The
full proofs are presented in [4].

In [16], a different type of fairness constraint, the generalized Büchi acceptance condition, is used.
A generalized Büchi acceptance condition is a set F = {f1, f2, . . . , fn} of subsets of S . A trace � is
fair according to F iff for every 1 � i � n, inf(�) ∩ fi /= ∅. Since the definition of game simulation
does not depend on the fairness condition, no changes in its definition are needed. Before we present
these lemmas, we define the composition operator ‖.

Definition 5.1. Let M1, M2 be Kripke structures. The parallel composition of M1 and M2, denoted
M1‖M2, is the structure M defined as follows.

• AP = AP1 ∪ AP2.
• S = {(s1, s2)|L1(s1) ∩ AP2 = L2(s2) ∩ AP1}. 5

• R = {((s1, s2), (t1, t2))|(s1, t1) ∈ R1 ∧ (s2, t2) ∈ R2}.
• S0 = (S01 × S02) ∩ S .
• L((s1, s2)) = L1(s1) ∪ L2(s2).
• F = {(fi × S2) ∩ S|fi ∈ F1} ∪ {(S1 × fi) ∩ S|fi ∈ F2}.

Lemma 5.2 (Property 2). For all Kripke structures M1,M2, M1‖M2 �g M1.

It is easy to see that the following strategy is a winning strategy for the protagonist: Whenever
the adversary moves to a state (s1, s2) in M1‖M2, the protagonist moves to s1 in M1.

Lemma 5.3 (Property 3). Let M1,M2,M3 be Kripke structures. Then M1 �g M2 implies M1‖M3 �g

M2‖M3.

To see why the lemma is true, suppose that � is a winning strategy for the protagonist in a game
over M1 ×M2, then the following strategy is a winning strategy for the protagonist: Whenever the
adversary moves to a state (s′1, s

′
3) in M1‖M3, the protagonist moves from (s2, s3) to (�(s2, s′1), s

′
3) in

M2‖M3.

5 Some of the states might have to be deleted in order to keep R total.

D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18 15

Remark. Note that all notions of simulation presented in this paper include the requirement that
for s ∈ M and s′ ∈ M ′, if s � s′ then L(s) = L′(s′). In many cases, however, we would like to compare
structures defined over different sets of atomic propositions. Lemmas 5.2 and 5.3 are examples of
such cases. We thus change the definition of simulation so that instead of L(s) = L′(s′) we require
L(s) ∩ AP ′ = L′(s′) ∩ AP .

Lemma 5.4 (Property 5). For every structure M , M �g M‖M.

It easy to see that the strategy, which instructs the protagonist to move to s whenever
the adversary moves to (s, s), is a winning strategy. This completes the proof that game simu-
lation can replace the exists simulation in the assume-guarantee framework presented in
[16].

5.1. Complexity

Verifying an assertion of the form Mϕ is PSPACE-complete in the size of [24]. Howev-
er, the real bottleneck of this framework is checking for fair simulation between models, which
for the exists simulation is PSPACE complete in the size of the models. (Typically, models are
much larger than formulas.) Thus, replacing the exists simulation with the game simulation re-
duces this complexity to polynomial and eliminates the bottleneck of the framework. There is
however, one gap that is needed to be closed. The algorithm for game simulation presented in
[12] refers to Kripke structures with regular Büchi constraints, while the implementation pre-
sented in [16] refers to Kripke structures with generalized Büchi constraints both in the tableau
construction and in the composition operator. In order to apply the algorithm suggested in [12]
within the assume-guarantee framework, we need a translation between these types of fairness
constraints.

Courcoubetis et al. [8] defines a transformation of a Büchi automaton with generalized fairness
constraints into a Büchi automaton with regular fairness constraints. Lemma 5.5 implies that it is
safe to check for game simulation between the transformed structures that have ordinary Büchi
fairness constraints.

Lemma 5.5. Let M be a fair Kripke structure with generalized Büchi fairness constraints, and let Mr
be the result of transformingM into a Kripke structure with ordinary Büchi fairness constraints, using
the transformation defined in [8]. Then, M ≡g Mr.

