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Summary

mRNA localization has an essential role in localizing

cytoplasmic determinants, controlling the direction

of protein secretion, and allowing the local control of
protein synthesis in neurons [1, 2]. In neuronal den-

drites, the localization and translocation of mRNA is
considered as one of the molecular bases of synaptic

plasticity. Recent imaging and functional studies re-
vealed that several RNA-binding proteins form a large

messenger ribonucleoprotein (mRNP) complex that
is involved in transport and translation of mRNA in

dendrites [3, 4]. However, the mechanism of mRNA
translocation into dendritic spines is unknown. Here,

we show that an actin-based motor, myosin-Va [5, 6],
plays a significant role in mRNP transport in neuronal

dendrites and spines. Myosin-Va was Ca2+-depen-
dently associated with TLS, an RNA-binding protein,

and its target RNA Nd1-L, an actin stabilizer. A domi-
nant-negative mutant or RNAi of myosin-Va in neurons

suppressed TLS accumulation in spines and further
impaired TLS dynamics upon activation of mGluRs.

The TLS translocation into spines was impeded also
in neurons prepared from myosin-Va-null dilute-lethal

(dl) mice, which exhibit neurological defects [7]. Our re-
sults demonstrate that myosin-Va facilitates the trans-

port of TLS-containing mRNP complexes in spines
and may function in synaptic plasticity through Ca2+

signaling.

Results and Discussion

TLS (translocated in liposarcoma) is colocalized with ac-
tin filaments in dendritic spines of hippocampal neurons

*Correspondence: takumi@obi.or.jp
[8, 9]. Proteomic studies revealed that TLS is included in
an N-methyl-D-aspartate (NMDA) receptor complex [10]
and in an RNA-transporting granule associated with
conventional kinesin (KIF5) [11]. We previously reported
that TLS binds to mRNA encoding an actin-stabilizing
protein, Nd1-L, and is essential for normal spine devel-
opment [12]. TLS is translocated into spines upon me-
tabotropic glutamate receptor 5 (mGluR5) activation,
and dendritic transport of TLS is dependent not only
on microtubules but also on actin filaments [8]. To exam-
ine whether TLS interacts with myosin-Va, we performed
immunoprecipitation (IP)-immunoblotting (IB) of mouse
brain lysates with specific antibodies against TLS and
myosin-Va. In the presence of EDTA and EGTA, TLS
was coimmunoprecipitated with myosin-Va. However,
no significant association of TLS with myosin-Va was
observed in the presence of 100 mM CaCl2 (Figure 1A).
In addition to the w190 kDa band expected, a w130
kDa band was observed, and this probably represents
a breakdown product of myosin-Va as previously de-
scribed [13, 14]. This divalent cation-dependent dissoci-
ation was specific for Ca2+ because a strong or rather
enhanced band was seen in the presence of 2.5 mM
MgCl2 (Figure 1B). Similar results were obtained from
coimmunoprecipitation experiments in the reverse or-
der (see Figure S1A in the Supplemental Data available
with this article online). The conformation of myosin-V
and its association with calmodulin (CaM) are regulated
by Ca2+ concentration [15, 16]. Ca2+/CaM-dependent
protein kinase II (CaMKII) is a Ca2+-stimulated enzyme
that is abundant in the central nervous system and is
one of the first CaM-regulated enzymes to be implicated
in synaptic plasticity [17]. In the presence of two differ-
ent CaMKII inhibitors, KN93 and AIP, the binding of my-
osin-Va with TLS was observed; however, the band was
weaker compared with that in the presence of EDTA
(Figure S1B). This result suggests that the CaMKII sig-
naling is one of the pathways in this Ca2+ dependency,
but there may exist other mechanisms. We then exam-
ined the dose dependency of the Ca2+ and Mg2+ ion ef-
fects. IP-IB experiments demonstrated that the binding
affinity of TLS and myosin-Va decayed as the Ca2+ con-
centration was increased to 10–100 mM (Figure 1C),
which is close to the Ca2+ concentration in spines after
synaptic stimulation [18]. The interaction was reinforced
as the Mg2+ concentration was increased from 2.5 mM
to 2.5 mM (Figure 1D). This is in tune with a recent study
that shows Mg2+ also regulating conformational changes
in myosin-V [19].

