Root isolation of zero-dimensional polynomial systems with linear univariate representation ${ }^{*}$

Jin-San Cheng, Xiao-Shan Gao, Leilei Guo
KLMM, Institute of Systems Science, AMSS, Chinese Academy of Sciences, China

ARTICLE INFO

Article history:

Received 1 February 2010
Accepted 3 May 2010
Available online 22 December 2011

Keywords:

Zero-dimensional polynomial system
Linear univariate representation
Local generic position
Root isolation
Gröbner basis

Abstract

In this paper, a linear univariate representation for the roots of a zero-dimensional polynomial equation system is presented, where the complex roots of the polynomial system are represented as linear combinations of the roots of several univariate polynomial equations. An algorithm is proposed to compute such a representation for a given zero-dimensional polynomial equation system based on Gröbner basis computation. The main advantage of this representation is that the precision of the roots of the system can be easily controlled. In fact, based on the linear univariate representation, we can give the exact precisions needed for isolating the roots of the univariate equations in order to obtain roots of the polynomial system with a given precision. As a consequence, a root isolating algorithm for a zero-dimensional polynomial equation system can be easily derived from its linear univariate representation.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Solving polynomial equation systems is a basic problem in the field of computational science and has important engineering applications. In most cases, we consider zero-dimensional polynomial systems. We will discuss how to solve this kind of systems in this paper. In particular, we will consider how to isolate the complex roots for such a system.

One of the basic methods to solve polynomial equation systems is based on the concept of separating elements, which can be traced back to Kronecker (1882) and has been studied extensively in the past twenty years by Alonso et al. (1996); Canny (1988); Cheng et al. (2009); Gao and Chou (1999); Gianni and Mora (1989); Giusti and Heintz (1991); Giusti et al. (2001); Keyser et al. (2005);

[^0]Kobayashi et al. (1988a,b); Lakshman and Lazard (1991); Renegar (1992); Rouillier (1999); Yokoyama et al. (1989). The idea of the method is to introduce a new variable $t=\sum_{i} c_{i} x_{i}$ which is a linear combination of the variables to be solved such that $t=\sum_{i} c_{i} x_{i}$ takes different values when evaluated at different complex roots of the polynomial equation system $\mathcal{P}=0$, where $\mathcal{P} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and $c_{i}^{\prime} s$ are rational numbers. In such a case, we say that t is a separating element for $\mathcal{P}=0$. If $t=\sum_{i} c_{i} x_{i}$ is a separating element for $\mathcal{P}=0$, the roots of $\mathcal{P}=0$ have the following rational univariate representation (RUR):

$$
\begin{equation*}
f(t)=0, \quad x_{i}=R_{i}(t), \quad i=1, \ldots, n, \tag{1}
\end{equation*}
$$

where $f \in \mathbb{Q}[t]$ and $R_{i}(t)$ are rational functions in t. As a consequence, solving multi-variate polynomial systems is reduced to solving a univariate equation $f(t)=0$ and to substituting the roots of $f(t)=0$ into rational functions $R_{i}(t)$. Along this line, better complexity bounds and effective software packages for solving polynomial equations such as the Maple package RootFinding by Rouillier (1999) and the Magma package Kronecker by Giusti et al. (2001) were given.

The above approaches still have the following problem: for an isolating interval $[a, b]$ of a real root α of $f(t)=0$, to determine the isolating interval of $x_{i}=R_{i}(\alpha)$ under a given precision is not a trivial task. In this paper, we propose a new representation for the roots of a polynomial system which will remedy this drawback.

By putting stronger conditions on separating elements, a local generic position method is introduced in Cheng et al. (2009) to solve bivariate polynomial systems and experimental results show that the method is quite efficient for solving polynomial systems with multiple roots. In this paper, we extend the local generic position method to solve general zero-dimensional polynomial systems in the complex field. We first introduce the concept of local separating elements for a zero-dimensional polynomial system.

Definition 1. A linear polynomial $t=\sum_{i} c_{i} x_{i}$ in x_{i} is called a local separating element for a zero dimensional polynomial equation system $\mathcal{P}=0$ if it satisfies the following conditions.
(1) $t_{1}=x_{1}$ is defined to be a local separating element of \mathcal{P}_{1}, where \mathscr{P}_{k} is defined to be

$$
\mathcal{P}_{k}=(\mathscr{P}) \cap \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right], \quad(k=1, \ldots, n)
$$

Let $T_{1}\left(t_{1}\right)$ be the generating polynomial for the polynomial ideal $\left(\mathcal{P}_{1}\right)$.
(2) $t_{k}=t_{k-1}+c_{k} x_{k}$ is a separating element of \mathscr{P}_{k} for $k=2, \ldots, n$, and the roots of $\mathcal{P}_{k}=0$ have a one-to-one correspondence with the roots of a univariate equation $T_{k}\left(t_{k}\right)=0$. Denote the map from the roots of $\mathcal{P}=0$ to the roots of $T_{k}\left(t_{k}\right)=0$ by $\rho: \xi \rightarrow \rho(\xi)=\sum_{m=1}^{k} c_{m} \xi_{m}$.
(3) For $k=1, \ldots, n-1$, let $\xi=\left(\xi_{1}, \ldots, \xi_{k}\right)$ be a root of $\mathcal{P}_{k}=0$. Then all the roots $\eta_{j}=$ $\left(\xi_{1}, \ldots, \xi_{k}, \xi_{k+1, j}\right)$ of $\mathcal{P}_{k+1}=0$ "lifted" from ξ are mapped by ρ into a fixed square neighborhood $\mathbb{S}_{\rho(\xi)}$ of $\rho(\xi)$. Furthermore, the squares $\mathbb{S}_{\rho(\xi)}$ are disjoint for different $\rho(\xi)$. See Fig. 1 for an illustration.

We prove that if $t_{n}=\sum_{i=1}^{n} c_{i} x_{i}$ is a local separating element for \mathcal{P}, then the roots of $\mathcal{P}=0$ can be represented as linear combinations of the roots of univariate equations $T_{k}\left(t_{k}\right)=0$:

$$
\left\{\left.\left(\alpha_{1}, \frac{\alpha_{2}-\alpha_{1}}{s_{1}}, \ldots, \frac{\alpha_{n}-\alpha_{n-1}}{s_{1} \cdots s_{n-1}}\right) \right\rvert\, T_{k}\left(\alpha_{k}\right)=0, k=1, \ldots, n ; \alpha_{j+1} \in \mathbb{S}_{\alpha_{j}}\right\}
$$

where s_{j} are certain positive rational numbers. Such a representation is called a linear univariate representation (LUR for short) of the polynomial system.

The main advantage of the LUR is that the precision of the roots can be easily controlled. For the RUR (1), computing solutions with a given precision is not a trivial task. It is not easy to know with which precision to isolate the roots of $f(t)=0$ is enough for the roots of the system $x_{i}=R_{i}(t)$ to satisfy a given precision. For LUR, precision control becomes very easy. We can give an explicit formula for the precision of the roots of $T_{i}\left(t_{i}\right)=0$ in order to obtain the roots of the system with a given precision. So we can obtain the solutions of the system by refining the roots of $T_{i}\left(t_{i}\right)=0$ at most once. The reason why we can achieve the given precision easily is that in the LUR method,

Fig. 1. The distribution of the roots of $T_{i}(x)=0(i=1,2,3)$ in the complex plane. The diamonds (crosses, circles) are roots of $T_{1}(x)=0\left(T_{2}(x)=0, T_{3}(x)=0\right)$ and big (small) boxes are neighborhoods for the diamonds (crosses).
the roots of the system are represented as linear combinations of certain roots of univariate equations. Another advantage of LUR is that for a fixed root $\left(\xi_{1}, \ldots, \xi_{k}\right)$ of $\mathcal{P}_{k}=0$, we can easily identify the roots of $\mathcal{P}_{m}=0(k+1 \leq m \leq n)$ on the fiber of $\left(x_{1}, \ldots, x_{k}\right)=\left(\xi_{1}, \ldots, \xi_{k}\right)$. This property is useful especially for determining the topology of algebraic curves and surfaces. See, for example, Berbericha et al. (2010); Cheng et al. (2005).

We propose an algorithm to compute an LUR for a zero-dimensional polynomial system. The key ingredients of the algorithm are to estimate the root bounds of $\mathcal{P}=0$ and to estimate the separation bounds for the roots of $\mathcal{P}_{k+1}=0$ lifted from a root of $\mathcal{P}_{k}=0$. The existing bounds for these values are too large in practical computation (Emiris et al., 2010; Yap, 2000). We adopt a computational approach to estimate such bounds in order to obtain tight bound values. For the root bounds of $\mathcal{P}=0$, we use Gröbner basis computation to obtain the generating polynomial of the principal ideal $(\mathcal{P}) \cap \mathbb{Q}\left[x_{i}\right]$ and use this polynomial to estimate the root bound for the x_{i} coordinates of the roots of $\mathcal{P}=0$. The separation bounds for $\mathscr{P}_{k}=0$ are obtained from the isolating boxes for the roots of the $T_{k}\left(t_{k}\right)=0$. These bounds in turn will be used to compute the isolating boxes for the roots of $\mathcal{P}_{k+1}=0$. Hence, the algorithm to compute an LUR also gives a set of isolating boxes for the roots of $\mathcal{P}=0$.

The paper is organized as follows. In Section 2, we give the definition of LUR and the main result of the paper. In Section 3, we present an algorithm to compute an LUR of a zero-dimensional polynomial system as well as a set of isolating boxes of the roots of the equation system. In Section 4, we provide some illustrative examples. We conclude the paper in Section 5.

2. Linear univariate representation

In this section, we will define LUR and prove its main properties. Let

$$
\mathcal{P}=\left\{f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{s}\left(x_{1}, \ldots, x_{n}\right)\right\}
$$

be a zero-dimensional polynomial system in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. Let

$$
\ell_{i}=\left(\mathcal{P}_{i}\right)=(\mathcal{P}) \cap \mathbb{Q}\left[x_{1}, \ldots, x_{i}\right], \quad i=1, \ldots, n
$$

where (\mathcal{P}) is the ideal generated by \mathcal{P}. We use $V_{\mathbb{C}}(\mathcal{P})$ to denote its complex roots in \mathbb{C}^{n}.