A complete description of the transformation and the proof of Lemma 5.5 is presented in [4].
The translation affects the size of the structure and thus the complexity of the construction of
the preorder. The sizes of S and R are multiplied by |F |, where |F | is the number of sets in F .
Thus the complexity of constructing the preorder is |F | · |R| · (|S| · |F |)3 = |R| · |S|3 · |F |4. Note
that in the tableau for a formula, |F | is bounded by the size of the formula and the size of
the tableau is exponential in the size of the formula; thus, the transformation of the tableau
to regular fairness constraints result in a structure that is logarithmic bigger than the original
one.

16 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

6. Conclusion

This work shows that there is no notion of fair simulation which has all the desired advantages.
However, it is clear that their relationship with the logics gives the exists and game simulations
several advantages over the delay and direct simulations. On the other hand, the delay and direct
simulations are better for minimization. Since this research is motivated by usefulness to model
checking, relationships with a logic are important. Thus, it is advantageous to refer to the delay and
direct simulations as approximations of the game/exists simulations. These approximations enable
some minimization with respect to the exists and game simulations.

Out of the four notions, we consider the game simulation to be the best. This is due to its com-
plexity and its applicability in modular verification.

Appendix

Proof for maximal structures

Proof of Lemma 4.7

The lemma claims: For every n > 0 and every structureM ′, ifMn �de M
′ andM ′ |= A[aU b], then

|M ′| � n.

Proof. Letn ∈ IN be a natural number andM ′ be a structure such thatM ′ |= A[aU b]andMn �de M
′.

In a game over Mn ×M ′ the protagonist has a winning strategy and thus it wins in every game no
matter how the adversary plays. Consider the following strategy of the adversary. It starts from
the initial state. As long as the protagonist moves to a fair state the adversary moves to the next
fair state (until it reaches the last one). If the protagonist moves to a state that is not fair, then the
adversary moves to the successor which is not fair inMn and stays there until the protagonist moves
to a fair state in M ′. We distinguish between two cases:

(1) The suffix of the game is an infinite sequence of unfair states in both structures. In this case the
adversary is the last player who was in a fair state. Thus it wins the game. This means that M ′
is not greater than Mn by the delay simulation, a contradiction.

(2) Otherwise, the adversary moves through n fair states in Mn that are labelled a to the state la-
belled b. Since the adversary moves to a fair state only when the protagonist is in a fair state,
the protagonist has been in n fair states that are labelled a. Since M ′ |= A[aU b], these states
must be different (otherwise there would be an infinite fair trace which is labelled a). Thus the
size of M ′ is at least n. �

References

[1] A. Aziz, V. Singhal, T.R. Shiple, A.L. Sangiovanni-Vincentelli, F. Balarin, R.K. Brayton, Equivalences for fairkripke
structures, in: ICALP, volume 840 of LNCS, 1994, pp. 364–375.

D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18 17

[2] S. Bensalem, A. Bouajjani, C. Loiseaux, J. Sifakis, Property preserving simulations, in: Proceedings of the 4th Confer-
ence on Computer Aided Verification, volume 663 of Lecture Notes in Computer Science, Montreal, Springer-Verlag,
Berlin, 1992, pp. 260–273.

[3] M.C. Browne, E.M. Clarke, O. Grumberg, Characterizing finite kripke structures in propositional temporal logic,
Theoretical Computer Science 59 (1988) 115–131.

[4] D. Bustan, Equivalence-based reductions andchecking for preorders, PhD thesis, Technion, Haifa, Israel, 2002.
[5] D. Bustan, O. Grumberg, Simulation based minimization, Conference on Automated Deduction 17 (2000) 255–270.
[6] D. Bustan, O. Grumberg, Applicability of fair simulation, in: Tools and Algorithms for Construction and Analysis

of Systems (TACAS), volume 17 of LNCS, 2002, pp. 401–414.
[7] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.
[8] C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis, Memory efficient algorithms for the verification of temporal

properties, in: Proceedings of Computer-Aided Verification, volume 531 of LNCS, 2002, pp. 233–242.
[9] D.L. Dill, A.J. Hu, H. Wong-Toi, Checking for language inclusion using simulation relation, in: Computer-Aided

