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Abstract

We investigate the continuum limit of a compact formulation of the lattice U(1) gauge theory in 4 dimensions using a
nonperturbative gauge-fixed regularization. We find clear evidence of a continuous phase transition in the pure gauge theory for
all values of the gauge coupling (with gauge symmetry restored). When probed with quenched staggered fermions with U(1)
charge, the theory clearly has a chiral transition for large gauge couplings. We identify the only possible region in the parameter
space where a continuum limit with nonperturbative physics may appear.

0 2003 Published by Elsevier B.Upen access under CC BY license.

1. Introduction behavior only in the presence of fermions). However,
the compact formulation allows for self-interaction of
Although quantum field theories were first formu- gauge fields on the lattice regulator and hence it is in-
lated on the lattice regulator to investigate the nonper- teresting to study its phase structure and possible con-
turbative properties of quantum chromodynamics, the tinuum limits. Obviously, for it to be a viable regular-
lattice regulator can be useful in general to study non- ization, the lattice theory must have a weak coupling
perturbative behavior of any field theory, in particu- continuum limit that would produce free photons in
lar the theories involving nonasymptotically-free cou- the pure gauge sector. Once it has the expected weak
plings. In this Letter, we have looked at quantum elec- coupling continuum limit, one is interested in finding
trodynamics (QED) which on the lattice can be formu- a continuum limit with possible nonperturbative prop-
lated in terms of compact group-valued gauge fields in erties.
the usual Wilson approach, or in terms of noncompact It is well known that compact formulation of U(1)
gauge fields as in the continuum. The noncompact for- gauge theory (with or without fermions) on the lat-
mulation does not allow any nonperturbative behavior tice has at least two different phases: a weak coupling
in the pure gauge sector (it does show nonperturbative phase (with usual QED-like properties on the regula-
tor) called the Coulomb phase and a strong coupling
T E-mall addresses: sbasak@physics.umd.edu (S. Basak), confining phase which resembles QCD (again on the

de@theory.saha.emet.in (A.K. De), tilak@theory.saha.ernet.in lattice regglator) In many Way_s—eX|stence of gauge
(T. Sinha). balls, confinement, nonzero chiral condensate, appear-
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ance of Goldstone bosons, etc. To remove the regula-
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result not BRST-invariant (as required by Neuberger’s

tor, there ought to be a continuous phase transition in theorem [9] for compact gauge fixing). It has, in addi-
the intermediate region. Numerical studies have found tion, appropriate irrelevant terms to make the perturba-
the existence of such a phase transition [1,2], but the tive vacuunlU,,, = 1 unique. Because the gauge fixing
order of the phase transition is generally accepted asterm obviously breaks gauge invariance, one needs to

first order.
A continuum limit from the confinement phase

add counterterms to restore manifest gauge symmetry.
The parameter space of this regularization of com-

sustaining the properties of the confinement phase pact U(1) theory now includes the gauge coupling, the

would imply a hitherto unknown continuum abelian
gauge theory which is likely to correspond to a non-
trivial fixed point.

As far as continuum limits from the Coulomb phase
is concerned, one would have to imagine that the
critical manifold (obtained by appropriately expanding
the parameter space) is not too far away from the
weak coupling region since perturbative results on
lattice match excellently with our familiar continuum
QED. However, the lack of a continuum limit for
compact lattice QED in the weak coupling region
means that the issue of triviality (existence of Landau

coefficient of the gauge fixing term and the coefficients
of the counterterms. In this extended parameter space
it has been shown [10] that for a weak gauge cou-
pling (¢ = 0.6) there exists a continuous phase tran-
sition at which the U(1) gauge symmetry is restored
and the continuum theory of free photons emerge. In
our study, determination of the phase diagram and the
critical region as extensively as possible is very impor-
tant because we are dealing with a gauge-noninvariant
theory in general and it is necessary to have freedom
along the critical manifold so that irrelevant parame-
ters can be appropriately tuned to restore gauge invari-

poles, etc.) cannot really be answered in a genuine ance (protecting the theory from a violation of unitar-

(nonperturbative) way.
With the addition of a nhonminimal plaquette term
in the gauge action [3], there is new evidence that

ity).
Scanning a wide range of all the three parameters,
in the pure gauge theory we have found phase tran-

the Coulomb-confinement transition in the pure gauge sitions between a phase with broken rotational sym-

theory is first order [4]. Only with inclusion of
fermions (with a four fermion interaction [5,6]), there
is indication of a continuous phase transition.

