Harmonic Functions Starlike in the U nit Disk

J ay M.J ahangiri*

Kent State University, Burton, Ohio 44021-9500
metadata, citation and similar papers at core.ac.uk

R eceived July 20, 1998

> DEDICATED TO KSU LATE PROFESSOR KENNETH B. CUMMINS
> $7 / 27 / 1911-5 / 13 / 1998$

Complex-valued harmonic functions that are univalent and sense-preserving in the unit disk Δ can be written in the form $f=h+\bar{g}$, where h and g are analytic in Δ. We give univalence criteria and sufficient coefficient conditions for normalized harmonic functions that are starlike of order $\alpha, 0 \leq \alpha<1$. These coefficient conditions are also shown to be necessary when h has negative and g has positive coefficients. These lead to extreme points and distortion bounds. © 1999 A cademic Press
Key Words: H armonic; sense-preserving; univalent; starlike.

1. INTRODUCTION

A continuous function $f=u+i v$ is a complex-valued harmonic function in a complex domain \mathscr{E} if both u and v are real harmonic in \mathscr{E}. In any simply connected domain $\mathscr{D} \subset \mathscr{C}$ we can write $f=h+\bar{g}$, where h and g are analytic in \mathscr{D}. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathscr{D} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in \mathscr{D}. See Clunie and Sheil-Small [2].

Denote by \mathscr{H} the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense-preserving in the unit disk $\Delta=\{z:|z|<1\}$ for which

[^0]$h(0)=f(0)=f_{z}(0)-1=0$. Then for $f=h+\bar{g} \in \mathscr{H}$ we may express the analytic functions h and g as
\[

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{1}
\end{equation*}
$$

\]

Note that \mathscr{H} reduces to the class of normalized analytic univalent functions if the co-analytic part of its members is zero. In 1984 Clunie and Sheil-Small [2] investigated the class \mathscr{H} as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on \mathscr{H} and its subclasses. For more references see Duren [3]. In this note, we look at two subclasses of \mathscr{H} and provide univalence criteria, coefficient conditions, extreme points, and distortion bounds for functions in these classes.

For $0 \leq \alpha<1$ we let $\mathscr{S}_{\mathscr{H}}(\alpha)$ denote the subclass of \mathscr{H} consisting of harmonic starlike functions of order α. A function f of the form (1) is harmonic starlike of order $\alpha, 0 \leq \alpha<1$, for $|z|=r<1$ (e.g., see SheilSmall [4, p. 244]) if

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right) \geq \alpha, \quad|z|=r<1 . \tag{2}
\end{equation*}
$$

We further denote by $\mathscr{T}_{\mathscr{P}}(\alpha)$ the subclass of $\mathscr{S}_{\mathscr{P}}(\alpha)$ such that the functions h and g in $f=h+\bar{g}$ are of the form

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}, \quad g(z)=\sum_{n=1}^{\infty}\left|b_{n}\right| z^{n} . \tag{3}
\end{equation*}
$$

2. MAIN RESULTS

It was shown by Sheil-Small [4, Theorem 7] that $\left|a_{n}\right| \leq(n+1)$ $\cdot(2 n+1) / 6$ and $\left|b_{n}\right| \leq(n-1)(2 n-1) / 6$ if $f=h+\bar{g} \in \mathscr{S}_{\mathscr{L}}^{o}(0)$. The subclass of $\mathscr{S}_{\mathscr{\mathscr { C }}}(\alpha)$ where $\alpha=b_{1}=0$ is denoted by $\mathscr{S}_{\mathscr{C}}^{o}(0)$. These bounds are sharp and thus give necessary coefficient conditions for the class $\mathscr{S}_{\mathscr{Z}}^{o}(0)$. A vci and Zlotkiewicz [1] proved that the coefficient condition $\sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq 1$ is sufficient for functions $f=h+\bar{g}$ to be in $\mathscr{S}_{\mathscr{L}}^{o}(0)$. Silverman [6] proved that this coefficient condition is also necessary if $b_{1}=0$ and if a_{n} and b_{n} in (1) are negative. We note that both results obtained in $[1,6]$ are subject to the restriction that $b_{1}=0$. The argument presented in this paper provides sufficient coefficient conditions for functions $f=h+\bar{g}$ of the form (1) to be in $\mathscr{S}_{\mathscr{P}}(\alpha)$ where $0 \leq \alpha<1$ and b_{1} is not necessarily zero. It is shown that these conditions are also necessary when $f \in \mathscr{T}_{\mathscr{H}}(\alpha)$.