Verification, volume 575 of LNCS, 1991, pp. 255–265.
[10] E.A. Emerson, C.-L. Lei, Efficient model checking in fragments of the propositional �-calculus, in: Proceedings of

the 1st Symposium on Logic in Computer Science, Cambridge, 1986, pp. 267–278.
[11] K. Etessami, G.J. Holzmann, Optimizing Büchi automata, in: Proceedings of the CONCUR 2000, volume 1877 of

LNCS, Springer-Verlag, Berlin, 2000, pp. 153–167.
[12] K. Etessami, T. Wilke, R. Schuller, Fair simulation relations, parity games, and state space reduction for Büchi au-

tomata, in: Automata, Languages and Programming, 28th International colloquium, volume 2076 of LNCS, 2001,
pp. 694–707.

[13] N. Francez, The analysis of cyclic programs, PhD thesis, Weizmann Institute of Science, 1976.
[14] C. Fritz, Constructing Büchi automata from linear temporal logic using simulation relations for alternating Büchi

automata, in: O.H. Ibarra, Z. Dang (Eds.), Implementation and Application of Automata. Eighth International
Conference, volume 2759 of LNCS, Santa Barbara, CA, USA, 2003, pp. 35–48.

[15] C. Fritz, T. Wilke, State space reductions for alternating büchi automata: quotienting by simulation equivalenc-
es, in: M. Agrawal, A. Seth (Eds.), Foundations of Software Technology and Theoretical Computer Science: 22nd
Conference, volume 2556 of LNCS, Kanpur, India, 2002, pp. 157–168.

[16] O. Grumberg, D.E. Long, Model checking and modular verification, ACM Transactions on Programming Languages
and Systems (TOPLAS) 16 (3) (1994) 843–871.

[17] S. Gurumurthy, R. Bloem, F. Somenzi, Fair simulation minimization, in: Proceedings of the 14th International
Conference on Computer Aided Verification, Springer-Verlag, Berlin, 2002, pp. 610–624.

[18] M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency, Journal of ACM 32 (1985) 137–
161.

[19] T.A. Henzinger, O. Kupferman, S. Rajamani, Fair simulation, in: Proceedings of the eighth Conference on Concur-
rency Theory, volume 1234 of LNCS, 1997.

[20] C.B. Jones, Specification and design of (parallel) programs, International Federation for Information Processing
(IFIP) (1983) 321–332.

[21] Shmuel Katz, Doron Peled, Defining conditional independence using collapses, Theoretical Computer Science 101
(2) (1992) 337–359.

[22] D. Kozen, Results on the propositional �-calculus, Theoretical Computer Science 27 (1983) 348–359.
[23] O. Kupferman, M.Y. Vardi, Verification of fair transition systems, in: Computer Aided Verification (CAV’96), volume

1102 of LNCS, 1996, pp. 372–382.
[24] O. Kupferman, M.Y. Vardi, Modular model checking, in: Proceedings of the Compositionality Workshop, volume

1536 of LNCS, Springer-Verlag, Berlin, 1998.
[25] O. Kupferman, M.Y. Vardi, An automata-theoretic approach to modular model checking, ACM Transactions on

Programming Languages and Systems 22 (2000) 87–128.
[26] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem, Property preserving abstractions for the verification of

concurrent systems, Formal Methods in System Design 6 (1) (1995).
[27] R. Milner, An algebraic definition of simulation between programs, in: Proceedings of the 2nd International Joint

Conferences on Artificial Intelligence (IJCAI), London, UK, 1971, pp. 481–489.

18 D. Bustan, O. Grumberg / Information and Computation 194 (2004) 1–18

[28] J. Misra, K.M. Chandy, Proofs of networks of processes, IEEE Transactions on Software Engineering 7 (1981)
417–426.

[29] A. Pnueli, In transition from global to modular temporal reasoning about programs, in: K.R. Apt (Ed.), Logics and
Models of Concurrent Systems, volume 13 of NATO ASI series F, Springer-Verlag, Berlin, 1984.

[30] F. Somenzi, R. Bloem, Efficient Büchi automata from ltl formulae, in: Twelfth Conference on Computer Aided
Verification (CAV’00), volume 1633 of LNCS, Springer-Verlag, Berlin, 2000, pp. 247–263.