Since we will use rectangles to isolate complex numbers, we adopt the following norm for a complex number $c=x+y i$:

$$
\begin{equation*}
|c|=\max \{|x|,|y|\} . \tag{2}
\end{equation*}
$$

The "distance ${ }^{1}$ " between two complex numbers c_{1} and c_{2} is defined to be $\left|c_{1}-c_{2}\right|$. It is easy to check that this is indeed a distance satisfying the inequality $\left|c_{1}-c_{2}\right| \leq\left|c_{1}-c_{3}\right|+\left|c_{3}-c_{2}\right|$ for any complex number c_{3}. Let c_{0} be a complex number and r a positive rational number. Then the set of points having distance less than r with c_{0}, denoted as

$$
\begin{equation*}
\mathbb{S}_{c_{0}, r}=\left\{c_{1} \in \mathbb{C}| | c_{1}-c_{0} \mid<r\right\}, \tag{3}
\end{equation*}
$$

is an open square with c_{0} as the center. We can simply denote it as $\mathbb{S}_{c_{0}}$ if r is clear.
Definition 2. By an LUR, we mean a set like

$$
\begin{equation*}
\left\{T_{1}\left(t_{1}\right), \ldots, T_{n}\left(t_{n}\right), s_{i}, d_{i}, i=1, \ldots, n-1\right\}, \tag{4}
\end{equation*}
$$

where $T_{i}\left(t_{i}\right) \in \mathbb{Q}\left[t_{i}\right]$ are univariate polynomials, s_{i} and d_{i} are positive rational numbers. The roots of (4) are defined to be

$$
\begin{align*}
& \left\{\left.\left(\alpha_{1}, \frac{\alpha_{2}-\alpha_{1}}{s_{1}}, \ldots, \frac{\alpha_{n}-\alpha_{n-1}}{s_{1} \cdots s_{n-1}}\right) \right\rvert\, T_{i}\left(\alpha_{i}\right)=0, i=1, \ldots, n\right. \text { and } \\
& \left.\left|\alpha_{i+1}-\alpha_{i}\right|<s_{1} \cdots s_{i-1} d_{i}, i=1, \ldots, n-1\right\} . \tag{5}
\end{align*}
$$

Geometrically, we match a root α_{i} of $T_{i}\left(t_{i}\right)=0$ with those roots of $T_{i+1}\left(t_{i+1}\right)=0$ inside a squared neighborhood centered at α_{i}. See Fig. 1 for an illustration. An LUR for \mathcal{P} is a set of form (4) whose roots are exactly the roots of $\mathcal{P}=0$.

It is clear that an LUR represents the roots of \mathcal{P} as linear combinations of the roots of some univariate polynomial equations. The LUR representation has the following advantage: we can easily derive the precision of the roots of $\mathcal{P}=0$ from that of the univariate equations as shown by the following lemma.
Lemma 1. Let (4) be an LUR for a polynomial system $\mathcal{P}=0$. If α_{i} is a root of $T_{i}\left(t_{i}\right)=0(1 \leq i \leq n)$ and $\bar{\alpha}_{i}$ is an approximation of α_{i} with precision ϵ_{i}, then the approximate root $\left(\bar{\alpha}_{1}, \frac{\bar{\alpha}_{2}-\bar{\alpha}_{1}}{s_{1}}, \ldots, \frac{\bar{\alpha}_{n}-\bar{\alpha}_{n-1}}{s_{1} \cdots s_{n-1}}\right)$ of $\mathcal{P}=0$ has a precision $\max \left\{\epsilon_{1}, \frac{\epsilon_{2}+\epsilon_{1}}{s_{1}}, \ldots, \frac{\epsilon_{n}+\epsilon_{n-1}}{s_{1} \cdots s_{n-1}}\right\}$.
Proof. Since $x_{i}=\frac{\alpha_{i}-\alpha_{i-1}}{s_{1} \cdots s_{i-1}}$ and the approximate root $\bar{\alpha}_{i}$ of α_{i} has precision ϵ_{i}, the approximate root $\bar{x}_{i}=\frac{\bar{\alpha}_{i}-\bar{\alpha}_{i-1}}{s_{1} \cdots s_{i-1}}$ has precision no larger than $\frac{\epsilon_{i}+\epsilon_{i-1}}{s_{1} \cdots s_{i-1}}$.

For a zero-dimensional polynomial system \mathcal{P}, let $d_{i}, r_{i}(i=1, \ldots, n)$, and $s_{i}(1 \leq i \leq n-1)$ be positive rational numbers satisfying

$$
\begin{align*}
& D_{1}=\min \left\{\frac{1}{2}|\alpha-\beta|, \alpha, \beta \in V_{\mathbb{C}}\left(\ell_{1}\right), \alpha \neq \beta\right\}, \\
& D_{i}=\min \left\{\frac{1}{2}|\alpha-\beta|, \forall \eta \in V_{\mathbb{C}}\left(\ell_{i-1}\right),(\eta, \alpha),(\eta, \beta) \in V_{\mathbb{C}}\left(\ell_{i}\right), \alpha \neq \beta\right\} \quad(i=2, \ldots, n), \tag{6}\\
& d_{i}<\min \left\{D_{i}, \frac{d_{i-1}}{2 s_{i-1}}\right\}, \tag{7}\\
& r_{i}>2 \max \left\{\left|\gamma_{i}\right|, \forall\left(\gamma_{1}, \ldots, \gamma_{i}\right) \in V_{\mathbb{C}}\left(\ell_{i}\right)\right\}, \tag{8}\\
& s_{i} \leq \frac{d_{i}}{r_{i+1}}, \tag{9}
\end{align*}
$$

[^1]where $s_{0}=1, d_{0}=+\infty$. Geometrically, D_{i} is half of the root separation bound for roots of ℓ_{i} considered as points on a "fiber" over each root of ℓ_{i-1}, r_{i} is twice of the root bound for the i-th coordinates of the roots of ℓ_{i}, and s_{i}, the inverse of the slope of certain line, is a key parameter to be used in our method. If $\forall \eta \in V_{\mathbb{C}}\left(\ell_{i-1}\right), \#\left\{\alpha \mid(\eta, \alpha) \in V_{\mathbb{C}}\left(\ell_{i}\right)\right\}=1$, we can choose any positive number as d_{i}.

For s_{i} satisfying (9), consider the ideal

$$
\begin{equation*}
\bar{\ell}_{i}=\left(\ell_{i} \cup\left\{t_{i}-x_{1}-s_{1} x_{2}-\cdots-s_{1} \cdots s_{i-1} x_{i}\right\}\right), \tag{10}
\end{equation*}
$$

where t_{i} is a new variable. It is clear that $\bar{\ell}_{i}$ is a zero-dimensional ideal in $\mathbb{Q}\left[x_{1}, \ldots, x_{i}, t_{i}\right]$. And the elimination ideal $\left(\bar{l}_{i}\right) \cap \mathbb{Q}\left[t_{i}\right]$ is principal. Let $T_{i}\left(t_{i}\right)$ be the generator of this ideal:

$$
\begin{equation*}
\left(\bar{\ell}_{i}\right) \cap \mathbb{Q}\left[t_{i}\right]=\left(T_{i}\left(t_{i}\right)\right) . \tag{11}
\end{equation*}
$$

The following is the main result of this paper.
Theorem 2. If d_{i}, s_{i} satisfy conditions (7), (9) and T_{i} is defined in (11), then the corresponding set (4) is an LUR for \mathcal{P}.

We will prove two lemmas which will lead to a proof for the theorem. For a root α_{i} of $T_{i}\left(t_{i}\right)=0$, $\mathbb{S}_{\alpha_{i}, \rho_{i}}$ (see Eq. (3) for definition) is an open square whose center is α_{i} and whose edge has length $2 \rho_{i}$, where $\rho_{i}=s_{1} \cdots s_{i-1} d_{i}$. In the rest of the paper, we simply denote it as $\mathbb{S}_{\alpha_{i}}$ since ρ_{i} is fixed for α_{i}. With this notation, the roots of (4) can be written as

$$
\begin{align*}
& \left\{\left.\left(\alpha_{1}, \frac{\alpha_{2}-\alpha_{1}}{s_{1}}, \ldots, \frac{\alpha_{n}-\alpha_{n-1}}{s_{1} \cdots s_{n-1}}\right) \right\rvert\, T_{i}\left(\alpha_{i}\right)=0, i=1, \ldots, n\right. \text { and } \\
& \left.\quad \alpha_{i+1} \in \mathbb{S}_{\alpha_{i}}, i=1, \ldots, n-1\right\} . \tag{12}
\end{align*}
$$

In Fig. 1, $\mathbb{S}_{\alpha_{i}}$ are interior parts of the squares. We have
Lemma 3. Under assumptions of Theorem 2 , we have $\mathbb{S}_{\alpha_{i+1}} \subset \mathbb{S}_{\alpha_{i}}, i=1, \ldots, n-1$, where $\left(\xi_{1}, \ldots\right.$, $\left.\xi_{i+1}\right) \in V_{\mathbb{C}}\left(\ell_{i+1}\right)$ and

$$
\begin{align*}
& \alpha_{i}=\xi_{1}+s_{1} \xi_{2}+\cdots+s_{1} \cdots s_{i-1} \xi_{i}, \tag{13}\\
& \alpha_{i+1}=\xi_{1}+s_{1} \xi_{2}+\cdots+s_{1} \cdots s_{i-1} \xi_{i}+s_{1} \cdots s_{i} \xi_{i+1}=\alpha_{i}+s_{1} \cdots s_{i} \xi_{i+1} . \tag{14}
\end{align*}
$$

Proof. From the definition of $\bar{\ell}_{i}$ in (10), α_{i} is a root of $T_{i}\left(t_{i}\right)=0, \alpha_{i+1}$ is a root of $T_{i+1}\left(t_{i+1}\right)=0$, and each root of $T_{i+1}\left(t_{i+1}\right)=0$ has the form (14).

We first prove that $\alpha_{i+1} \in \mathbb{S}_{\alpha_{i}}$. Using (8) and (9), we have

$$
\begin{equation*}
\left|\alpha_{i+1}-\alpha_{i}\right|=s_{1} \cdots s_{i}\left|\xi_{i+1}\right|<\frac{1}{2} s_{1} \cdots s_{i} r_{i+1} \leq \frac{1}{2} s_{1} \cdots s_{i-1} d_{i}=\frac{1}{2} \rho_{i} . \tag{15}
\end{equation*}
$$

As a consequence, α_{i+1} is in $\mathbb{S}_{\alpha_{i}}$.
We now prove that $\mathbb{S}_{\alpha_{i+1}} \subset \mathbb{S}_{\alpha_{i}}$. By (7), we have $\rho_{i+1}=s_{1} \cdots s_{i} d_{i+1}<\frac{1}{2} s_{1} \cdots s_{i-1} d_{i}=\frac{1}{2} \rho_{i}$. Therefore, for any $\alpha \in \mathbb{S}_{\alpha_{i+1}}$, by (15), we have $\left|\alpha-\alpha_{i}\right| \leq\left|\alpha-\alpha_{i+1}\right|+\left|\alpha_{i+1}-\alpha_{i}\right|<\rho_{i+1}+\frac{1}{2} \rho_{i}<\rho_{i}$. Hence $\alpha \in \mathbb{S}_{\alpha_{i}}$ and the lemma is proved.