We next performed subcellular fractionation of protein
extracts from adult mouse brain cortex and hippocam-
pus (Figure S2A). By using PSD95 as a marker for P2,
GRP78 for P3, and P70 S6 kinase for supernatant frac-
tions as controls, we found the intracellular distribution
of myosin-Va to be similar to that of TLS (Figure S2B).
The main difference was that myosin-Va is not detect-
able in the P1 nuclear fraction, whereas TLS was abun-
dant in this fraction, as in previous reports [8, 11]. The
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Figure 1. Interaction of Myosin-Va with TLS

and Nd1-L mRNA

(A) Ca2+-dependent binding of TLS to myo-

sin-Va. Whole brain lysates from adult mice

were subjected to analysis. TLS was coim-

munoprecipitated with myosin-Va (MyoVa)

by using myosin-Va antibody in the presence

of chelating reagents but not in the presence

of Ca2+. Anti-rabbit IgG was used as a non-

specific binding control. One percent of the

input used for immunoprecipitation was run

in parallel.

(B) Interaction of TLS with MyoVa was de-

tected in the presence of a chelator or Mg2+

but not in the presence of a high Ca2+ concen-

tration (100 mM).

(C) Effects of Ca2+ concentration on TLS-

MyoVa interaction. The TLS-MyoVa interac-

tion was attenuated as Ca2+ concentration

was increased to 100 mM. The amount of

immunoprecipitates was quantified from lu-

minescent images. Error bars represent SEM.

(D) Effects of Mg2+ concentration on TLS-

MyoVa interaction. Mg2+-dependent rein-

forcement of TLS-MyoVa interaction was

observed in the range of 2.5 mM to 2.5 mM.

Error bars represent SEM.

(E) IP/RT-PCR for detecting association of

myosin-Va with Nd1-L mRNA. Myosin-Va

was associated with Nd1-L mRNA, and the

association seemed to be Ca2+ dependent.

NC stands for no template for PCR; PC

stands for mouse brain cDNA being used as

a template. 2-log, 2-log DNA ladder; 100 bp,

100 bp DNA ladder.
IP-IB experiments exhibited interaction of TLS with
myosin-Va in the P3 polysome extract (Figure S2C). Fur-
thermore, IP-IB experiments with neuronal PC12 cells
also revealed an association of myosin-Va with TLS.
However, overexpression experiments for myosin-Va
and TLS in nonneuronal HEK293T cells did not show
their binding (data not shown), suggesting that forma-
tion of the myosin-Va-TLS complex may require other
neuron-specific proteins.

To see whether myosin-Va forms a complex with a
specific TLS target, Nd1-L mRNA [12], we performed
IP/RT-PCR. We used anti-myosin-Va antibody to immu-
noprecipitate a myosin-Va complex from mouse brain.
Immunoprecipitaed RNAs were reverse transcribed
with random hexamer. The resulting cDNAs were sub-
jected to PCR with specific primers for Nd1-L mRNA.
The amplified PCR products for Nd1-L mRNA migrated
to the same position as the control cDNA products ob-
tained from mouse brain RNA (Figure 1E). The band in
the presence of EDTA and EGTA was stronger than
that in 100 mM CaCl2. As a control, tubulin b3 mRNA
was not detected as clearly as the case of Nd1-L (Fig-
ure S1C). These data demonstrate that in the myosin-Va
immunoprecipitates, Nd1-L mRNA localization is also
regulated by Ca2+, and such finding is consistent with
the above TLS results.

To test whether myosin-Va plays a role in the transport
of TLS into dendritic spines, we analyzed the localization
of GFP- or red fluorescent protein (RFP)-tagged TLS
(TLS-GFP or TLS-RFP) in cultured mouse hippocampal
neurons together with that of full-length myosin-Va
(BRMV) or three kinds of tail domains of its brain-
specific isoforms, i.e., brain short tail (BRST), brain stalk
(BRSTK), and globular tail domain (GTD) [20]. The tail do-
main is thought to be involved in cargo binding [5, 6], and
the mutation in this region causes the Griscelli syndrome
[21]. As reported previously [8], TLS-GFP exhibited a
punctate distribution in dendrites and was localized in
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Figure 2. Suppression of Translocation of TLS into Dendritic Spines by Dominant-Negative Myosin-Va Tail Domain

(A) Effect of the dominant-negative myosin-Va tail domain on localization of TLS in mouse hippocampal neurons. TLS-GFP was diffusely distrib-

uted in somatodendritic domains and was accumulated at spines in control medium. The translocation of TLS-GFP into spines was suppressed

by overexpression of BRST-RFP. The other myosin-Va tail domains (BRSTK and GTD) and full-length myosin-Va (BRMV) did not affect translo-

cation of TLS-GFP (RFP). Each image is a 2D projection of a 3D stack of 5–7 z sections, each of 0.5 mm thickness. The scale bar represents 10 mm.

