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a b s t r a c t

The functionQ (x) :=


n≥1(1/n) sin(x/n)was introduced by Hardy and Littlewood (1936)
[5] in their study of Lambert summability, and since then it has attracted attention of many
researchers. In particular, this function has made a surprising appearance in the recent
disproof byAlzer, Berg andKoumandos (2005) [3] of a conjecture by Clark and Ismail (2003)
[14]. More precisely, Alzer et al. have shown that the Clark and Ismail conjecture is true if
and only if Q (x) ≥ −π/2 for all x > 0. It is known that Q (x) is unbounded in the domain
x ∈ (0,∞) from above and below, which disproves the Clark and Ismail conjecture, and
at the same time raises a natural question of whether we can exhibit at least one point x
for which Q (x) < −π/2. This turns out to be a surprisingly hard problem, which leads to
an interesting and non-trivial question of how to approximate Q (x) for very large values
of x. In this paper we continue the work started by Gautschi (2005) in [4] and develop
several approximations to Q (x) for large values of x. We use these approximations to find
an explicit value of x for which Q (x) < −π/2.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Our main object of interest is the function Q (x), defined as

Q (x) :=


n≥1

1
n
sin

 x
n


. (1)

It is easy to see that the above series converges for all x ∈ C and that Q (x) is an odd entire function of exponential type
one. This function was named ‘‘Flett’s function’’ in [1,2], however later it was given the name ‘‘Hardy–Littlewood’’ function
in [3,4], and we will follow the latter convention in our paper.

The function Q (x)was originally introduced in 1936 by Hardy and Littlewood [5], who have used it to construct a certain
counter-example in their investigations of Lambert summability. In particular, Hardy and Littlewood have established that
Q (x) = Ω+(

√
ln ln(x)), which is just a short notation for

lim inf
x→+∞

Q (x)/

ln ln(x) > 0.

Hardy and Littlewood also note that the ‘‘O-problems’’ for Q (x) are much like the corresponding problems for the Riemann
zeta function ζ (s) on the vertical line Re(s) = 1 (note that it is known that |ζ (1 + it)| = Ω+(ln ln(t)); see Theorem 8.5
in [6]).

It seems that this similarity in the behavior of Q (x) and ζ (1 + it) is the main reason why Q (x) has attracted so much
attention after the work of Hardy and Littlewood. Flett [7] has proved that Q (x) = O(ln(x)

3
4 (ln ln(x))

1
2 +ϵ) and that the same
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estimate is true for ζ (1 + it). Segal [8] has discovered many interesting properties of Q (x), such as the following identity y

0
Q (x)dx = 2


n≥1

sin
 y
2n

2
=
πy
2

−
1
2

+


m≥1

πy
2m

 1
2
J1(2


2πym), (2)

where J1(z) is the Bessel function of order one, see [9]. As an application of (2), Segal proves that the Cesàro, Abel and Borel
means of Q (x) are all equal π/2.

Codecà [10] has studied oscillation and almost periodicity properties of Q (x) and some other related functions. He also
makes an important observation that Q (x) is very similar to some functions which appear as error terms in the estimation
of the mean of certain number-theoretic functions. For example, if we define a ‘‘divisor function’’ σ−1(n) :=


d|n 1/d and

S−1(x) :=


n≤x σ−1(n), then it is known (see [11], p. 100) that

S−1(x) =
π2

6
x −

1
2
ln(x)−


n≤x

1
n
φ

 x
n


+ O(1), (3)

where φ(x) := {x} −
1
2 and {x} denotes the fractional part of x. Note that both sin(x) and φ(x) are periodic functions, which

means that the two functions Q (x) and E(x) :=


n≤x(1/n)φ(x/n) should have many similar properties. This turns out to
be a beneficial way of looking at these functions: among many other results in [10], Codecà has proved that both Q (x) and
E(x) are B2 almost periodic function and are unbounded from above and below. Codecà also mentions that Delange [12] has
extended the results by Hardy and Littlewood [5] and by Flett [7] and has proved that