Theorem 2 follows from (d) of the following lemma.
Lemma 4. Under assumptions of Theorem 2 , for $i=1, \ldots, n$, we have
(a) $t_{i}=x_{1}+s_{1} x_{2}+\cdots+s_{1} \cdots s_{i-1} x_{i}$ is a separating element of ℓ_{i}.
(b) Each root α_{i} of $T_{i}\left(t_{i}\right)=0$ is in a box $\mathbb{S}_{\alpha_{i-1}}$ for a root α_{i-1} of $T_{i-1}\left(t_{i-1}\right)=0$. Furthermore, if $\alpha_{i-1}=\xi_{1}+s_{1} \xi_{2}+\cdots+s_{1} \cdots s_{i-2} \xi_{i-1}$, then all roots of $T_{i}\left(t_{i}\right)=0$ in $\mathbb{S}_{\alpha_{i-1}}$ are of the following form

$$
\begin{equation*}
\alpha_{i}=\alpha_{i-1}+s_{1} \cdots s_{i-1} \xi_{i} \tag{16}
\end{equation*}
$$

where $\left(\xi_{1}, \ldots, \xi_{i-1}, \xi_{i}\right) \in V_{\mathbb{C}}\left(l_{i}\right)$.
(c) $\mathbb{S}_{\alpha_{i}}$ are disjoint for all roots α_{i} of $T_{i}\left(t_{i}\right)=0$.
(d) $\left(T_{1}\left(t_{1}\right), \ldots, T_{i}\left(t_{i}\right), s_{j}, d_{j}, j=1, \ldots, i-1\right)$ is an LUR for ℓ_{i}.

Proof. We will prove the lemma by induction on $k=i$. For $k=1$, since $\left(\ell_{1}\right)=\left(T_{1}\left(t_{1}\right)\right)$, statements (a) and (d) are obviously true. We do not need prove (b). From (7), we have $d_{1}<\min \left\{\frac{1}{2}|\alpha-\beta|, \forall \alpha, \beta \in\right.$ $\left.V_{\mathbb{C}}\left(\ell_{1}\right)=V_{\mathbb{C}}\left(T_{1}\right), \alpha \neq \beta\right\}$. As a consequence, $\mathbb{S}_{\alpha_{1}}$ are disjoint for all roots α_{1} of $T_{1}\left(t_{1}\right)=0$. Statement (c) is proved.

Assume the statements are true for $k=1, \ldots, i$. We will prove the result for $k=i+1$.
We first prove statement (a). Let $\xi=\left(\xi_{1}, \ldots, \xi_{i+1}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{i+1}\right)$ be two distinct elements in $V_{\mathbb{C}}\left(\ell_{i+1}\right)$. We consider two cases. If $\left(\xi_{1}, \ldots, \xi_{i}\right)$ is different from $\left(\beta_{1}, \ldots, \beta_{i}\right)$, then by the induction hypothesis $\alpha_{i}=\xi_{1}+s_{1} \xi_{2}+\cdots+s_{1} \cdots s_{i-1} \xi_{i}$ is also different from $\theta_{i}=\beta_{1}+$ $s_{1} \beta_{2}+\cdots+s_{1} \cdots s_{i-1} \beta_{i}$. By (c) of the induction hypothesis, $\mathbb{S}_{\alpha_{i}}$ and $\mathbb{S}_{\theta_{i}}$ are disjoint. By Lemma 3, $\alpha_{i+1}=\alpha_{i}+s_{1} \cdots s_{i} \xi_{i+1} \in \mathbb{S}_{\alpha_{i}}$ and $\theta_{i+1}=\theta_{i}+s_{1} \cdots s_{i} \beta_{i+1} \in \mathbb{S}_{\theta_{i}}$. Then, in this case we have $\alpha_{i+1} \neq \theta_{i+1}$. In the second case, we have $\left(\xi_{1}, \ldots, \xi_{i}\right)=\left(\beta_{1}, \ldots, \beta_{i}\right)$. Then, $\alpha_{i}=\theta_{i}$ and $\xi_{i+1} \neq \beta_{i+1}$. It is clear that $\alpha_{i+1}=\alpha_{i}+s_{1} \cdots s_{i} \xi_{i+1}$ is different from $\theta_{i+1}=\theta_{i}+s_{1} \cdots s_{i} \beta_{i+1}$. Thus, (a) is proved.

We now prove statement (b). Use notations in (13) and (14). By Lemma 3, we have $\alpha_{i+1} \in \mathbb{S}_{\alpha_{i}}$. Then, each root of $T_{i+1}\left(t_{i+1}\right)=0$ is in a box $\mathbb{S}_{\alpha_{i}}$ for a root α_{i} of $T_{i}\left(t_{i}\right)=0$. Let $\left(\beta_{1}, \ldots, \beta_{i+1}\right) \in V_{\mathbb{C}}\left(\ell_{i+1}\right)$ such that $\theta_{i+1}=\beta_{1}+s_{1} \beta_{2}+\cdots+s_{1} \cdots s_{i} \beta_{i+1}$ is another element in $\mathbb{S}_{\alpha_{i}}$. We claim that $\left(\beta_{1}, \ldots, \beta_{i}\right)$ must be the same as (ξ_{1}, \ldots, ξ_{i}). Otherwise, by the induction hypothesis (a), $\theta_{i}=\beta_{1}+s_{1} \beta_{2}+\cdots+s_{1} \cdots s_{i-1} \beta_{i}$ is different from α_{i}. By the induction hypothesis (c), $\mathbb{S}_{\alpha_{i}}$ and $\mathbb{S}_{\theta_{i}}$ are disjoint which is impossible since by Lemma $3, \theta_{i+1} \in \mathbb{S}_{\alpha_{i}}$ and $\theta_{i+1} \in \mathbb{S}_{\theta_{i}}$. Thus, $\left(\beta_{1}, \ldots, \beta_{i}\right)=\left(\xi_{1}, \ldots, \xi_{i}\right)$ and hence $\theta_{i+1}=$ $\alpha_{i}+s_{1} \cdots s_{i} \beta_{i+1}$. This proves Eq. (16) and hence statement (b).

We now prove statement (c). Use notations in (13) and (14). By Lemma $3, \mathbb{S}_{\alpha_{i+1}} \subset \mathbb{S}_{\alpha_{i}}$. As a consequence, we need only to prove that the squares $\mathbb{S}_{\alpha_{i+1}}$ contained in the same $\mathbb{S}_{\alpha_{i}}$ are disjoint. Let $\alpha_{i+1}, \theta_{i+1}$ be two roots of $T_{i+1}\left(t_{i+1}\right)=0$ in $\mathbb{S}_{\alpha_{i}}$. By statement (b) just proved, we have

$$
\alpha_{i+1}=\alpha_{i}+s_{1} \cdots s_{i} \xi_{i+1}, \quad \theta_{i+1}=\alpha_{i}+s_{1} \cdots s_{i} \beta_{i+1}
$$

where α_{i} is defined in (13) and $\left(\xi_{1}, \ldots, \xi_{i}, \xi_{i+1}\right),\left(\xi_{1}, \ldots, \xi_{i}, \beta_{i+1}\right)$ are roots of ℓ_{i+1}. Then, by (7),

$$
\left|\alpha_{i+1}-\theta_{i+1}\right|=s_{1} \cdots s_{i}\left|\xi_{i+1}-\beta_{i+1}\right|>2 s_{1} \cdots s_{i} d_{i+1}=2 \rho_{i+1} .
$$

So, $\mathbb{S}_{\alpha_{i+1}}=\mathbb{S}_{\alpha_{i+1}, \rho_{i+1}}$ and $\mathbb{S}_{\theta_{i+1}}=\mathbb{S}_{\theta_{i+1}, \rho_{i+1}}$ are disjoint. Statement (c) is proved.
Finally, we prove statement (d). Let $\xi=\left(\xi_{1}, \ldots, \xi_{i+1}\right) \in V_{\mathbb{C}}\left(\ell_{i+1}\right)$ and $\alpha_{j}=\xi_{1}+$ $s_{1} \xi_{2}+\cdots+s_{1} \cdots s_{j-1} \xi_{j}, j=1, \ldots, i+1$. By the induction hypothesis, we have $\left(\xi_{1}, \ldots \xi_{i}\right)=$ $\left(\alpha_{1}, \frac{\alpha_{2}-\alpha_{1}}{s_{1}}, \ldots, \frac{\alpha_{i}-\alpha_{i-1}}{s_{1} \cdots s_{i-1}}\right.$) where $\left|\alpha_{j+1}-\alpha_{j}\right|<s_{1} \cdots s_{j-1} d_{j}, j=1, \ldots, i$. Note that the inequality is equivalent to that $\alpha_{j+1} \in \mathbb{S}_{\alpha_{j}}$. By (16), we can recover ξ_{i+1} with the following equation

$$
\xi_{i+1}=\frac{\alpha_{i+1}-\alpha_{i}}{s_{1} \cdots s_{i}} .
$$

From Lemma 3, we have $\alpha_{i+1} \in \mathbb{S}_{\alpha_{i}}$ or equivalently $\left|\alpha_{i+1}-\alpha_{i}\right|<s_{1} \cdots s_{i-1} d_{i}$. Then $\left(\xi_{1}, \ldots \xi_{i+1}\right)=$ $\left(\alpha_{1}, \frac{\alpha_{2}-\alpha_{1}}{s_{1}}, \ldots, \frac{\alpha_{i+1}-\alpha_{i}}{s_{1} \cdots s_{i}}\right)$ is a root of the LUR: $\left(T_{1}\left(t_{1}\right), \ldots, T_{i+1}\left(t_{i+1}\right), s_{j}, d_{j}, j=1, \ldots, i\right)$. We thus proved that the roots of ℓ_{i+1} are the same as the roots of the LUR and hence statement (d).

Remark. From (a) and (b) of the lemma, we know that $t_{i}=x_{1}+s_{1} x_{2}+\cdots+s_{1} \cdots s_{i-1} x_{i}$ is also a local separating element for $\ell_{i}=0$.

From the remark above, we have the following corollaries.
Corollary 5. If (4) is an LUR for a polynomial system \mathcal{P}, where d_{i}, s_{i} satisfy (7), (9), then the roots of $\ell_{i}=0$ are in a one to one correspondence with the roots of $T_{i}\left(t_{i}\right)=0$ for $i=1, \ldots, n$.
Corollary 6. The real roots of $\mathcal{P}=0$ are in a one to one correspondence with the real roots of $T_{n}\left(t_{n}\right)=0$. More precisely, if α_{n} is a real root of $T_{n}\left(t_{n}\right)=0$, then in the corresponding root ($\left.\alpha_{1}, \frac{\alpha_{2}-\alpha_{1}}{s_{1}}, \ldots, \frac{\alpha_{n}-\alpha_{n-1}}{s_{1} \cdots s_{n-1}}\right)$ of $\mathcal{P}=0, \alpha_{i}$ is a real root of $T_{i}\left(t_{i}\right)=0, i=1, \ldots, n-1$.
From the lemma, we can consider the real roots of an LUR if we are only interested in the real roots of $\mathcal{P}=0$.