(B) Staufen1-GFP (RFP) exhibited granular expression pattern and was localized in dendritic shafts. Its pattern was not affected by full-length

myosin-Va (BRMV) or by dominant-negative myosin-Va tail domain (BRST). The scale bar represents 10 mm.

(C) The distributions of fluorescent proteins fused to TLS were classified as two patterns: a granular pattern, with clusters predominantly found in

dendritic shafts, and a punctate pattern, with the proteins diffusely distributed in somatodendritic domains and accumulated in dendritic spines.

The percentage of either pattern under each experimental condition was calculated. ***p < 0.0001; test for equal proportions.
spines, and this type is called ‘‘Punctate’’ (Figure 2A,
RFP). The TLS-RFP particles were colocalized with
GFP-tagged myosin-Va (BRMV-GFP), particularly in
spines (Figure 2A, BRMV). Whereas BRSTK-RFP and
GTD-RFP did not affect the localization of TLS-GFP (Fig-
ure 2A, BRSTK and GTD), overexpression of BRST-RFP,
containing both medial tail (stalk) and globular tail do-
mains of myosin-Va, inhibited the translocation of TLS-
GFP into spines and resulted in a granular expression
pattern within the dendrites, and this type is called
‘‘Granular’’ (Figure 2A, BRST). The diffuse distribution
of GFP in neurons was not affected by BRST-RFP
(data not shown). A quantitative analysis revealed that
the granular type of TLS-GFP (RFP) that clusters within
dendritic shafts was observed in approximately 50%
of neurons cotransfected with BRST-RFP, whereas
that these granular clusters were found in only about
10% of neurons with RFP, BRMV-GFP, BRSTK-RFP,
or GTD-RFP (p < 0.0001), with the rest of them (w90%)
exhibiting the punctate-type distribution (Figure 2C).
Consistent with these imaging data, biochemical exper-
iments showed that only the BRST interacted with TLS
among these mutants and that endogenous full-length
myosin-Va was associated with BRST-FLAG in PC12
cells (Figure S3), indicating that BRST dimerized with
an endogenous myosin-Va heavy chain. These results
suggest that BRST functions as a dominant-negative
mutant and that transport of TLS into spines is interfered
by BRST.

Different from TLS, Staufen, another RNA-binding
protein and a constituent of RNA granules in mammalian
neurons [11, 22–24], is recruited to dendrites via a micro-
tubule system, but not by actin filaments [8, 25]. Coim-
munoprecipitation experiments revealed that Staufen
did not bind with myosin-Va in mouse brain lysates
even in the presence of Ca2+ chelators (data not shown).
In cultured hippocampal neurons, GFP-fused Staufen1
(Stau1-GFP) exhibited the granular expression pattern,
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Figure 3. Impairment of TLS Accumulation

into Dendritic Spines by Myosin-Va Silencing

(A) Translocation of TLS into dendritic spines

was repressed in myosin-Va-shRNA-treated

neurons. TLS-GFP and shRNA vectors were

microinjected into the nucleus of hippocam-

pal neurons. Forty-eight hours after the mi-

croinjection, the neurons were fixed and the

distributions of TLS-GFP were compared for

the different experimental conditions. The

scale bar represents 10 mm.

(B) TLS-GFP stayed within the dendritic

shafts after myosin-Va silencing. TLS-GFP,

4623MyoVa-shRNA, and RFP vectors were

introduced into hippocampal neurons. The

scale bar represents 10 mm.

(C) TLS accumulation in dendritic spines was

restored through MyoVaMT constructs, in

neurons treated with 4623MyoVa-shRNA.

The domain targeted by 4623MyoVa-shRNA

is mutated in MyoVaMT constructs. The scale

bar represents 10 mm.