Q (x) = Ω±(

ln ln(x)), Q (x) = O((ln(x))

2
3 ), x → +∞. (4)

Again, the latter result should be compared with the best known bounds E(x) = O((ln(x))
2
3 ) (see [11], p. 88) and

ζ (1 + it) = O((ln(t))
2
3 ) (see formula 6.19.2 in [6]). The study initiated by Codecà was continued by Pétermann [13], in

particular he gave another proof of (4).
Van de Lune [1] has performed the first numerical study of the function Q (x), in particular he has calculated many real

and complex zeros of this function. Another method for computing zeros of Q (x)was developed by Döring [2].
Recently, the Hardy–Littlewood function Q (x) has appeared rather unexpectedly in the disproof of the Clark and Ismail

conjecture by Alzer, Berg and Koumandos [3]. Clark and Ismail [14] have studied functions Φm(x) := −xmψ (m)(x), where
ψ(x) := Γ ′(x)/Γ (x) is the digamma function. They have proved that Φ(m)

m (x) is completely monotone on (0,∞) for
1 ≤ m ≤ 16, and they conjecture that this should be true for all m ≥ 1. However, this conjecture was disproved by
Alzer, Berg and Koumandos [3] by showing that it is true if and only if Q (x) > −

π
2 for all x, the latter statement being false

in view of (4).
Finally, we would like to mention the paper [4] by Gautschi, which was the main inspiration for our current work.

Gautschi has developed two algorithms for computing Q (x) numerically: the first algorithm is based on the summation
by quadrature and the second (more efficient) algorithm is based on truncating the series in (1) at n = ⌊x⌋ (the integer part
of x) and approximating the tail of this series. It is clear that this algorithm requires O(x) arithmetic operations in order to
obtain a single value of Q (x), thus it becomes impractical if x is very large.

Our main results in this paper are several new asymptotic approximations for Q (x). Our first result gives an
approximation for Q (x), which is extremely accurate in the domain x > 2000 and which requires only O(x

1
2 +ϵ) arithmetic

operations. The second approximation is somewhat less accurate, but it requires only O(x
1
3 ) arithmetic operations. As an

application of these two approximations we find that

Q (8203872394818031742687.4 × π) = −1.5970415 . . . , (5)

which provides an explicit example to the result in [3] and answers the question raised by Gautschi in [4].
This paper is organized as follows. In Section 2 we review the approximation developed by Gautschi [4] and present our

main results, Theorems 1–3. In Section 3 we perform several numerical experiments: we investigate the accuracy of our
approximations, we study the extremes of the function Q (x) and discuss the computations that led to the discovery of (5).
The proofs of all results are presented in Section 4.

2. Main results

Let us introduce the notations that will be used throughout this paper. Given two functions f : D → R and g : D →

(0,∞), we will write f (x) = O(g(x)) (or equivalently, f (x) ≪ g(x)), if there exists an absolute constant C > 0 such that
|f (x)| < Cg(x) for all x ∈ D. When the constant C is not absolute but depends on parameters p1, . . . , pn, we will write
f (x) = Op1,...,pn(g(x)) or f (x)≪p1,...,pn g(x). We will also use the notation f (x) ≈ g(x), which stands for f (x) ≪ g(x) and
g(x) ≪ f (x). Bernoulli numbers will be denoted by Bn. Finally, for x ∈ R, ⌊x⌋ := max{n ≤ x : n ∈ Z} will denote the integer
part of x and {x} = x − ⌊x⌋ will denote the fractional part of x.