In this Letter we make an exploratory study of pos-
sible continuum limits of a compact lattice formula-
tion of pure U(1) gauge theory using a different regu-

metry (FMD phase) and one with rotational symme-
try (FM phase). The FM—FMD transition is the place
where the gauge symmetry gets restored. To recover
Lorentz invariance in the continuum, the FM-FMD
transition needs to be approached from the FM side.
Probing the pure gauge theory with quenched U(1)-

larization in 4 space—time dimensions. We also probe charged fermions, we have also found evidence for a
the pure gauge theory by quenched staggered fermi-chiral transition for large gauge couplings although in
ons which have U(1)-charge. This regularization of this exploratory study we could assess its approximate
lattice U(1) theory was originally devised to ‘tame’ location in a limited region of the parameter space.
the ‘rough gauge’ problem of lattice chiral gauge the- We have looked for chiral condensates only near the
ories [7]. Because of the gauge-invariant measure andFM—FMD transition, because this is where the gauge
the lack of gauge-invariance of the lattice chiral gauge symmetry is restored.

theories, the longitudinal gauge degrees of freedom  From our numerical evidence we expect that the
(lgdof) couple nonperturbatively to the physical de- chiral phase transition intersects the FM—FMD phase
grees of freedom. To decouple tlgelof which are ra- transition at the tricritical line where the order of
dially frozen scalar fields, a nonperturbative gauge fix- the FM—FMD transition changes. The region of the
ing scheme (corresponding to a local renormalizable FM—FMD transition where the chiral condensate is
covariant gauge fixing in the naive continuum limit) nonzero seems to be first order. The intersection
for the compact U(1) gauge fields was proposed [8]. region of the chiral and the FM—FMD transitions
A key feature of this gauge fixing scheme is that the thus seems to be the only candidate where a con-
gauge fixing term is not the exact square of the ex- tinuum limit with nonperturbative properties may be
pression used in the gauge fixing condition and as a achieved.
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A preliminary account of our work can be found dimension-two counterterm has been mostly consid-
in[11]. ered, because it alone could lead to a continuous phase
transition that recovers the gauge symmetry. It was ar-
gued that the marginal counterterms would not possi-
2. Theregularization bly create new universality classes for the continuum
theory corresponding to large (for a discussion on
The action for the compact gauge-fixed U(1) theory other counterterms, please see [8,10]).

[8], where the ghosts are free and decoupled, is Our philosophy here has been an usual one, i.e., to
take a lattice theory given by (1) having the expected
S[UL=S,[Ul+ Sgr U1+ St [U]. (1) weak coupling results, and then try and find out the

strong coupling properties of the same theory.

S, is the usual Wilson plaguette action, X X
Information about the phase diagram of the model

1 can be obtained in the constant field approximation,
8¢ = TX;V(l — ReUyw) @) first by expanding the link fieldJ,, = expligA )

! aroundU,,, = 1 and then requiring the gauge potential
whereyg is the gauge coupling and,,, is the group- A, to be constant (thus all the terms containing
valued U(1) gauge field. derivatives ofA,, vanish). Since the WCPT is defined

Sgr is the BRST-noninvariantcompact gauge fixing  around U,,, = 1, the classical potentiaV,, is the
term leading order approximation of the effective potential

and is given by

sy=f(Towmow.-Ye). o
xyz * Vcl=x|:g22Ai+-~-]
m

wherek is the coefficient of the gauge fixing term,
4
8 2 4
o (Ta)(Zat) ] @
iz i

O(U) is the covariant lattice Laplacian, and
2
B, = 2(7“4"’“‘; A ) » (4)

® where the dots represent terms of higher ordeg4n
where A, = ImU,,. As mentioned in the introduc- Since the perturbation theory is defined arognd 0
tion, S, is not just a naive transcription of the contin-  0r ¥ = oo, the classical potential is expected to be
uum covariant gauge fixing term, it has in addition ap- reliable at least for the region of large
propriate irrelevant terms. This makes the action have ~ From (6) it follows that forc > O, the gauge boson
an unique absolute minimum &t,, = 1, validating mass is nonzero and,; has a minimum a#, = 0.
weak coupling perturbation theory arougd= 0 or The regionk > 0 therefore is a phase with broken
& = oo and in the naive continuum limif,; reduces ~ gauge symmetry—the FM phase.
to (1/2¢) fd4x (3MAM)2 with £ = 1/(2k g2). For x < 0, the minimum ofV,; shifts to a nonzero