(D) The distribution patterns of TLS-GFP

were counted under each condition. The re-

duction of TLS accumulation into spines in

4623MyoVa-shRNA coinjected populations

was resolved by MyoVaMT constructs.

**p = 0.0003, ***p < 0.0001; test for equal

proportions.

(E) Endogenous TLS was localized in dendritic

spines in control-shRNA-treated neurons.

Such localization was absent in 4623MyoVa-

shRNA-treated neurons. The scale bar repre-

sents 2 mm.

(F) Analysis of endogenous TLS puncta in dendritic spine head areas (control, n = 11 cells; 4623MyoVa-shRNA, n = 21 cells; 4623My-

oVa-shRNA+MyoVaMT, n = 13 cells from two independent experiments). Error bars represent SEM. *p = 0.003, ***p < 0.0001; ANOVA

test.
consistent with previous reports [23, 25], and was not
present in dendritic spines (Figures 2B and 2C). The lo-
calization of Stau1 fused with fluorescent proteins was
not affected by BRMV-GFP or BRST-RFP (Figure 2B).
Taken together with results on TLS, these findings sug-
gest that the interaction of RNA-binding proteins with
myosin-Va is required for their translocation into spines.

To clarify whether the endogenous myosin-Va plays a
critical role in the transport of RNA-binding proteins into
spines, we adopted RNA interference (RNAi) technique.
We introduced myosin-Va or control-short hairpin
(sh)RNA together with TLS-GFP by microinjection into
the nucleus of primary hippocampal neurons. In neurons
expressing control-shRNA, TLS-GFP accumulated in
dendritic spines (w90%, Figure 3A, left and Figure 3D).
In about 50% of the neurons challenged by 4623MyoVa-
shRNA with or without RFP, TLS-GFP formed dense
clusters in dendritic shafts (p < 0.0001; Figure 3A, right
and Figures 3B and 3D), as observed in neurons
expressing the dominant-negative myosin-Va tail do-
main (Figures 2A and 2C). Coinjection of another RNAi
construct, 1099MyoVa-shRNA, led to more than a 35%
increase in the number of granular-type clusters of
TLS-GFP, and such increase was statistically significant
compared with the control (p < 0.001; Figure 3D). Spe-
cific myosin-Va knockdown was confirmed by western
blotting, fluorescence intensity, and immunocytochem-
istry (Figure S4A–S4D). Next, as a rescue control, we
constructed MyoVaMT, a full-length version of myosin-
Va containing silent nucleotide changes that render it
impervious to 4623MyoVa-shRNA. The expression of
MyoVaMT against shRNAs was also verified by western
blotting (Figure S4E). In neurons expressing 4623My-
oVa-shRNA together with MyoVaMT, the localization of
TLS into dendritic spines was observed and the percent-
age of punctate-type expression of TLS-GFP increased
to more than 80% (Figure 3C; p < 0.0001, Figure 3D).
We further examined whether endogenous TLS showed
a similar redistribution under different conditions. Immu-
nostaining with TLS polyclonal antibody (TLS-C) ex-
hibited a punctate distribution within dendrites (Fig-
ure S5A) as described previously [8]. In neurons
expressing control-shRNA, w70% of spines contained
endogenous TLS puncta, whereas w40% of spines
showed TLS-positive immunolabeling in neurons ex-
pressing 4623MyoVa-shRNA (Figures 3E and 3F; p <
0.0001). In neurons challenged by MyoVaMT in addition
to 4623MyoVa-shRNA, TLS-positive spines were re-
stored to w50% compared with neurons expressing
4623MyoVa-shRNA (Figure 3F and Figure S5B; p =
0.003). Taken together, endogenous myosin-Va knock-
down, which was achieved by two different shRNAs, re-
sulted in inhibition of translocation of TLS into spines.

Local protein synthesis subsequent to translocation of
mRNA to dendrites is known to be stimulated by DHPG,
a group 1 mGluR agonist [26]. To investigate how TLS dy-
namics would be affected by the loss-of-function of
myosin-Va, we stimulated cultured hippocampal neu-
rons expressing TLS-GFP with 100 mM DHPG over 60
min and monitored the movement of TLS-GFP by time-
lapse confocal microscopy (Movie S1). The TLS-GFP
particles were translocated into spines (Figure S6A,
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Figure 4. Myosin-Va and TLS Dynamics in

Dendritic Spines

(A) Histograms showing enrichment of TLS in

dendritic spines after DHPG stimulation. The

relative enrichment at the indicated time

span of TLS-GFP in spines (Ek) was calcu-

lated from the averaged fluorescence inten-

sity in spines and the underlying dendritic

shaft during 20 min before and after DHPG

stimulation. Error bars represent SEM. **p =

0.0005, ***p < 0.0001; ANOVA test.