Our first result is an algorithm which allows to compute Q (x) to arbitrary precision in O(x) arithmetic operations. This
algorithm is a simple generalization of the approximation developed by Gautschi (see Section 3 in [4]).
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Proposition 1. [O(x) Algorithm] For any integer N we have

Q (x) =

N−1
n=1

1
n
sin

 x
n


+


k≥0

(−1)k
ck(N)

(2k + 1)!

 x
N

2k+1
, (6)

where ck(N) are defined as follows

ck(N) := N2k+1

n≥N

n−2k−2. (7)

For large N the coefficients ck(N) can be computed via the asymptotic expansion

ck(N) =
1

2k + 1
+

1
2N

+

M−1
m=1

B2m
(2k + 2)2m−1

(2m)!
N−2m

+ Ok,M(N−2M). (8)

The proof of Proposition 1 is rather simple, we just sketch the main steps and leave all the details to the reader. In order
to obtain (6), we expand each term of the tail


n≥N(1/n) sin(x/n) in the Taylor–Maclaurin series and interchange the order

of summation. Asymptotic expansion (8) follows at once by applying the Euler–Maclaurin formula to (7).
As we will see in Section 3, for large values of x a good choice of N in Proposition 1 is N = ⌊x⌋. Therefore, the above

algorithm needs O(x) arithmetic operations and it becomes impractical for very large values of x. Our first main result is
an asymptotic approximation to Q (x), which requires only O(x

1
2 +ϵ) arithmetic operations and is extremely accurate in the

domain x > 2000. In order to present this algorithm, we will need to define the sine integral function

Si(x) =

 x

0

sin(t)
t

dt. (9)

See Section 8.23 in [9] for many properties of this function. We will need only one of these properties, namely that for large
values of x the sine integral can be computed via the asymptotic expansion

Si(x) =
π

2
− cos(x)

M
k=0

(−1)k
(2k)!
x2k+1

− sin(x)
M

k=0

(−1)k
(2k + 1)!
x2k+2

+ OM(x−2M−3), M ∈ {−1, 0, 1, . . .}. (10)

The above asymptotic expansion can be easily derived from formulas 8.215 and 8.233.1 in [9].

Theorem 1 (O(x
1
2 +ϵ) Algorithm). Assume that 0 < ϵ < 1

2 . Define G(x) :=
1
x sin(

1
x ) and N = N(x) := ⌊x

1
2 +ϵ

⌋. Then

Q (x) =

N−1
n=1

1
n
sin

 x
n


+

1
2N

sin
 x
N


+ Si

 x
N


+ EN(x), (11)

where EN(x) has the following asymptotic expansion: for M ∈ {0, 1, 2, . . .}

EN(x) = −

M
m=1

B2m

(2m)!
G(2m−1)

N
x


x2m

+ OM,ϵ(x−
1
2 −(4M+3)ϵ). (12)

The proof of Theorem 1 will be presented in Section 4. This result should be compared with the approximation to the
Riemann zeta function ζ (s) in the critical strip 0 < Re(s) < 1; see Theorem 4.11 in [6].

Note that in its simplest form Theorem 1 gives us the following approximation: for 0 < ϵ < 1
2

Q (x) =

⌊x
1
2 +ϵ

⌋
n=1

1
n
sin

 x
n


+
π

2
+ Oϵ(x−

1
2 +ϵ). (13)

To obtain (13) one should take M = −1 {M = 0} in the asymptotic expansion (10) {resp. (12)} and combine these results
with the formula (11). The constant π/2 in (13) is reminiscent of the result by Segal [8] (which was already mentioned in
the Introduction), namely that the Cesàro, Abel and Borel means of Q (x) are all equal π/2. Formula (13) raises the following
two natural questions:

(i) Would it still be correct in the limiting case ϵ = 0?
(ii) Can we reduce the number of terms in the sum in the right-hand side of (13) to ⌊xα⌋ with some α < 1

2?

Our next result provides the answers to both of these questions.
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Theorem 2 (O(x
1
3 ) Algorithm). Assume that M and N are real numbers, such that M ≥ 1, N ≥ 1 and 2πMN2

= x. Then

Q (x) =


1≤n<N

1
n
sin

 x
n


+
π

2
+


1≤m<M

 π

2mx

 1
4
sin

π
4

+ 2
√
2πmx


+ O(N−1 ln(x)+ x−

1
2 N

1
2 ). (14)

The proof of Theorem 2 will be presented in Section 4. This result should be compared with the approximate functional
equation for the Riemann zeta function, see Theorem 4.13 in [6].