Validity of weak coupling perturbation theory to-  value:

gether with perturbative renormalizability helps to de- 1/4
termine the form of the counter terms to be presentin 4, = i(%) for all u
S It turns out that the most important gauge coun- 3¢
terterm is the dimension-two counterterm, namely, the implying an unusual phase with broken rotational

gauge field mass counterterm given by symmetry in addition to the broken gauge symmetry—
we call it the directional ferromagnetic phase (FMD)
Sct = —K Z(UIUC + U;x). (5) [8]
mx For k = 0 = k. the minimum ofV,; is atA,, =0

In the pure bosonic theory there are possible marginal and at the same time the gauge boson mass vanishes,
counterterms including derivatives. However, in the thus gauge symmetry is restored which signals a
investigation of the gauge-fixed theory as given, the continuous phase transition or criticality.
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For large enouglt the presence of the Aﬁ term

in the gauge fixing action (3) produces a continuous

phase transition FM,FMD at which the gauge boson

mass scales to zero and hence the gauge symmetry _o.4}

is restored. The continuum limit now can be taken
by approaching FM—FMD transition from within FM
phase.

3. Numerical simulation and results

To obtain the phase diagram of the gauge-fixed pure

U(1) theory, given by the action (1), i, «©)-plane for
fixed values of the gauge coupling we defined the
following observables (for &*-lattice):

1
Ep= m< > ReUIM>, )
X, U<V
1
Ec=77 ;Reu,” , (8)

V=< %;(%;lmuw>2>. (9)

Ep andE, are not order parameters but they signal
phase transitions by sharp changes. We expgét 0
in the broken symmetric phases FM and FMD and
E, ~ 0 in the symmetric (PM) phase. Besidds,
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Fig. 1. Phase diagram of pure U(1) gauge fixed theory dri4t@ice.
FM-FMD transition for different gauge couplings: @j= 0.8 (O),

(b) g=1.0(D), (€)g=11(4),(d) g=12(), (e) g =13 (V).

The line joining thex-symbols separates the PM phase from the FM
and the FMD phases. The PM transition line does not depend too
much on the gauge coupling and an average line is drawn here for
clarity.

diagram looks qualitatively the same for all gauge
couplings. For zero or small valuesifthere is a FM—
PM transition. The FM—FMD transition which ensures
recovery of the gauge symmetry is obtained at larger
finite values of the coupling. As seen from the figure,
the FM—FMD transition can be approached by tuning
just one parameter, namely, for given values ofg

is expected to be continuous at a continuous phaseandx.

transition (infinite slope in the infinite volume limit)
and show a discrete jump at a first order transition [10,
12]. The true order parameteriswhich allows us to
distinguish the FMD phase (whefié # 0) from the
other phases wherfé ~ 0.

The Monte Carlo simulations were done with a
4-hit Metropolis algorithm on a variety of lattice
sizes from 4 to 16*, although investigations were
mostly done on 19 lattices. The phase diagram
was explored in, k)-plane at gauge couplings=
0.6,0.8,1.0,1.1,1.2,1.3 and 1.4 over a range of
0.30 to —2.30 for x and 0.00 to 1.00 fok. The
autocorrelation length for all observables was less
than 10 for 10 lattices and each expectation value

The phase diagram and behavior of the theory
at ¢ = 0.6 was investigated before [10]. We have
reconfirmed the results of [10] and for reasons of
clarity Fig. 1 does not include the data fgr= 0.6.

At weaker gauge couplings= 0.6, 0.8, 1.0 the FM—
FMD transition (the dotted lines roughly parallel to
the k-axis) appears to be continuous. On the other
hand, for stronger gauge couplings=1.1,1.2,1.3
and alsog = 1.4 (although not shown in Fig. 1) this
transition is first order for smaller values &fand is
continuous for larger values &f The critical value of

k& at which the order changes shifts to larger values
with increasing gauge coupling. In this exploratory
study we have not determined the precise value of

was calculated from about a thousand independentthe above-mentioned critic&l for the whole range of

configurations.
Fig. 1 collectively shows the phase diagram in
(k, k)-plane for the different gauge couplings. The

gauge couplings investigated.
The order of the FM-FMD phase transition is
inferred from the change df, with . A E, versusc
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Fig. 2. Discontinuity inE, (for large gauge coupling) across FM—FMD transition (the dotted line) for (Rjphd (b) 16 lattices.
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Fig. 3. Continuous change iB, (for large gauge coupling) across FM—FMD transition (the dotted line) at ldrgfar (a) 1¢* and (b) 16

lattices.

plot is shown here only for a stronger gauge coupling, and ¢ = 0.8 for (a) 1¢* and (b) 18 lattices. This

discussed next.