(B) Quantification of enrichment of TLS-GFP

in dendritic spines under the overexpression

of BRST-RFP. There was no significant differ-

ence before and after DHPG treatment. Error

bars represent SEM.

(C) Quantification of enrichment of TLS-GFP

into dendritic spines under silencing of myo-

sin-Va by 4623MyoVa-shRNA. There was no

significant difference before and after the

DHPG treatment. Error bars represent SEM.

(D) The gradual enrichment of TLS-GFP in

dendritic spines was observed in neurons

of +/+ (and dl/+) mice. No enrichment was

observed in neurons of dilute-lethal dl/dl

mice. Error bars represent SEM. *p < 0.02,

**p < 0.0003; ANOVA test.

(E) Two-color real-time imaging of TLS-RFP

and MyoVa-GFP showed that both two

moved together into the same protrusion ex-

tended from dendritic shaft after DHPG treat-

ment. The protrusion presented spine mor-

phology and retrospective immunostaining

with anti-synapsin I revealed that the spine

formed the synapse. Images presented are

projections assembled from confocal optical

sections at the indicated time. Lower panels

show enlarged images of the white rectangu-

lar area shown in an upper left panel. Dashed

lines indicate the putative outline of the den-

drite. The scale bar represents 5 mm.
inset), and the fluorescence intensity of TLS-GFP in
spines was gradually enhanced (Figure S7A) as we
have previously reported [8]. The dendritic spines were
confirmed by retrospective immunocytochemistry with
synapsin I antibody, and this revealed the presence of
their presynaptic component (Figure S6A). The relative
enrichment at the indicated time span (Ek) of TLS-GFP
in spines was significantly increased after mGluR stimu-
lation (Figure 4A; p < 0.0005 for 40 min, p < 0.0001 for 60
min). On the contrary, in neurons expressing the domi-
nant-negative myosin-Va tail domain (BRST-RFP), TLS-
GFP clusters were localized in dendritic shafts
(Figure S6B), and the intensity of TLS-GFP in the spines
remained low even after synaptic stimulation with
DHPG (Figure 4B and Figure S7B). In myosin-Va-knock-
down neurons obtained by injection of 4623MyoVa-
shRNA, the TLS-GFP clusters formed granules and
were located within the dendritic shafts (Figure S6C).
The intensity of TLS-GFP in spines exhibited larger fluc-
tuations than in control neurons. Nevertheless, the trans-
location of TLS-GFP in spines was impaired by knocking
down myosin-Va expression (Figure 4C and Figure S7C).
To ascertain the effects of myosin-Va on spine
morphology, we introduced BRST-RFP and 4623My-
oVa-shRNA by microinjection into the nucleus of cul-
tured hippocampal neurons along with a GFP vector,
which outlined the morphology of the injected neurons.
Compared with the spines in neurons expressing GFP
alone, some spines in the neurons coexpressing
GFP+BRST or GFP+4623MyoVa-shRNA tended to be
thinner and longer (Figure S4D, arrows). In cumulative-
frequency plots, although knockdown of myosin-Va in-
duced a slight rightward shift in spine length and a little
leftward shift in spine head diameter (Figures S8A,
S8B, and S8D), the difference in the spine head area
was negligible (Figures S8C and S8D). These results indi-
cate that the transport of TLS-GFP into spines was
suppressed by knockdown of myosin-Va and that
myosin-Va has likely been involved in the translocation
of RNA-binding proteins such as TLS into spines.