Theorem 1. Let $f=h+\bar{g}$ be given by (1). Furthermore, let

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right) \leq 2, \tag{4}
\end{equation*}
$$

where $a_{1}=1$ and $0 \leq \alpha<1$. Then f is harmonic univalent in Δ, and $f \in \mathscr{S}_{\mathscr{P}}(\alpha)$.

Proof. First we note that f is locally univalent and sense-preserving in Δ. This is because

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq 1-\sum_{n=2}^{\infty} n\left|a_{n}\right| r^{n-1}>1-\sum_{n=2}^{\infty} n\left|a_{n}\right| \geq 1-\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha}\left|a_{n}\right| \\
& \geq \sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha}\left|b_{n}\right| \geq \sum_{n=1}^{\infty} n\left|b_{n}\right|>\sum_{n=1}^{\infty} n\left|b_{n}\right| r^{n-1} \geq\left|g^{\prime}(z)\right| .
\end{aligned}
$$

To show that f is univalent in Δ we notice that if $g(z) \equiv 0$, then $f(z)$ is analytic and the univalence of f follows from its starlikeness (e.g., see [5]). If $g(z) \not \equiv 0$, then we show that $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ when $z_{1} \neq z_{2}$.

Suppose $z_{1}, z_{2} \in \Delta$ so that $z_{1} \neq z_{2}$. Since Δ is simply connected and convex, we have $z(t)=(1-t) z_{1}+t z_{2} \in \Delta$, where $0 \leq t \leq 1$. Then we can write

$$
f\left(z_{2}\right)-f\left(z_{1}\right)=\int_{0}^{1}\left[\left(z_{2}-z_{1}\right) h^{\prime}(z(t))+\overline{\left(z_{2}-z_{1}\right) g^{\prime}(z(t))}\right] d t .
$$

Dividing the above equation by $z_{2}-z_{1} \neq 0$ and taking the real parts we obtain

$$
\begin{align*}
\operatorname{Re} \frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{2}-z_{1}} & =\int_{0}^{1} \operatorname{Re}\left[h^{\prime}(z(t))+\frac{\overline{z_{2}-z_{1}}}{z_{2}-z_{1}} \overline{g^{\prime}(z(t))}\right] d t \\
& >\int_{0}^{1}\left[\operatorname{Re} h^{\prime}(z(t))-\left|g^{\prime}(z(t))\right|\right] d t . \tag{5}
\end{align*}
$$

On the other hand

$$
\begin{aligned}
\operatorname{Re} h^{\prime}(z)-\left|g^{\prime}(z)\right| & \geq \operatorname{Re} h^{\prime}(z)-\sum_{n=1}^{\infty} n\left|b_{n}\right| \\
& \geq 1-\sum_{n=2}^{\infty} n\left|a_{n}\right|-\sum_{n=1}^{\infty} n\left|b_{n}\right| \\
& \geq 1-\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha}\left|a_{n}\right|-\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha}\left|b_{n}\right| \\
& \geq 0, \quad \text { by }(4) .
\end{aligned}
$$

This in conjunction with the inequality (5) leads to the univalence of f.

Now we show that $f \in \mathscr{S}_{\mathscr{P}}(\alpha)$. According to the condition (2) we only need to show that if (4) holds then

$$
\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right)=\operatorname{Im}\left(\frac{\partial}{\partial \theta} \log f\left(r e^{i \theta}\right)\right)=\operatorname{Re}\left(\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(s)+\overline{g(z)}}\right) \geq \alpha,
$$

where $z=r e^{i \theta}, 0 \leq \theta<2 \pi, 0 \leq r<1$, and $0 \leq \alpha<1$.
U sing the fact that $\operatorname{Re} w \geq \alpha$ if and only if $|1-\alpha+w| \geq|1+\alpha-w|$, it suffices to show that

$$
\begin{equation*}
|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \geq 0, \tag{6}
\end{equation*}
$$

where $B(z)=h(z)+\overline{g(z)}$ and $A(z)=z h^{\prime}(z)-\overline{z g^{\prime}(z)}$.
Substituting for $B(z)$ and $A(z)$ in (6) yields