Note that if M > 1 is a fixed constant (which does not depend on x), then the second sum in the right-hand side of (14)
is O(x−

1
4 ), and the number of terms in the first sum is N = ⌊

√
x/(2πM)⌋. This provides the answer to question (i): We can

take ϵ = 0 and N ≈
√
x in (13), but then we can only be certain that the error is O(x−

1
4 ln(x)), and not O(x−

1
2 ) as (13) would

suggest. Another important observation is that the parameters M and N are linked through the condition 2πMN2
= x, and

if we decrease the number of terms in the first sum in the right-hand side of (14) we will at the same time increase the
number of terms in the second sum. It is clear that we obtain the best order of approximation and the smallest number of
terms in both sums in (14) if we take M = N =

3
√
x/(2π), in which case the error becomes O(x−

1
3 ln(x)). In particular, this

gives the answer to question (ii).

Remark 1. Segal [8] has raised the following interesting question. If we formally differentiate the identity (2), we would
obtain

Q (x) ?
=
π

2
+ π


m≥1

J0(2
√
2πmx). (15)

The problem is that we do not know whether the series in the right-hand side of (15) converges. The connection between
formulas (14) and (15) is provided by the following asymptotic expansion (see formula 8.451.1 in [9])

π J0(2
√
2πmx) =

 π

2mx

 1
4
sin

π
4

+ 2
√
2πmx


+ O((mx)−

3
4 ), (16)

which implies that (14) could serve as a possible interpretation of (15).

As we have discussed above, the choiceM = N =
3
√
x/(2π) in Theorem 2 is optimal in the sense that it gives the highest

order of approximation and the smallest number of terms in the two sums in the right-hand side of (14). If we take N ≈ xα
then the condition 2πMN2

= xwould imply thatM ≈ x1−2α , thus is seems that it would be impossible to reduce the number
of terms in (13) to ⌊xα⌋ with some α < 1

3 . Surprisingly, this is not the case. Our next result states that the number of terms
in (13) can be reduced to ⌊xα⌋ with any α < 1

3 .

Theorem 3 (O(xϵ) Algorithm). Let 0 < ϵ < 1
2 and define δ = δ(ϵ) := ϵ2−

1
ϵ . Then

Q (x) =


1≤n<xϵ

1
n
sin

 x
n


+
π

2
+ Oϵ(x−δ). (17)

The proof of Theorem 3 will be presented in Section 4. To the best of our knowledge, there is no analogous result for the
Riemann zeta function (unlike the previous two theorems).

3. Numerical results

Our first goal is to investigate the accuracy of the approximations provided by Theorems1 and2.Wewill use Proposition 1
in order to compute the benchmark values of Q (x). We choose N = max(⌊x⌋, 1000) and compute the coefficients ck(N) for
0 ≤ k ≤ 9 using the asymptotic formula (8) withM = 6. Then we truncate the second series in the right-hand side of (6) at
k = kmax = 9. Experimentingwith higher values ofN ,M and kmax we find that the above parameters guarantee the accuracy
of at least 15 digits. The code was written in Fortran90 and we have used quadruple precision for all computations.

We denote by Q1(x) the approximation to Q (x) obtained by setting ϵ = 0.05 andM = 4 in Theorem 1, and by Q2(x) the
approximation to Q (x) provided by taking the optimal choice of parametersM = N =

3
√
x/(2π) in Theorem 2. We present

the results of our computations in Fig. 1. In Fig. 1(a) we see that Q1(x) provides an excellent approximation to Q (x): in the
domain x > 2000 the absolute error is smaller than 10−10 and in the domain x > 4500 the absolute error is smaller than
10−12. In order to investigate the accuracy of the second approximation we would like to consider much larger values of x.
Given the fact that for x large Q1(x) is very close to Q (x) and is much easier to evaluate numerically, wewill use the values of
Q1(x) as a benchmark. The results are presented in Fig. 1(b). We find that the error Q2(x)− Q1(x) is of the order 10−3 when
x ≈ 109 and of the order 10−4 when x ≈ 1012. Note that these results are in perfect agreement with the error estimate
O(x−

1
3 ln(x)) in (14).
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(a) log10 |Q (x)− Q1(x)| for 50 ≤ x ≤ 5000. (b) Q2(x0 + x)− Q1(x0 + x) for 0 ≤ x ≤ 5 × 104 .