We further verified the results of the above knock-
down experiments by using neurons derived from
myosin-Va-deficient dilute-lethal (dl/dl) mice [7]. The
distribution of TLS-GFP was investigated in myosin-Va
null dl/dl neurons and +/+ (and hetrozygotes dl/+).
TLS-GFP was clustered within dendritic shafts in some



Current Biology
2350
dl/dl neurons (Figure S9A) as was observed in neurons
expressing the dominant-negative myosin-Va tail do-
main or myosin-Va-shRNA (Figures 2A, 3A, and 3B).
The average ratio of dl/dl neurons with a granular pattern
was w30%, clearly higher than that of control neurons
(<w10%), as seen in the experiments using the domi-
nant-negative and shRNA (p < 0.01, Figures 2C and
3D), whereas the difference compared with that for +/+
(and dl/+) neurons did not reach a statistically significant
level (p = 0.0874, Figure S9B). This was probably be-
cause +/+ neurons in our specimens may have included
dl/+ neurons owing to the difficulty in strict discrimina-
tion between +/+ and dl/+ neurons by genotyping based
on the quantity available for immunoblotting and immu-
nocytochemistry. The time-lapse imaging experiments
substantiated this assumption and demonstrated that
DHPG stimulation induced TLS-GFP enrichment in
spines of +/+ (and dl/+) neurons, whereas the induction
was impaired in dl/dl neurons (Figure 4D). These data
corroborate our other data showing that myosin-Va
played a pivotal role in TLS translocation into dendritic
spines and that its dysfunction may account for the
mechanism of neurological defects in dilute-lethal mice
[7] and human Griscelli syndrome [21]. The neurological
defects in dilute-lethal mice are now known [27]. For ex-
ample, long-term synaptic depression (LTD) is abolished
in dilute-lethal mice [28], in which Purkinje cells lack
smooth endoplasmic reticulum (SER) in spines [29].
The transport of RNA granules and SER may be recipro-
cally interacted through myosin-Va.

To provide direct evidence that myosin-Va is involved
in the localization of a TLS-containing particle into den-
dritic spines, we performed two-color real-time imaging.
Neurons expressing TLS-RFP and MyoVa-GFP were
treated with DHPG 24 hr after microinjection and were
monitored by time-lapse confocal microscopy (Figure 4E
and Movie S2). Some TLS-RFP had already been accu-
mulated in spines with MyoVa-GFP before DHPG treat-
ment (Figure 4E, upper panels, arrows; also see
Figure 2A, BRMV). A protrusion from a dendritic shaft
emerged after DHPG treatment, as expected from the
previous report [30]. TLS-RFP and MyoVa-GFP moved
together into the extending protrusion, which repre-
sented spine morphology (Figure 4E, lower panels).
The protrusion formed a synapse, which was verified
by retrospective immunostaining by anti-synapsin I.
The data in Figure 4E is consistent with the idea that
myosin-Va translocates the TLS-containing RNA parti-
cles into spines.

Our present model proposes that a subset of RNA
granules including RNA-binding proteins such as TLS
is transported in a short-range manner into dendritic
spines by myosin-Va (Figure S10). RNA granules includ-
ing RNA-binding proteins with their target mRNAs are
delivered within dendrites in a long-range fashion by mi-
crotubule-dependent motors such as KIF5 [11, 31], act-
ing coordinately with myosin-V [32]. At the local area or
spines where mRNAs can be translated upon synaptic
stimulation [33], some components including ‘‘TLS-
type’’ RNA-binding proteins dissociate from the core
RNA granules and translocate into dendritic spines. On
the other hand, other components including ‘‘Staufen-
type’’ RNA-binding proteins stay within the dendritic
shafts. Recent studies show that the actin-binding
affinity of myosin-V is reduced, and its transport velocity
along actin filaments becomes slower as the Ca2+ con-
centration increases [15, 16]. Thus, myosin-Va interacts
with TLS and transports its bound mRNAs such as Nd1-L
into dendritic spines [12], where myosin-Va releases TLS
and its bound mRNAs for local translation upon Ca2+ in-
flux through NMDA receptors and voltage-gated Ca2+

channels [4]. The mechanism may include tail phosphor-
ylation of myosin-V by calcium/calmodulin-dependent
protein kinase II (CaMKII) as observed in Xenopus mela-
nophores [34]. Our present findings provide not only the
mechanism by which myosin-Va may be involved in
mRNA transport into postsynaptic spines but also com-
pelling evidence that myosin-based mRNA and organ-
elle transport systems emerged in unicellular eukaryotes
and have been widely used throughout evolution [35].

Supplemental Data

Supplemental Data include Experimental Procedures, ten figures,

and two movies and can be found with this article online at http://

www.current-biology.com/cgi/content/full/16/23/2345/DC1/.
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