3. Algorithm for computing an LUR and root isolation

In this section, we will present an algorithm to compute an LUR for a zero-dimensional polynomial system. The algorithm will isolate synchronously the roots of the system in \mathbb{C}^{n}.

3.1. Complex isolating intervals and isolating boxes

We will introduce the basic concepts of complex isolating intervals, isolating boxes and interval computation of (complex) isolating intervals. For more details, we refer to Neumaier (1990) and Moore (1966).

Let $\square \mathbb{Q}$ denote the set of intervals of the form $[a, b]$, where $a \leq b \in \mathbb{Q}$. The length of an interval $I=[a, b] \in \square \mathbb{Q}$ is defined to be $|I|=b-a$. A pair of intervals $\langle I, J\rangle$ is called a complex interval, which represents a rectangle in the complex plane. A complex number $\langle\alpha, \beta\rangle=\alpha+\beta \mathfrak{i}\left(\mathfrak{i}^{2}=-1\right)$ is said to be in a complex interval $\langle I, J\rangle$ if $\alpha \in I$ and $\beta \in J$. The length of a complex interval $\langle I, J\rangle$ is defined to be $|\langle I, J\rangle|=\max \{|I|,|J|\}$. Let $I_{i}=\left[a_{i}, b_{i}\right] \in \square \mathbb{Q}, i=1$, 2, then

$$
I_{1}-I_{2}=\left[a_{1}-b_{2}, b_{1}-a_{2}\right] .
$$

Let $I_{i}, J_{i}, i=1,2$ be in $\square \mathbb{Q}$. Then

$$
\left\langle I_{1}, J_{1}\right\rangle-\left\langle I_{2}, J_{2}\right\rangle=\left\langle I_{1}-I_{2}, J_{1}-J_{2}\right\rangle .
$$

Definition 3. Assuming $a_{1} \leq a_{2}$, we define the distance between two intervals as

$$
\operatorname{Dis}\left(\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right]\right)= \begin{cases}a_{2}-b_{1}, & \text { if }\left[a_{1}, b_{1}\right] \cap\left[a_{2}, b_{2}\right]=\emptyset \\ 0, & \text { otherwise }\end{cases}
$$

We define the distance between two complex intervals as

$$
\begin{equation*}
\operatorname{Dis}\left(\left\langle\left[a_{1}, b_{1}\right],\left[p_{1}, q_{1}\right]\right\rangle,\left\langle\left[a_{2}, b_{2}\right],\left[p_{2}, q_{2}\right]\right\rangle\right)=\max \left\{\operatorname{Dis}\left(\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right]\right), \operatorname{Dis}\left(\left[p_{1}, q_{1}\right],\left[p_{2}, q_{2}\right]\right\} .\right. \tag{17}
\end{equation*}
$$

A set $\&$ of disjoint complex intervals is called isolating intervals of $T(x)=0$ if each interval in $\&$ contains only one root of $T(x)=0$ and each root of $T(x)=0$ is contained in one interval in s. Methods to isolate the complex roots of a univariate polynomial equation are given in Collins and Krandick (1996); Pinkert (1976); Sagraloff and Yap (submitted for publication); Wilf (1978).

Let $\square \mathbb{C}$ denote the set of complex intervals. An element $\left\langle I_{1}^{\mathbb{R}}, I_{1}^{\mathbb{I}}\right\rangle \times \cdots \times\left\langle I_{n}^{\mathbb{R}}, I_{n}^{\mathbb{I}}\right\rangle$ in $\square \mathbb{C}^{n}$ is called a complex box. A set $\&$ of isolating boxes for a zero-dimensional polynomial system \mathcal{P} in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ is a set of disjoint complex boxes in $\square \mathbb{C}^{n}$ such that each box in $\&$ contains only one root of $\mathcal{P}=0$ and each root of $\mathcal{P}=0$ is in one of the boxes. Furthermore, if each box $\mathbf{B}=\left\langle I_{1}^{\mathbb{R}}, I_{1}^{\mathbb{T}}\right\rangle \times \cdots \times\left\langle I_{n}^{\mathbb{R}}, I_{n}^{\mathbb{I}}\right\rangle$ in s satisfies $\max _{i}\left\{\left|I_{i}^{\mathbb{R}}\right|,\left|I_{i}^{\mathbb{L}}\right|\right\} \leq \epsilon$, then $\&$ is called a set of ϵ-isolating boxes of $\mathcal{P}=0$. The aim of this paper is to compute a set of ϵ-isolating boxes for a zero-dimensional polynomial system \mathcal{P}.

3.2. Gröbner basis and computation of r_{i} and $T_{i}\left(t_{i}\right)$

In this subsection, we will show how to use Gröbner basis to compute r_{i} defined in (8) and $T_{i}\left(t_{i}\right)$ defined in (11) supposing the parameters s_{i} are given.

We can use the following lemma to compute the worst cases bounds of D_{i} and r_{i} in (6) and (7). The results can also be found in Yap (2000).
Lemma 7 (Emiris et al. (2010)). Let $\Sigma=\left\{f_{1}, \ldots, f_{n}\right\} \subset \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$be a zero-dimensional Laurent polynomial system. And $\operatorname{deg}\left(f_{i}\right) \leq d, \mathscr{L}\left(f_{i}\right) \leq \tau$ is the maximum bitsize of the coefficients of f (including a bit for the sign). Then the root separation bound $\operatorname{sep}(\Sigma)$ and root bound $r b(\Sigma)$ of $\Sigma=0$ satisfy the following inequalities.

$$
\begin{aligned}
& 2 D_{i}>\operatorname{sep}(\Sigma) \geq 2^{-2 d^{2 n}-n(2 n \lg d+\tau) d^{2 n-1}}, \\
& r_{i} / 2<r b(\Sigma) \leq 2^{d^{n}+n(\tau+n \lg d+1) d^{n-1}} .
\end{aligned}
$$

But, these bounds are too large or small to be used in practical computation. In what below, we will show how to find more accurate bounds for r_{i} with Gröbner basis computation.

Let $\mathcal{P} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be a zero-dimensional polynomial system. Then $\mathcal{A}=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /(\mathcal{P})$ is a finite dimensional linear space over \mathbb{Q}. Let \mathcal{G} be a Gröbner basis of \mathcal{P} with any ordering. Then the set of remainder monomials

$$
\mathbf{B}=\left\{x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}} \mid x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}} \text { is not divisible by the leading term of any element of } \mathcal{G}\right\}
$$

forms a basis of \mathcal{A} as a linear space over \mathbb{Q}, where γ_{i} are non-negative integers.
Let $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. Then f gives a multiplication map

$$
M_{f}: \mathcal{A} \longrightarrow \mathcal{A}
$$

defined by $M_{f}(p)=f p$ for $p \in \mathcal{A}$. It is clear that M_{f} is a linear map. We can construct the matrix representation for M_{f} from \mathbf{B} and g. The following theorem is a basic property for M_{f} (Lazard, 1981) and one can find similar result in Cox et al. (2004) § 4, Chapter 1 or Basu et al. (2006) pp. 150.

Theorem 8 (Stickelberger's Theorem). Assume that $\mathcal{P} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ has a finite positive number of solutions over \mathbb{C}. The eigenvalues of M_{f} are the values of f at the roots of $\mathcal{P}=0$ over \mathbb{C} with respect to multiplicities of the roots of $\mathcal{P}=0$.

Let s_{i} be rational numbers satisfying (9) and

$$
\mathcal{F}_{i}=\mathcal{P} \cup\left\{t_{i}-x_{1}-s_{1} x_{2}-\cdots-s_{1} \cdots s_{i-1} x_{i}\right\} .
$$

We can compute $g_{i}\left(x_{i}\right)$ and $T_{i}\left(t_{i}\right)$ such that

$$
\begin{equation*}
\left(g_{i}\left(x_{i}\right)\right)=\mathbb{Q}\left[x_{i}\right] \cap(\mathcal{P}) \quad \text { and } \quad\left(T_{i}\left(t_{i}\right)\right)=\mathbb{Q}\left[t_{i}\right] \cap\left(\mathcal{F}_{i}\right) . \tag{18}
\end{equation*}
$$

In fact, we can construct matrices for $M_{x_{i}}$ and $M_{t_{i}}$ based on \mathbf{B} and g, and $g_{i}\left(x_{i}\right)$ and $T_{i}\left(t_{i}\right)$ are the minimal polynomials for $M_{x_{i}}$ and $M_{t_{i}}$, respectively (see reference Cox (2005)). Note that we can also use the method introduced in reference Faugère et al. (1993) to compute $g_{i}\left(x_{i}\right), T_{i}\left(t_{i}\right)$.

From Theorem 8 and (a) of Lemma 4, the i-th coordinates of all the roots of $\mathcal{P}=0$ are roots of $g_{i}\left(x_{i}\right)=0$, and all the possible values of $t_{i}=\sum_{j=1}^{i} s_{1} \cdots s_{j-1} x_{j}$ on the roots of $\mathcal{P}=0$ are roots of $T_{i}\left(t_{i}\right)=0$.

Now we show how to estimate r_{i} defined in (8). At first, compute $\left(g_{i}\left(x_{i}\right)\right)=(\mathcal{P}) \cap \mathbb{Q}\left[x_{i}\right]$. Then we have the following result.

Lemma 9. Use the notations introduced before. Then

$$
\begin{equation*}
r_{i}=2 \max \left\{\operatorname{RB}\left(g_{i}\left(x_{i}\right)\right)\right\} \tag{19}
\end{equation*}
$$

satisfies the condition (8), where $\mathrm{RB}(g)$ is the root bound of a univariate polynomial equation $g=0$.
Proof. The lemma is obvious since for any root $\left(\xi_{1}, \ldots, \xi_{i}\right) \in V_{\mathbb{C}}\left(\ell_{i}\right), \xi_{i}$ is a root of $g_{i}\left(x_{i}\right)=0$.

3.3. Theoretical ingredients for the algorithm

In this subsection, we will outline an algorithm to compute an LUR for \mathcal{P} and to isolate the roots of $\mathcal{P}=0$ under a given precision ϵ. The algorithm is based on an interval version of Theorem 2.

The isolating boxes for an LUR defined in (4) can be written as:

$$
\begin{equation*}
\left\{\left.B_{1} \times \frac{B_{2}-B_{1}}{s_{1}} \times \cdots \times \frac{B_{n}-B_{n-1}}{s_{1} \cdots s_{n-1}} \right\rvert\, B_{i} \in \mathscr{B}_{i}, \operatorname{Dis}\left(B_{i+1}, B_{i}\right)<\rho_{i} / 2,1 \leq i \leq n-1\right\}, \tag{20}
\end{equation*}
$$

where \mathscr{B}_{i} is a set of isolating boxes for the complex roots of $T_{i}\left(t_{i}\right)=0$ and $\rho_{i}=s_{1} \cdots s_{i-1} d_{i}$. In Theorem 17 to be proved below, we will give criteria under which conditions the isolating boxes for \mathcal{P} are the isolating boxes of an LUR.