$$
\begin{aligned}
\mid A(z)+ & (1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \\
= & \left|(1-\alpha) h(z)+z h^{\prime}(z)+\overline{(1-\alpha) g(z)-z g^{\prime}(z)}\right| \\
& \quad-\left|(1+\alpha) h(z)-z h^{\prime}(z)+\overline{(1+\alpha) g(z)+z g^{\prime}(z)}\right| \\
= & \left|(2-\alpha) z+\sum_{n=2}^{\infty}(n+1-\alpha) a_{n} z^{n}-\overline{\sum_{n=1}^{\infty}(n-1+\alpha) b_{n} z^{n}}\right| \\
& \quad-\left|-\alpha z+\sum_{n=2}^{\infty}(n-1-\alpha) a_{n} z^{n}-\overline{\sum_{n=1}^{\infty}(n+1+\alpha) b_{n} z^{n}}\right| \\
\geq & (2-\alpha)|z|-\sum_{n=2}^{\infty}(n+1-\alpha)\left|a_{n}\right||z|^{n}-\sum_{n=1}^{\infty}(n-1+\alpha)\left|b_{n}\right||z|^{n} \\
& -\alpha|z|-\sum_{n=2}^{\infty}(n-1-\alpha)\left|a_{n}\right||z|^{n}-\sum_{n=2}^{\infty}(n+1+\alpha)\left|b_{n}\right||z|^{n} \\
= & 2(1-\alpha)|z|\left\{1-\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha}\left|a_{n}\right||z|^{n-1}-\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha}\left|b_{n}\right||z|^{n-1}\right\} \\
\geq & 2(1-\alpha)|z|\left\{1-\left(\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right)\right\} \geq 0, \quad \text { by (4). }
\end{aligned}
$$

The starlike harmonic mappings

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} \frac{1-\alpha}{n-\alpha} x_{n} z^{n}+\sum_{n=1}^{\infty} \frac{1-\alpha}{n+\alpha} \bar{y}_{n} \bar{z}^{n}, \tag{7}
\end{equation*}
$$

where $\sum_{n=2}^{\infty}\left|x_{n}\right|+\sum_{n=2}^{\infty}\left|y_{n}\right|=1$, show that the coefficient bound given by (4) is sharp.

The functions of the form (7) are in $\mathscr{S}_{\mathscr{\mathscr { L }}}(\alpha)$ because

$$
\sum_{n=1}^{\infty}\left(\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right)=1+\sum_{n=2}^{\infty}\left|x_{n}\right|+\sum_{n=1}^{\infty}\left|y_{n}\right|=2 .
$$

The restriction placed in Theorem 1 on the moduli of the coefficients of $f=h+\bar{g}$ enables us to conclude for arbitrary rotation of the coefficients of f that the resulting functions would still be harmonic starlike and univalent. Our next theorem establishes that such coefficient bounds cannot be improved.

Theorem 2. Let $f=h+\bar{g}$ be given by (3). Then $f \in \mathscr{T}_{\mathscr{H}}(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right) \leq 2, \tag{8}
\end{equation*}
$$

where $a_{1}=1$ and $0 \leq \alpha<1$.
Proof. The if part follows from Theorem 1 upon noting that if the analytic and co-analytic parts of $f=h+\bar{g} \in \mathscr{S}_{\mathscr{A}}(\alpha)$ are of the form (3) then $f \in \mathscr{T}_{\mathscr{P}}(\alpha)$.

For the only if part, we show that $f \notin \mathscr{T}_{\mathscr{P}}(\alpha)$ if the condition (8) does not hold.
N ote that a necessary and sufficient condition for $f=h+\bar{g}$ given by (3) to be starlike of order $\alpha, 0 \leq \alpha<1$, is that $\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right)-\alpha \geq 0$, $0 \leq \alpha<1$. This is equivalent to

$$
\begin{aligned}
& \operatorname{Re} \frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}-\alpha \\
& \quad=\operatorname{Re} \frac{(1-\alpha) z-\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| z^{n}-\sum_{n=1}^{\infty}(n+\alpha)\left|b_{n}\right| \bar{z}^{n}}{z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}+\sum_{n=1}^{\infty}\left|b_{n}\right| \bar{z}^{n}} \\
& \quad \geq 0 .
\end{aligned}
$$

The above condition must hold for all values of $z,|z|=r<1$. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$ we must have

$$
\begin{equation*}
\frac{(1-\alpha)-\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| r^{n-1}-\sum_{n=1}^{\infty}(n+\alpha)\left|b_{n}\right| r^{n-1}}{1-\sum_{n=2}^{\infty}\left|a_{n}\right| r^{n-1}+\sum_{n=1}^{\infty}\left|b_{n}\right| r^{n-1}} \geq 0 . \tag{9}
\end{equation*}
$$

If the condition (8) does not hold then the numerator in (9) is negative for r sufficiently close to 1 . Thus there exists a $z_{o}=r_{o}$ in $(0,1)$ for which the quotient in (9) is negative. This contradicts the required condition for $f \in \mathscr{T}_{\mathscr{P}}(\alpha)$ and so the proof is complete.