Fig. 2 which depicts the nature of change Bf
versusk across the FM—FMD transition gt= 1.3,

actually would indicate a revival of a continuous
FM-FMD transition at these couplings. From our
experience it is reasonable to expect that for a larger

& =04 for (a) 1¢ and (b) 18 lattices, shows
a discrete jump, implying a first order transition.
Although the figure is presented only fp= 1.3, our
observation is that at ~ 0.4 andg = 1.1 the FM-
FMD transition seems to be first order, whereas for
g < 1.1 and anyk (large enough to accommodate a
FM—FMD transition) this transition is continuous.

At large gauge couplingsg(= 1.1), when we
increase the value of, however, the discrete jump
of E., ask changes across the FM—FMD transition,
disappears. This is clearly shown in Fig. 3 fo= 1.3

continuous ifc is made large enough.
Clearly there is a huge qualitative differen

tion, although the Figs. 2 and 3 are shown only
and 16 lattices, we have actually looked at all t

gauge coupling, the transition would still remain

ce be-
tween Figs. 2 and 3 in the nature of changé&pfver-
susk across the FM—FMD transition. Please note that
the scales of the Figs. 2(a) and 3(a), which show data
for only the 1¢ lattices, are exactly the same. In addi-
fot 10
he ob-
servables on lattices fronf 4ll the way upto 16, and

we have seen that the qualitative difference discussed
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Fig. 4. Quenched chiral condensate orf 4itice as a function of
mg for different g atk = 0.4.

above gets only more pronounced at larger lattices. At

& = 0.4, as shown in Fig. 2(a) and (b), the discrete
jump of E, gets distinctly sharper on the 4 attice.

On the other hand, @ = 0.8 as shown in Fig. 3(af

is quite continuous across the FM—FMD transition on
10* lattices. Even a fine resolution of data points sepa-
rated byAx = 0.001 does not show any discontinuity.
As we go to 18 lattices as shown in Fig. 3(b), we crit-
ically investigate only the region around the transition
(which obviously shifts a little with the change of lat-
tice size) and absolutely no discontinuity is found with
our resolution. In addition, a hint of a S-shape around
the transition is visible which promises to evolve into
an inflexion with infinite slope at the transition in the
thermodynamic limit.

We have probed the gauge-fixed pure gauge system

S Basak et al. / Physics Letters B 580 (2004) 209-215
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Fig. 5. Quenched chiral condensate off I4itice as a function of
m for differenti.

k = 0.4. Fig. 4 clearly indicates that for weaker gauge
couplings g < 1.1) the chiral condensates vanish in
the chiral limit. For stronger gauge couplings £

1.1) the chiral condensates are clearly not zero in the
chiral limit. The dotted lines in Fig. 4 (and in Fig. 5 to
follow) are only to guide the eye. It is to be noted that
atk ~ 0.4 asg changes from below 1.1 to above, the
FM—-FMD transition changes from continuous to first
order (see Fig. 2).

Fig. 5 also shows chiral condensates near the FM—
FMD transition again as function of the bare fermion
mass but this time for different values &f Here
we observe, interestingly, that far> 0.8 and large
gauge couplingd = 1.3) the chiral condensates tend
to vanish in the chiral limit. It is to be noted again
that atg = 1.3 ask changes from roughly below 0.8

by quenched staggered fermions with U(1) charge by , above, the FM-FMD transition changes from first

measuring the chiral condensate
- 1 _

as a function of vanishing fermionic bare masg M

is the fermion matrix. The chiral condensates are com-
puted with the Gaussian noise estimator method [14].

Antiperiodic boundary condition in one direction is
employed.

order to continuous.

The above discussion strongly suggests that inclu-
sion of fermions here leads to a chiral phase transi-
tion that intersects the FM—FMD phase transition. For
a fixed k there is chiral transition ag is changed,
and for a fixedg the chiral transition shows up as
is changed (the third parameteis used to stay on the
FM—FMD transition). A similar phenomenon occurs
for the order of the FM—FMD transition with respect

Fig. 4 shows quenched chiral condensates nearto changes iz andx.

the FM—FMD transition (remaining in the FM phase)
obtained on 1% lattice for different gauge couplings
as a function of staggered fermion bare magsat

There is no chiral condensate in regions where we
can take a continuum limit in the pure gauge theory
(which is the expected perturbative result). On the
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other hand, chiral condensates appear where there isAcknowledgements
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