Let $\mathcal{P} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ be a zero-dimensional polynomial system. We will compute an LUR for \mathcal{P} and a set of ϵ-isolating boxes for the roots of $\mathcal{P}=0$ inductively.

At first, consider $i=1$. We compute $T_{1}\left(t_{1}\right)$ as defined in Eq.(18). Let \mathscr{B}_{1} be a set of isolating intervals for the complex roots of $T_{1}\left(t_{1}\right)=0$. Then, we can set d_{1} to be the minimal distance between any two intervals in \mathscr{B}_{1}.

For i from 1 to $n-1$, assuming that we have computed

- An LUR $\left(T_{1}\left(t_{1}\right), \ldots, T_{i}\left(t_{i}\right), s_{j}, d_{j}, j=1, \ldots, i-1\right)$ for ℓ_{i}.
- A set of ϵ-isolating boxes for ℓ_{i}.
- The parameter d_{i}.

We will show how to compute $r_{i+1}, s_{i}, T_{i+1}\left(t_{i+1}\right), d_{i+1}$, and a set of ϵ-isolating boxes of the roots of $\ell_{i+1}=0$. The procedure consists of three steps.
Step 1. We will compute r_{i+1}, s_{i} as introduced in (8) and (9). With s_{i}, we can compute $T_{i+1}\left(t_{i+1}\right)$ as defined in (18).

Here r_{i+1} can be computed with the method in Lemma 9 . Note that d_{i} is known from the induction hypotheses. Then we can choose a rational number s_{i} such that condition (9) is valid. Finally, $T_{i+1}\left(t_{i+1}\right)$ can be computed with the methods mentioned below Eq. (18).
Step 2. We are going to compute the isolating intervals of the roots of $\ell_{i+1}=0$. Let $\xi=\left(\xi_{1}, \ldots, \xi_{i}\right)$ be a root of $\ell_{i}=0$. We are going to find the roots of $\ell_{i+1}=0$ "lifted" from ξ, that is, roots of the form

$$
\begin{equation*}
\zeta_{j}=\left(\xi_{1}, \ldots, \xi_{i}, \xi_{i+1, j}\right), \quad j=1, \ldots, m \tag{21}
\end{equation*}
$$

To do that, we need only to find a set of isolating intervals for $\xi_{i+1, j}$ with lengths no larger than ϵ, since we already have an ϵ-box for ξ.

Let

$$
\alpha_{i}=\xi_{1}+s_{1} \xi_{2}+\cdots+s_{1} \cdots s_{i-1} \xi_{i} .
$$

Then, α_{i} is a root of $T_{i}\left(t_{i}\right)=0$. By (b) of Lemma 4 the roots θ_{j} of $T_{i+1}\left(t_{i+1}\right)=0$ correspond to ζ_{j} are

$$
\begin{equation*}
\theta_{j}=\alpha_{i}+s_{1} \cdots s_{i} \xi_{i+1, j}, \quad j=1, \ldots, m \tag{22}
\end{equation*}
$$

We have
Lemma 10. Let $I_{i}=\langle[a, b],[c, d]\rangle$ be an isolating interval for the root α_{i} of $T_{i}\left(t_{i}\right)=0$ such that $\left|I_{i}\right|<\frac{1}{4} \rho_{i}$ where $\rho_{i}=s_{1} \cdots s_{i-1} d_{i}$. Then all θ_{j} in (22) are in the following complex interval

$$
\begin{equation*}
\mathbb{I}_{l_{i}}=\left\langle\left(a-\rho_{i} / 2, b+\rho_{i} / 2\right),\left(c-\rho_{i} / 2, d+\rho_{i} / 2\right)\right\rangle . \tag{23}
\end{equation*}
$$

Furthermore, the intervals $\mathbb{I}_{L_{\alpha}}$'s are disjoint for all the isolating intervals I_{α} of the roots α 's of $T_{i}\left(t_{i}\right)=0$.
Proof. In Fig. 2, let the square $A B C D$ be $\mathbb{S}_{\alpha_{i}}=\left\{\theta \in \mathbb{C}| | \theta-\alpha_{i} \mid<\rho_{i}\right\}$ and the square $A_{1} B_{1} C_{1} D_{1}=$ $\left\{\theta \in \mathbb{C}\left|\left|\theta-\alpha_{i}\right|<\rho_{i} / 2\right\}\right.$. By Eqs. (15) and (22), we know $\left|\theta_{j}-\alpha_{i}\right|<\frac{1}{2} \rho_{i}$. So, θ_{j} is inside $A_{1} B_{1} C_{1} D_{1}$. Let rectangle $A_{2} B_{2} C_{2} D_{2}$ be the complex interval I_{i} and rectangle $A_{3} B_{3} C_{3} D_{3}$ the complex interval \mathbb{I}_{i} which is obtained by adding $\rho_{i} / 2$ in each direction of the rectangle $A_{2} B_{2} C_{2} D_{2}$. Then, \mathbb{I}_{i} contains $A_{1} B_{1} C_{1} D_{1}$ and hence θ_{j} is inside \mathbb{I}_{i}.

For any $\theta \in \mathbb{I}_{i}$, we have $\left|\theta-\alpha_{i}\right| \leq|\theta-P|$, where P is one of the points $A_{2}, B_{2}, C_{2}, D_{2}$ to make $|\theta-P|$ maximal. It is clear that $|\theta-P| \leq \rho_{i} / 2+\left|I_{i}\right|=\frac{3}{4} \rho_{i}$. So, $\forall \theta \in \mathbb{I}_{i_{i}},\left|\theta-\alpha_{i}\right| \leq \frac{3}{4} \rho_{i}$. Since $\mathbb{S}_{\alpha_{i}}$ is the set of complex numbers satisfying $\left|\theta-\alpha_{i}\right|<\rho_{i}$, we have $\mathbb{I}_{I_{i}} \subset \mathbb{S}_{\alpha_{i}}$. By (c) of Lemma $4, \mathbb{S}_{\alpha_{i}}$ are disjoint for all the roots of $T_{i}\left(t_{i}\right)=0$. Then \mathbb{I}_{i} are disjoint for all the roots of $T_{i}\left(t_{i}\right)=0$ too.

The following lemma shows what is the precision needed to isolate the roots of $T_{i+1}\left(t_{i+1}\right)=0$ in order for the isolating boxes to be contained in some $\mathbb{I}_{l_{i}}$. It can be seen as an effective version of the fact $\alpha_{i+1} \in \mathbb{S}_{\alpha_{i}}$ proved in Lemma 3.

Lemma 11. Use the notations introduced in Lemma 10. Let $\left\{B_{j}, j=1, \ldots, m\right\}$ be a set of $\frac{1}{4} \rho_{i}$-isolating boxes for the roots $\theta_{j}, j=1, \ldots, m$ of $T_{i+1}\left(t_{i+1}\right)=0$. Then, for all j

$$
\begin{equation*}
B_{j} \subset \mathbb{I}_{i} \text { and } \operatorname{Dis}\left(B_{j}, I_{i}\right)<\rho_{i} / 2 . \tag{24}
\end{equation*}
$$

Fig. 2. The isolating intervals $I_{i}, \mathbb{S}_{\alpha_{i}}, \mathbb{I}_{i}$ for a root α_{i} of $T_{i}\left(t_{i}\right)=0 . \alpha_{i}$ is represented by o.

Proof. From the proof of Lemma 10, the distance from α_{i} to the line BC in Fig. 2 is ρ_{i} and the distance from α_{i} to the line $B_{3} C_{3}$ is less than $\frac{3}{4} \rho_{i}$. So, the distance between the line $B C$ and $B_{3} C_{3}$ is at least $\frac{1}{4} \rho_{i}$. This fact is also valid for the pairs of the lines $A D / A_{3} D_{3}, A B / A_{3} B_{3}$, and $C D / C_{3} D_{3}$. Since the isolating boxes B_{j} are of size smaller than $\rho_{i} / 4$ and their centers are inside $A_{3} B_{3} C_{3} D_{3}$, the boxes B_{j} must be inside $A B C D$. Note that I_{i} is the rectangle $A_{2} B_{2} C_{2} D_{2}$. Since θ_{j} is inside both B_{j} and the rectangle $A_{3} B_{3} C_{3} D_{3}$ and the distance from α_{i} to each edge of $A_{3} B_{3} C_{3} D_{3}$ is $\rho_{i} / 2$, the distance between B_{j} and I_{i} must be smaller than $\rho_{i} / 2$.

If we isolate the roots of $T_{i+1}\left(t_{i+1}\right)=0$ with precision $\frac{1}{4} \rho_{i}$, by Lemma 11 , all the roots are in one of the intervals \mathbb{I}_{I}, where I is an isolating interval for a root α of $T_{i}\left(t_{i}\right)=0$.

Let $K_{j}=\left\langle\left[p_{j}, q_{j}\right],\left[g_{j}, h_{j}\right]\right\rangle(1 \leq j \leq m)$ be the isolating intervals for the roots θ_{j} of $T_{i+1}\left(t_{i+1}\right)=0$ inside $\mathbb{I}_{i_{i}}$. Then from (22), the isolating intervals of $\xi_{i+1, j}(1 \leq j \leq m)$ are

$$
\begin{equation*}
J_{i+1, j}=\frac{K_{j}-I_{i}}{s_{1} \cdots s_{i}}=\frac{\left\langle\left[p_{j}-b, q_{j}-a\right],\left[g_{j}-d, h_{j}-c\right]\right\rangle}{s_{1} \cdots s_{i}} . \tag{25}
\end{equation*}
$$

We have
Lemma 12. With the notations introduced above, if the following conditions

$$
\begin{align*}
& \left(q_{j}-p_{j}\right)+(b-a)<s_{1} \cdots s_{i} \epsilon, \quad\left(h_{j}-g_{j}\right)+(d-c)<s_{1} \cdots s_{i} \epsilon \tag{26}\\
& T_{\alpha_{i}}=\min _{1 \leq k \neq j \leq m} \operatorname{Dis}\left(\left\langle\left[p_{k}, q_{k}\right],\left[g_{k}, h_{k}\right]\right\rangle,\left\langle\left[p_{j}, q_{j}\right],\left[g_{j}, h_{j}\right]\right\rangle\right)>\max \{b-a, d-c\} . \tag{27}
\end{align*}
$$

are valid, then $J_{i+1, j}$ defined in (25) are ϵ-isolating intervals of $\xi_{i+1, j}$ in Eq. (21).
Proof. It is clear that condition (26) is used to ensure the precision: $\left|J_{i+1, j}\right|<\epsilon$.
We consider (27) below. Assume that $J_{i+1, j}, J_{i+1, k}(1 \leq k \neq j \leq m)$ are any two intervals defined in (25) for the $(i+1)$-th coordinates of the roots $\left(\xi_{1}, \ldots, \xi_{i}, \xi_{i+1, j}\right),\left(\xi_{1}, \ldots, \xi_{i}, \xi_{i+1, k}\right)$ of $\ell_{i+1}=0$, respectively. Since we have derived the ϵ-isolating boxes for the roots of $\ell_{i}=0$, we need only to ensure that the intervals of the ($i+1$)-th coordinates of the roots of $\ell_{i+1}=0$ lifted from a fixed root of $\ell_{i}=0$ are isolating intervals. That is, to show $\operatorname{Dis}\left(J_{i+1, j}, J_{i+1, k}\right)>0$.