Next we determine the extreme points of the closed convex hulls of $\mathscr{T}_{\mathscr{H}}(\alpha)$, denoted by clco $\mathscr{T}_{\mathscr{H}}(\alpha)$.

Theorem 3. $f \in \operatorname{clco} \mathscr{T}_{\mathscr{P}}(\alpha)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right), \tag{10}
\end{equation*}
$$

where $h_{1}(z)=z, h_{n}(z)=z-\frac{1-\alpha}{n-\alpha} z^{n} \quad(n=2,3, \cdots), g_{n}(z)=z+\frac{1-\alpha}{n+\alpha} \bar{z}^{n}$ $(n=1,2,3, \cdots), \sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1, X_{n} \geq 0$, and $Y_{n} \geq 0$. In particular, the extreme points of $\mathscr{T}_{\mathscr{H}}(\alpha)$ are $\left\{h_{n}\right\}$ and $\left\{g_{n}\right\}$.

Proof. For functions f of the form (10) we have

$$
\begin{aligned}
f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right)= & \sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right) z-\sum_{n=2}^{\infty} \frac{1-\alpha}{n-\alpha} X_{n} z^{n} \\
& +\sum_{n=1}^{\infty} \frac{1-\alpha}{n+\alpha} Y_{n} \bar{z}^{n} .
\end{aligned}
$$

Then

$$
\begin{gathered}
\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha}\left(\frac{1-\alpha}{n-\alpha} X_{n}\right)+\sum_{n=2}^{\infty} \frac{n+\alpha}{1-\alpha}\left(\frac{1-\alpha}{n+\alpha} Y_{n}\right) \\
=\sum_{n=2}^{\infty} X_{n}+\sum_{n=1}^{\infty} Y_{n}=1-X_{1} \leq 1
\end{gathered}
$$

and so $f \in \operatorname{clco} \mathscr{T}_{\mathscr{B}}(\alpha)$.
Conversely, suppose that $f \in \operatorname{clco} \mathscr{F}_{\mathscr{C}}(\alpha)$. Set $X_{n}=\frac{n-\alpha}{1-\alpha}\left|a_{n}\right| \quad(n=$ $2,3, \cdots)$ and $Y_{n}=\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|(n=1,2,3, \cdots)$. Then note that by Theorem 2, $0 \leq X_{n} \leq 1(n=2,3, \cdots)$ and $0 \leq Y_{n} \leq 1(n=2,2,3, \cdots)$. We define X_{1} $=1-\sum_{n=2}^{\infty} X_{n}-\sum_{n=1}^{\infty} Y_{n}$ and note that, by Theorem 2, $X_{1} \geq 0$. Consequently, we obtain $f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right)$ as required.
U sing Theorem 2 it is easily seen that $\mathscr{T}_{\mathscr{P}}(\alpha)$ is convex and closed, so $\operatorname{clco} \mathscr{T}_{\mathscr{F}}(\alpha)=\mathscr{T}_{\mathscr{P}}(\alpha)$. Then the statement of Theorem 3 is really for $f \in \mathscr{T}_{\mathscr{P}}(\alpha)$.

Finally we give the distortion bounds for functions in $\mathscr{T}_{\mathscr{P}}(\alpha)$, which yield a covering result for $\mathscr{T}_{\mathscr{P}}(\alpha)$.

Theorem 4. If $f \in \mathscr{T}_{\mathscr{Z}}(\alpha)$ then

$$
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left(\frac{1-\alpha}{2-\alpha}-\frac{1+\alpha}{2-\alpha}\left|b_{1}\right|\right) r^{2}, \quad|z|=r<1
$$

and

$$
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left(\frac{1-\alpha}{2-\alpha}-\frac{1+\alpha}{2-\alpha}\left|b_{1}\right|\right) r^{2}, \quad|z|=r<1 .
$$