Assume that $K_{j}=\left\langle\left[p_{j}, q_{j}\right],\left[g_{j}, h_{j}\right]\right\rangle$ and $K_{k}=\left\langle\left[p_{k}, q_{k}\right],\left[g_{k}, h_{k}\right]\right\rangle$ are the isolating intervals of the roots α_{j}, α_{k} of $T_{i+1}\left(t_{i+1}\right)=0$. Here α_{j}, α_{k} correspond to ($\left.\xi_{1}, \ldots, \xi_{i}, \xi_{i+1, j}\right),\left(\xi_{1}, \ldots, \xi_{i}, \xi_{i+1, k}\right)$, respectively. So K_{j}, K_{k} correspond to $J_{i+1, j}, J_{i+1, k}$, respectively. Assume that $p_{j} \leq p_{k}, g_{j} \leq g_{k}$. Then we have

$$
\begin{aligned}
& \operatorname{Dis}\left(J_{i+1, j}, J_{i+1, k}\right) \\
& =\frac{\max \left\{\operatorname{Dis}\left(\left[p_{j}-b, q_{j}-a\right],\left[p_{k}-b, q_{k}-a\right]\right), \operatorname{Dis}\left(\left[g_{j}-d, h_{j}-c\right],\left[g_{k}-d, h_{k}-c\right]\right)\right\}}{s_{1} \cdots s_{i}},
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{L}_{1} & =\operatorname{Dis}\left(\left[p_{j}-b, q_{j}-a\right],\left[p_{k}-b, q_{k}-a\right]\right) \\
& = \begin{cases}\left(p_{k}-q_{j}\right)-(b-a), & \text { if }\left(p_{k}-q_{j}\right)-(b-a)>0, \\
0, & \text { otherwise, },\end{cases} \\
\mathscr{L}_{2} & =\operatorname{Dis}\left(\left[g_{j}-d, h_{j}-c\right],\left[g_{k}-d, h_{k}-c\right]\right) \\
& = \begin{cases}\left(g_{k}-h_{j}\right)-(d-c), & \text { if }\left(g_{k}-h_{j}\right)-(d-c)>0, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

K_{j} and K_{k} are disjoint since they are isolating intervals of $T_{i+1}\left(t_{i+1}\right)=0$. So

$$
\operatorname{Dis}\left(K_{j}, K_{k}\right)=\max \left\{p_{k}-q_{j}, g_{k}-h_{j}\right\}>0 .
$$

It is clear that $\operatorname{Dis}\left(J_{i+1, j}, J_{i+1, k}\right)>0$ if $\mathscr{L}_{1}>0$ or $\mathscr{L}_{2}>0$. Then we conclude if inequality (27) is true, then $\operatorname{Dis}\left(J_{i+1, j}, J_{i+1, k}\right)>0$. This proves the lemma.

Geometrically, $T_{\alpha_{i}}$ is the separation bound for the roots of $T_{i+1}\left(t_{i+1}\right)=0$ corresponds to those roots of ℓ_{i+1} lifted from the root of $\ell_{i}=0$ corresponding to the root η_{i} of $T_{i}\left(t_{i}\right)=0$.

Remark 13. Note that in (27), we obtain $I_{i}=\langle[a, b],[c, d]\rangle$ first and $K_{j}=\left\langle\left[p_{j}, q_{j}\right],\left[g_{j}, h_{j}\right]\right\rangle$ later. We will refine the isolating interval I_{i} of $T_{i}\left(t_{i}\right)=0$ such that inequality (27) is true. After the refinement, all other conditions are still valid. We need to do this kind of refinement at most once.

As a consequence of the above lemma, we have
Corollary 14. Let \mathbb{B} be an ϵ-isolating box for the root ξ of $\ell_{i}=0$ and $J_{i+1, j}$ defined in (25). If (26), (27) are valid, then $\mathbb{B} \times J_{i+1, j}, j=1, \ldots, m$ are ϵ-isolating boxes for the roots $\left(\xi_{1}, \ldots, \xi_{i}, \xi_{i+1, j}\right)$ of $\ell_{i+1}=0$, which are lifted from $\left(\xi_{1}, \ldots, \xi_{i}\right)$.

Step 3. We will show how to compute d_{i+1} from the isolating intervals of $T_{i+1}\left(t_{i+1}\right)=0$.
Lemma 15. Let

$$
\begin{equation*}
d_{i+1}=\min \left\{\frac{s_{i+1}}{2 s_{1} \cdots s_{i}}, \frac{d_{i}}{2 s_{i}}\right\}, \tag{28}
\end{equation*}
$$

where S_{i+1} is the minimal distance between any two isolating intervals of $T_{i+1}\left(t_{i+1}\right)=0$. Then d_{i+1} satisfies conditions (7).

Proof. Let α_{j} and α_{k} be two different roots of $T_{i+1}\left(t_{i+1}\right)=0$ defined in (22). Then we have

$$
\xi_{i+1, j}-\xi_{i+1, k}=\frac{\alpha_{j}-\alpha_{k}}{s_{1} \ldots s_{i}} .
$$

Therefore, $D_{i+1}=\min _{\alpha_{i} \in V_{\mathbb{C}}\left(T_{i}\left(t_{i}\right)\right)}\left\{\frac{T_{\alpha_{i}}}{2 s_{1} \cdots s_{i}}\right\}$ is the parameter defined in (6), where $T_{\alpha_{i}}$ is determined as in (27). It is clear that D_{i+1} is not larger than S_{i+1} which is the minimal distance between any two isolating intervals of $T_{i+1}\left(t_{i+1}\right)=0$. Then, the first condition in (7) is satisfied. In order for the second condition in (7) to be satisfied, we also require $d_{i+1} \leq \frac{d_{i}}{2 s_{i}}$. So the lemma is proved.

We can summarize the result as the following theorem which is an interval version of Theorem 2.
Theorem 16. Let (4) be an LUR such that d_{i}, r_{i}, and s_{i} satisfy (28), (8), and (9) respectively, \mathscr{B}_{i} the ϵ_{i}-isolating boxes for the roots of $T_{i}\left(t_{i}\right)=0$, and $S_{i}=\min \left\{\operatorname{Dis}\left(B_{1}, B_{2}\right) \mid B_{1}, B_{2} \in \mathscr{B}_{i}, B_{1} \neq B_{2}\right\}$. If

$$
\begin{equation*}
\epsilon_{1} \leq \epsilon, \epsilon_{i}+\epsilon_{i+1} \leq s_{1} \cdots s_{i} \epsilon, \epsilon_{i} \leq \frac{\rho_{i}}{4}, \epsilon_{i+1} \leq \frac{\rho_{i}}{4}, \epsilon_{i} \leq S_{i+1}, \tag{29}
\end{equation*}
$$

where $\rho_{i}=s_{1} \cdots s_{i-1} d_{i}$, then (20) is a set of ϵ-isolating boxes for $\mathcal{P}=0$.

Proof. We first explain what the function of each inequality is for the inequalities in (29). Then we can find that the theorem is clear. The first two inequalities in (29) are introduced in (26) to ensure the ϵ precision for the isolating boxes. The third inequality in (29) is introduced in Lemma 10 to ensure $\theta_{j} \in \mathbb{I}_{i}$ and \mathbb{I}_{i} are disjoint. The fourth inequality is introduced in Lemma 11 to ensure the isolating intervals of the roots of $T_{i+1}\left(t_{i+1}\right)=0$ are inside their corresponding interval \mathbb{I}_{i}. The last inequality is introduced in (27) to ensure the recovered isolating boxes of \mathcal{P} are disjoint.

Now the lemma is a consequence of Corollary 14. Here, we give the explicit expression for the isolating boxes. The expression for interval $J_{i+1, j}$ in (25) is directly given. The matching condition $\operatorname{Dis}\left(B_{i+1}, B_{i}\right)<\rho_{i} / 2$ is from condition (24).

We have the following effective version of Theorems 2 and 16 by giving an explicit formula for ϵ_{i}.
Theorem 17. Use the same notations as Theorem 16. Let ϵ be the given precision to isolate the roots of \mathcal{P}. Let

$$
\begin{align*}
& \epsilon_{1}=\min \left\{\epsilon, \frac{s_{1} \epsilon}{2}, \frac{d_{1}}{4}, s_{2}\right\}, \\
& \epsilon_{i}=\min \left\{\frac{s_{1} \cdots s_{i-1} \epsilon}{2}, \frac{s_{1} \cdots s_{i} \epsilon}{2}, \frac{s_{1} \cdots s_{i-1} d_{i}}{4}, \frac{s_{1} \cdots s_{i-2} d_{i-1}}{4}, s_{i+1}\right\}, \tag{30}
\end{align*}
$$

where $i=2, \ldots, n, s_{n}=1, S_{n+1}=+\infty$. If we isolate the roots of $T_{i}\left(t_{i}\right)=0$ with precision ϵ_{i}, then (20) is a set of ϵ-isolating boxes for $\mathscr{P}=0$.

Proof. By (30), we have $\epsilon_{i} \leq \frac{s_{1} \cdots s_{i} \epsilon}{2}$ and $\epsilon_{i+1} \leq \frac{s_{1} \cdots s_{i} \epsilon}{2}$. Then the second inequality in (29), $\epsilon_{i}+\epsilon_{i+1} \leq$ $s_{1} \cdots s_{i} \epsilon$, is valid. All other inequalities in (29) are clearly satisfied and the theorem is proved.

We can also compute the multiplicities of the roots with the LUR algorithm.
Corollary 18. If we compute the last univariate polynomial $T_{n}\left(t_{n}\right)$ in the LUR as the characteristic polynomial of $M_{t_{n}}$, then the multiplicities of the roots of $\mathcal{P}=0$ are the multiplicities of the corresponding roots of $T_{n}\left(t_{n}\right)=0$.

Proof. By (a) of Lemma 4, $t_{n}=x_{1}+s_{1} x_{2}+\cdots+s_{1} \cdots s_{n-1} x_{n}$ is a separating element. By Theorem 8 , the characteristic polynomial of $M_{t_{n}}$ keeps the multiplicities of the roots of the system. The corollary is proved.