Proof. Let $f \in \mathscr{T}_{\mathscr{P}}(\alpha)$. Taking the absolute value of f we obtain

$$
\begin{aligned}
|f(z)| & \leq\left(1+\left|b_{1}\right|\right) r+\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n} \\
& \leq\left(1+\left|b_{1}\right|\right) r+\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{2} \\
& =\left(1+\left|b_{1}\right|\right) r+\frac{1-\alpha}{2-\alpha} \sum_{n=2}^{\infty}\left(\frac{2-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{2-\alpha}{1-\alpha}\left|b_{n}\right|\right) r^{2} \\
& \leq\left(1+\left|b_{1}\right|\right) r+\frac{1-\alpha}{2-\alpha} \sum_{n=2}^{\infty}\left(\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right) r^{2} \\
& \leq\left(1+\left|b_{1}\right|\right) r+\frac{1-\alpha}{2-\alpha}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{1}\right|\right) r^{2}, \quad \text { by }(8), \\
& =\left(1+\left|b_{1}\right|\right) r+\left(\frac{1-\alpha}{2-\alpha}-\frac{1+\alpha}{2-\alpha}\left|b_{1}\right|\right) r^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
|f(z)| & \geq\left(1+\left|b_{1}\right|\right) r+\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n} \\
& \geq\left(1-\left|b_{1}\right|\right) r-\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{2} \\
& =\left(1-\left|b_{1}\right|\right) r-\frac{1-\alpha}{2-\alpha} \sum_{n=2}^{\infty}\left(\frac{2-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{2-\alpha}{1-\alpha}\left|b_{n}\right|\right) r^{2} \\
& \geq\left(1-\left|b_{1}\right|\right) r-\frac{1-\alpha}{2-\alpha} \sum_{n=2}^{\infty}\left(\frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{n+\alpha}{1-\alpha}\left|b_{n}\right|\right) r^{2} \\
& \geq\left(1-\left|b_{1}\right|\right) r+\frac{1-\alpha}{2-\alpha}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{1}\right|\right) r^{2} \quad \text { by }(8), \\
& =\left(1-\left|b_{1}\right|\right) r-\left(\frac{1-\alpha}{2-\alpha}-\frac{1+\alpha}{2-\alpha}\left|b_{1}\right|\right) r^{2} .
\end{aligned}
$$

The bounds given in Theorem 4 for the functions $f=h+\bar{g}$ of the form (3) also hold for functions of the form (1) if the coefficient condition (4) is satisfied. The functions

$$
f(z)=z+\left|b_{1}\right| \bar{z}+\left(\frac{1-\alpha}{2-\alpha}-\frac{1+\alpha}{2-\alpha}\left|b_{1}\right|\right) \bar{z}^{2}
$$

and

$$
f(z)=\left(1-\left|b_{1}\right|\right) z-\left(\frac{1-\alpha}{2-\alpha}-\frac{1+\alpha}{2-\alpha}\left|b_{1}\right|\right) z^{2}
$$

for $\left|b_{1}\right| \leq(1-\alpha) /(1+\alpha)$ show that the bounds given in Theorem 4 are sharp.

The following covering result follows from the left hand inequality in Theorem 4.

Corollary. If $f \in \mathscr{T}_{\mathscr{P}}(\alpha)$ then

$$
\left\{w:|w|<\frac{1}{2-\alpha}\left(1+(2 \alpha-1)\left|b_{1}\right|\right\} \subset f(\Delta) .\right.
$$

Remark. For $\alpha=b_{1}=0$ the covering result in the above corollary coincides with that given in [2, Theorem 5.9] for harmonic convex functions.

A function $f \in \mathscr{H}$ is harmonic convex of order $\alpha, 0 \leq \alpha<1$ for $|z|=$ $r<1$ (see [4] p. 244) if $\frac{\partial}{\partial \theta}\left(\arg \left(\frac{\partial}{\partial \theta \theta} f\left(r e^{i \theta}\right)\right) \geq \alpha,|z|=r<1\right.$.

The corresponding definition for harmonic convex functions of order α leads to analogous coefficient bounds and extreme points.

REFERENCES

1. Y. A vci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae CurieSklodowska Sect. A 44 (1990), 1-7.
2. J. Clunie and T. Sheil-Small, H armonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A I Math. 9 (1984), 3-25.
3. P. L. D uren, A survey of harmonic mappings in the plane, Texas Tech. Univ. Math. Ser. 18 (1992), 1-15.
4. T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. 2 (42) (1990), 237-248.
5. H. Silverman, U nivalent functions with negative coefficients, Proc. Amer. Math. Soc. $\mathbf{5 1}$ (1975), 109-116.
6. H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283-289.

[^0]: *This work was initiated while the author was a Visiting Scholar at the University of Kentucky, where he enjoyed numerous stimulating discussions with Professor Ted J. Suffridge.