3.4. Algorithm

Now, we can give the full algorithm based on LUR.
Algorithm 1. The input is a zero dimensional polynomial system $\mathcal{P}=\left\{f_{1}, \ldots, f_{s}\right\}$ in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and a positive rational number ϵ. The output is an LUR for \mathcal{P} and a set of ϵ-isolating boxes for the roots of $\mathcal{P}=0$.

S1 Compute a Gröbner basis \mathcal{G} of \mathcal{P} with any order and a monomial basis \mathbf{B} for linear space $\mathcal{A}=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /(\mathcal{P})$ over \mathbb{Q}.
S2 Compute $T_{1}\left(t_{1}\right)$ as defined in (18) with the method given in Section 3.2; compute a set of ϵ-isolating boxes \mathcal{B}_{1} for the complex roots of $T_{1}\left(t_{1}\right)=0$; set $d_{1}=\min \left\{\operatorname{Dis}\left(B_{1}, B_{2}\right) \mid B_{1}\right.$, $\left.B_{2} \in \mathscr{B}_{1}, B_{1} \neq B_{2},\right\}$.
S3 For $i=1, \ldots, n-1$, do steps $\mathbf{S 4}$-S9; output the set of boxes (20).
S4 Compute r_{i+1} with the method in Lemma 9. Select a rational number s_{i} such that condition (9) is valid.

S5 Compute $T_{i+1}\left(t_{i+1}\right)$ as defined in (18) with the method given in Section 3.2.
S6 Set $\rho_{i}=s_{1} \cdots s_{i-1} d_{i}$ and compute a set of $\frac{1}{4} \rho_{i}$-isolating boxes \mathscr{B}_{i+1} for the complex roots of $T_{i+1}\left(t_{i+1}\right)=0$.

S7 \quad Set $S_{i+1}=\min \left\{\operatorname{Dis}\left(B_{1}, B_{2}\right) \mid B_{1}, B_{2} \in \mathscr{B}_{i+1}, B_{1} \neq B_{2}\right\}$.
S8 Compute d_{i+1} with formula (28).
S9 Compute ϵ_{i} with formula (30); refine the isolating boxes \mathscr{B}_{i} of $T_{i}\left(t_{i}\right)=0$ with the precision ϵ_{i}; still denote the isolating boxes as \mathscr{B}_{i}.

Remark 19. From Lemma 10, the roots of $T_{i+1}\left(t_{i+1}\right)=0$ are in the rectangle $\mathbb{I}_{i_{i}}$. So, we need only to isolate the roots of $T_{i}\left(t_{i}\right)=0$ inside these rectangles. This property is very useful in practice, see Fig. 1 for an illustration.

4. Examples

In this section, we will give some examples to illustrate our method.
We first use the following example to show how to isolate the roots of a system with our method. Note that with an LUR, we can also use floating point number type to compute the roots of $\mathcal{P}=0$ if the floating point numbers can provide the required precision as shown in the following example.

Example 20. Consider the system $\mathcal{P}:=\left[x^{2}+y^{2}+z^{2}-3, x^{2}+2 y^{2}-3 z+1, x+y-z\right]$. The coordinate order is (x, y, z).

The Gröbner basis q with the graded reverse lexicographic order $z>y>x$ of \mathcal{P} is:

$$
\begin{aligned}
& {\left[-x-y+z, x^{2}+2 y x+3 x-4+3 y,-3 x+x^{2}+1-3 y+2 y^{2}\right.} \\
& \left.\quad 6 x^{3}-30+9 x^{2}+25 y+5 x\right] .
\end{aligned}
$$

The leading monomials of the basis are $\left\{z, x y, y^{2}, x^{3}\right\}$. So the monomial basis of the quotient algebra $\mathcal{A}=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /(\mathcal{P})$ is $\mathbf{B}=\left[1, x, y, x^{2}\right]$.

Let $t_{1}=x$, we can compute:

$$
M_{t_{1}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
2 & -3 / 2 & -3 / 2 & -1 / 2 \\
5 & -5 / 6 & -\frac{25}{6} & -3 / 2
\end{array}\right]
$$

The minimal polynomial of $M_{t_{1}}$ is

$$
T_{1}\left(t_{1}\right)=5-60 t_{1}+6 t_{1}^{2}+18 t_{1}^{3}+6 t_{1}^{4} .
$$

Compute its complex roots with the function "Analytic" in Maple package [RootFinding], we obtain

$$
\begin{aligned}
R_{1}= & {[-2.22081423399575-1.53519779646152 \mathfrak{i},-2.22081423399575} \\
& +1.53519779646152 \mathfrak{i}, 0.0842270424726020,1.35740142551890] .
\end{aligned}
$$

Computing the roots distance with formula (17), we obtain $d_{1} \leq 0.6365871918$. We can set

$$
d_{1}=\frac{1}{2} .
$$

In a similar way, we compute M_{y} and its minimal polynomial $g_{2}(y)=-29-66 y+60 y^{2}+12 y^{4}$. The root bound of $g_{2}(y)$ is 3 . So we have $r_{2}=6$. Since $\frac{d_{1}}{r_{2}}=\frac{1}{12}$, we set

$$
s_{1}=\frac{1}{20} .
$$

Let $t_{2}=x+s_{1} y$. We can compute a matrix $M_{t_{2}}$ and its minimal polynomial

$$
T_{2}\left(t_{2}\right)=863337-6119640 t_{2}+360000 t_{2}^{2}+1920000 t_{2}^{3}+640000 t_{2}^{4}
$$

Computing its complex roots, we have

$$
\begin{aligned}
R_{2}= & {[-2.24194942371773-1.41342395552762 \mathrm{i},-2.24194942371773} \\
& +1.41342395552762 \mathrm{i}, 0.143249906267126,1.34064894116850] .
\end{aligned}
$$

Computing the minimal distance between any two roots, we have $S_{2}=0.5986995174$. From Eq. (28), we can obtain

$$
d_{2}=\min \left\{\frac{S_{2}}{2 s_{1}}, \frac{d_{1}}{2 s_{1}}\right\}=5 .
$$

Compute M_{z} and its minimal polynomial $g_{3}(z)=121-132 z-36 z^{2}+36 z^{3}+12 z^{4}$. Then the root bound of $g_{3}(z)$ is 5 . We have $r_{3}=10$. We can set

$$
s_{2}=\frac{1}{2} \leq \frac{d_{2}}{r_{3}}=\frac{1}{2} .
$$

Let $t_{3}=x+s_{1} y+s_{1} s_{2} z$. Compute $M_{t_{3}}$ and its minimal polynomial

$$
T_{3}\left(t_{3}\right)=53294617-309903360 t_{3}+11884800 t_{3}^{2}+94464000 t_{3}^{3}+30720000 t_{3}^{4}
$$

Computing its complex roots, we have

$$
\begin{aligned}
R_{3}= & {[-2.30803737442857-1.39091697997219 \mathfrak{i},-2.30803737442857} \\
& +1.39091697997219 \mathfrak{i}, 0.174867014226204,1.36620773463121] .
\end{aligned}
$$

We use $R_{1}[i]$ to represent the i-th element of $R_{1} . R_{2}[i], R_{3}[i]$ are similarly defined. Since $R_{2}[1]-$ $R_{1}[1]=-0.021135190+0.121773840 \mathrm{i}$ and the absolute values of its real part and imaginary part are less than $1 / 2,\left(R_{1}[1], \frac{R_{2}[1]-R_{1}[1]}{s_{1}}\right)$ is a root of $\mathcal{P} \cap \mathbb{Q}[x, y]$. But for $R_{2}[2]-R_{1}[1]=-0.021135190+$ 2.948621752 i , its imaginary part is larger than $1 / 2$. Then $R_{2}\left[2\right.$] does not correspond to $R_{1}[1] . R_{3}[1]$ -$R_{2}[1]=-0.066087950+0.022506976 i$ and the absolute values of its real part and imaginary part are less than $1 / 4$, so

$$
\begin{aligned}
& \left(R_{1}[1], \frac{R_{2}[1]-R_{1}[1]}{s_{1}}, \frac{R_{3}[1]-R_{2}[1]}{s_{1} s_{2}}\right) \\
& =(-2.22081423399575-1.53519779646152 \mathfrak{i},-0.42270380+2.43547680 \mathfrak{i}, \\
& \quad-2.64351800+0.90027904 \mathfrak{i})
\end{aligned}
$$

is a root of $\mathcal{P}=0$. In a similar way, we can find all other complex roots of $\mathcal{P}=0$. And from Theorem 17, we can set $\epsilon_{1}=\frac{1}{40} \epsilon, \epsilon_{2}=\epsilon_{3}=\frac{1}{80} \epsilon$, where ϵ is the given precision. So if we refine the roots of $T_{i}\left(t_{i}\right)=0$ to five digits, we can obtain the roots of $\mathcal{P}=0$ with three digits.

We also obtain an LUR for \mathcal{P} as follows:

$$
\left[\left[T_{1}\left(t_{1}\right), T_{2}\left(t_{2}\right), T_{3}\left(t_{3}\right)\right],\left[s_{1}, s_{2}\right],\left[d_{1}, d_{2}\right]\right] .
$$

The roots of $\mathcal{P}=0$ are:

$$
\begin{aligned}
& {\left[(\alpha, 20(\beta-\alpha), 40(\gamma-\beta)) \mid T_{1}(\alpha)=0, T_{2}(\beta)=0, T_{3}(\gamma)=0,\right.} \\
& \quad|\beta-\alpha|<1 / 2,|\gamma-\beta|<1 / 4] .
\end{aligned}
$$

Assuming that the final precision for the real roots of the system is $\epsilon=1 / 2^{10}$ and isolating the real roots of $T_{i}\left(t_{i}\right)=0$ with precision $\epsilon_{1}=\frac{1}{40} \epsilon, \epsilon_{2}=\epsilon_{3}=\frac{1}{80} \epsilon$, respectively, we can obtain the following two real roots of $\mathcal{P}=0$ with the given precision:

$$
\begin{aligned}
& {\left[\frac{5519}{65536}, \frac{345}{4096}\right] \times\left[\frac{4835}{4096}, \frac{38695}{32768}\right] \times\left[\frac{20715}{16384}, \frac{20725}{16384}\right],} \\
& {\left[\frac{44479}{32768}, \frac{88959}{65536}\right] \times\left[\frac{-10985}{32768}, \frac{-5485}{16384}\right] \times\left[\frac{16745}{16384}, \frac{16755}{16384}\right] .}
\end{aligned}
$$

In the next example, we will compare our method with RUR in Rouillier (1999).
Example 21. Consider the following example from paper Rouillier (1999). $\mathcal{P}:=\left[24 u z-u^{2}-z^{2}-\right.$ $\left.u^{2} z^{2}-13,24 y z-y^{2}-z^{2}-y^{2} z^{2}-13,24 u y-u^{2}-y^{2}-u^{2} y^{2}-13\right]$. The coordinate order is (u, y, z). The RUR is as follows and its corresponding separating element is $t=u+2 y+4 z$.

$$
f(x)=0, \quad u=\frac{g(u, x)}{g(1, x)}, \quad y=\frac{g(y, x)}{g(1, x)}, \quad z=\frac{g(z, x)}{g(1, x)},
$$

where

$$
\begin{aligned}
f(x)= & x^{16}-5656 x^{14}+12508972 x^{12}-14213402440 x^{10}+9020869309270 x^{8} \\
& -3216081009505000 x^{6}+606833014754230732 x^{4} \\
& -5131629663085044152 x^{2}+1068130551224672624689, \\
g(1, x)= & x^{15}-4949 x^{13}+9381729 x^{11}-8883376525 x^{9}+4510434654635 x^{7} \\
& -1206030378564375 x^{5}+151708253688557683 x^{3}-6414537078856880519 x, \\
g(u, x)= & 116 x^{14}-483592 x^{12}+784226868 x^{10}-634062241592 x^{8}+270086313707548 x^{6} \\
& -58355579408017944 x^{4}+5520988105236180668 x^{2}-131448117382500870952, \\
g(y, x)= & 86 x^{14}-418870 x^{12}+759804846 x^{10}-670485664238 x^{8}+307445009725282 x^{6} \\
& -71012402366579778 x^{4}+7099657810552674458 x^{2}-168190996202566563226, \\
g(z, x)= & 71 x^{14}-355135 x^{12}+673508751 x^{10}-633214359791 x^{8}+314815356659869 x^{6} \\
& -79677638700441717 x^{4}+8618491509948092045 x^{2}-205956089289536014429 .
\end{aligned}
$$

An LUR of \mathcal{P} is as follows:

$$
\begin{aligned}
& {\left[\left[T_{1}\left(t_{1}\right), T_{2}\left(t_{2}\right), T_{3}\left(t_{3}\right)\right],\left[s_{1}, s_{2}\right],\left[d_{1}, d_{2}\right]\right]} \\
& \quad=\left[\left[T_{1}\left(t_{1}\right), T_{2}\left(t_{2}\right), T_{3}\left(t_{3}\right)\right],[1 / 200,1 / 15],[0.2237374734,2.146554200]\right]
\end{aligned}
$$

where

$$
\begin{aligned}
T_{1}\left(t_{1}\right)= & 169-1820 t_{1}{ }^{2}+2622 t_{1}{ }^{4}-140 t_{1}{ }^{6}+t_{1}{ }^{8}, \\
T_{2}\left(t_{2}\right)= & 12034552627604020308981441166197-133523438810776274535699687120000 t_{2}{ }^{2} \\
& +334257305564156882138712000000000 t_{2}{ }^{4}-256456971612085383936000000000000 t_{2}{ }^{6} \\
& +23629005541670400000000000000000 t_{2}{ }^{8}-665288908800000000000000000000 t_{2}{ }^{10}{ }^{6}- \\
& +4096000000000000000000000000 t_{2}{ }^{12}, \\
T_{3}\left(t_{3}\right)= & 398658124842757922827990174525891734024598098970801 \\
& -5057045016775809265742737650285696238919118781687500 t_{3}{ }^{2} \\
& +18306568462902747682078658662680830721818866699218750 t_{3}{ }^{4} \\
& -26971016274307991838575084944533427932357788085937500 t_{3}{ }^{6} \\
& +15563591910271113423505114668403939783573150634765625 t_{3}{ }^{8} \\
& -1936419155067693199961145026385784149169921875000000 t^{3}{ }^{30} \\
& +941906342177069262581393122673034667968750000000000 t_{3}{ }^{12}{ }^{3} \\
& -18510481584396623075008392333984375000000000000000_{3}{ }^{14} \\
& +10022595757618546485900878906250000000000000000 t_{3}{ }^{16} .
\end{aligned}
$$

And its local separating elements are $t_{1}=u, t_{2}=u+y / 200, t_{3}=u+y / 200+z / 3000$.
The roots of \mathcal{P} are: $\left\{(u, y, z)=(\alpha, 200(\beta-\alpha), 3000(\gamma-\beta)) \mid T_{1}(\alpha)=0, T_{2}(\beta)=0\right.$, $\left.T_{3}(\gamma)=0,|\beta-\alpha|<0.2237374734,|\gamma-\beta|<0.01073277100\right\}$.

5. Conclusion

We give a new representation, LUR, for the roots of a zero-dimensional polynomial system \mathcal{P} and propose an algorithm to isolate the roots of \mathcal{P} under a given precision ϵ. For the LUR, the roots of the system are represented as a linear combination of the roots of some univariate polynomial equations. The main advantage of LUR is that precision control of the roots of the system is more clear.

The main drawback of the LUR method is that when the parameters s_{i} becomes very small, the coefficients of $T_{i}\left(t_{i}\right)$ could become very large, which will slow down the algorithm. To improve the efficiency of the LUR algorithm is our future work. A possible way is to choose proper s_{i} such that $1 / s_{i}$ in the form of $m 2^{n}, m>0, m, n$ are integers and the bit size of $m 2^{n}$ is as small as possible.

Acknowledgements

The authors would like to thank the anonymous referees for the valuable comments.

References

Alonso, M.E., Becker, E., Roy, M.F., Wörmann, T., 1996. Zeros, multiplicities, and idempotents for zerodimensional systems. In: Algorithms in Algebraic Geometry and Applicatiobns. Birkhauser, pp. 1-15.
Basu, S., Pollack, R., Roy, M.F., 2006. Algorithms in Real Algebraic Geometry, 2nd edition. Springer.
Berbericha, E., Kerbera, M., Sagraloffa, M., 2010. An efficient algorithm for the stratification and triangulation of an algebraic surface. Computational Geometry 43 (3), 257-278. Special Issue on 24th Annual Symposium on Computational Geometry (SoCG'08).
Canny, J.F., 1988. Some algebraic and geometric computation in pspace. In: ACM Symp. on Theory of Computing, SIGACT. pp. 460-469.
Cheng, J.S., Gao, X.S., Li, J., 2009. Root isolation for bivariate polynomial systems with local generic position method. In: Proc. ISSAC 2009. ACM Press, pp. 103-109.
Cheng, J.S., Gao, X.S., Li, M., 2005. Determining the topology of real algebraic surfaces. In: Martin, R., Bez, H., Sabin, M. (Eds.), 11 IMA Conference on the Mathematics of Surfaces. In: LNCS, vol. 3604. pp. 121-146.
Cheng, J.S., Gao, X.S., Yap, C.K., 2009. Complete numerical isolation of real roots in zero-dimensional triangular systems. Journal of Symbolic Computation 44 (7), 768-785.
Collins, G.E., Krandick, W., 1996. A tangent-secant method for polynomial complex root calculation. In: Proc. ISSAC 1996. ACM Press, pp. 137-141.
Cox, D.A., 2005. Solving equations via algebras. In: Dichenstein, Alicia, Emiris, Ioannis Z. (Eds.), Solving Polnomial Equations. Springer.
Cox, D.A., Little, J., O'Shea, D., 2004. Using algebraic geometry, 2nd edition. Springer-Verlag.
Emiris, I.Z., Mourrain, B., Tsigaridas, E.P., 2010. The DMM bound: multivariate (aggregate) separation bounds. In: Proc. ISSAC 2010. ACM, New York, NY, USA, pp. 243-250.

Faugère, J.C., Gianni, P., Lazard, d., Mora, T., 1993. Efficient computation of zero-dimensional Gröbner basis by changing of order. Journal of Symbolic Computation 16 (4), 329-344.
Gao, X.S., Chou, S.C., 1999. On the theory of resolvents and its applications. Systems Science and Mathematical Science 12, 17-30.
Gianni, P., Mora, T., 1989. Algebraic solution of systems of polynomial equations using Groebner bases. In: AAECC5. In: LNCS, vol. 356. pp. 247-257.
Giusti, M., Heintz, J., 1991. Algorithmes - disons rapides - pour la dècomposition d'une varièté algébrique en composantes irréducibles et équidimensionnelles. In: Proc MEGA' 90. Birkhäuser, pp. 169-193.
Giusti, M., Lecerf, G., Salvy, B., 2001. A Gröbner free alternative for polynomial system solving. Journal of Complexity 17, 154-211.
Keyser, J., Rojas, J.M., Ouchi, K., 2005. The exact rational univariate representation and its application. AMS/DIMACS Volume on Computer Aided Design and Manufacturing. American Mathematical Society/Center for Discrete Mathematics and Computer Science.
Kobayashi, H., Moritsugu, S., Hogan, R.W., 1988a. Solving systems of algebraic equations. In: Proc. ISSAC 1988. ACM Press, pp. 139-149.
Kobayashi, H., Fujise, T., Furukawa, A., 1988b. Solving systems of algebraic equations by a general elimination method. Journal of Symbolic Computation 5 (3), 303-320.
Kronecker, L., 1882. Grundzüge einer arithmetischen theorie der algebraischen grössen. Journal für die Reine und Angewandte Mathematik 92, 1-22.
Lakshman, Y.N., Lazard, D., 1991. On the complexity of zero-dimensional algebraic systems. In: Effecitve Methods in Algebraic Geometry. In: Progess in Mathematics, vol. 94. Birkhäuser, Basel, pp. 217-225.
Lazard, D., 1981. Resolution des systemes d'equations algebriques. Theoretical Computer Science 15, 77-110.
Moore, R.E., 1966. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ.
Neumaier, A., 1990. Interval Methods for Systems of Equations. Cambridge University Press.
Pinkert, J.R., 1976. An exact method for finding the roots of a complex polynomial. ACM Transactions on Mathematical Software 2 (4), 351-363.
Renegar, J., 1992. On the computaional complexity and geometry of the first-order theoery of the reals. Part I. Journal of Symbolic Computation 13, 255-299.
Rouillier, F., 1999. Solving zero-dimensional systems through the rational univariate representation. Applicable Algebra in Engineering, Communication and Computing 9 (5), 433-461.
Sagraloff, M., Yap, C.K., 2009. An efficient exact subdivision algorithm for isolating complex roots of a polynomial and its complexity analysis. October (submitted for publication).
Wilf, H.S., 1978. A global bisection algorithm for computing the zeros of polynomials in the complex plane. Journal of the ACM 25 (3), 415-420.
Yap, C.K., 2000. Fundamental Problems of Algorithmic Algebra. Oxford Press.
Yokoyama, K., Noro, M., Takeshima, T., 1989. Computing primitive elements of extension fields. Journal of Symbolic Computation 8 (6), 553-580.

[^0]: The work is partially supported by NKBRPC (2011CB302400), NSFC Grants (60821002, 11001258), and China-France cooperation project EXACTA (60911130369).

 E-mail addresses: jcheng@amss.ac.cn (J.-S. Cheng), xgao@mmrc.iss.ac.cn (X.-S. Gao), leiguo@mmrc.iss.ac.cn (L. Guo).

[^1]: ${ }^{1}$ The results in this section are also valid if we use the usual distance for complex numbers.