Fig. 1. The error of the approximation. Here Q (x) is the value computed using (6) with N = min(x, 1000) andM = 10; Q1(x) is computed using (11) and
(12) with ϵ = 0.05 and M = 4, and Q2(x) using (14) with M = N =

3
√
x/(2π). In figure (b) the black curve corresponds to x0 = 109 and the red curve to

x0 = 1012 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Some ‘‘extreme’’ local maximums/minimums of Q (x).

x/π 12127812.568 37324872.600 50774112.608 176438112.602 413620512.598
Q (x) 4.3300 4.3426 4.3931 4.4596 4.4638

x/π 3596987.431 3841175.419 51836087.411 196661495.417 580973087.402
Q (x) −1.0512 −1.1635 −1.2406 −1.2740 −1.3134

As our next goal, we have tried to find a value of x where Q (x) < −π/2. This would provide an explicit example for
the key step in the disproof of the Clark and Ismail conjecture in [3]. Our first attempt was to look at the very large local
maximums/minimums of Q (x). As was noted in [3], for every n ∈ {0, 1, 2, . . .} the function Q (x) has a local maximum in
the interval [2nπ, (2n+ 1)π ] and a local minimum in the interval [(2n+ 1)π, (2n+ 2)π ]. By checking all consecutive local
maximums/minimums of Q (x) we have found several values of x, where Q (x) has a local extremum and the value of this
local maximum/minimum is greater/smaller than the value of all other local maximums/minimums in the interval [0, x).
The results of our computations are presented in Table 1. The lowest value of Q (x) that we were able to find using this
approach is approximately−1.31. Given the fact that the function Q (x) grows very slowly (see (4)), it became clear that this
brute force search method will not work. Therefore, we will have to bring in some other ideas in order to reach the value of
Q (x)which is less than −π/2.

In order to find these new ideas, we have looked at the proof of the estimate Q (x) = Ω±(
√
ln ln(x)) given in [3,5]. This

proof is based on a rather interesting argument, which is both constructive and non-constructive. Let us summarize the
main steps of this argument. We define a set of integer numbers M, such that q ∈ M if and only if all divisors of q satisfy
q ≡ 1(mod 4). The first few elements of M are

M = {5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 73, . . .}.

Now, for each k ≥ 1 we define an integer number

K = K(k) :=


1≤q≤4k+1

q∈M

q,

and for each j ∈ {1, 2, . . . , K} we define

x(k)j := (4j + 1)K
π

2
, x̂(k)j := (4j + 3)K

π

2
. (18)

In [3,5] it was established that there exist constants a ∈ R, â ∈ R and b > 0, b̂ > 0, such that for every k there exist i = i(k)
and j = j(k) such that

Q (x(k)i ) > a + b

ln(k), Q (x̂(k)j ) < â − b̂


ln(k). (19)

Using this result coupled with the trivial estimate K(k) < (4k+1)4k+1 it is not hard to establish that Q (x) = Ω±(
√
ln ln(x))

as x → +∞.
The intuition behind the definition (18) is rather simple: one can see that sin(x(k)i /n) = 1 and sin(x̂(k)j /n) = −1 for all n

which divide K . Since K has many small divisors n, this shows that there will be quite many terms in the sum (1) defining
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Table 2
Computing maximum/minimum values of Q (x(k)i ) and Q (x̂(k)j ).

k K(k) max1≤i≤K Q (x(k)i ) max achieved at min1≤j≤K Q (x̂(k)j ) min achieved at

4 1105 4.1352 i = 876 −0.9262 j = 1 103
6 27625 4.2606 i = 24 966 −1.1647 j = 6 785
7 801125 4.4127 i = 259 627 −1.2498 j = 468 148
9 29641625 4.5752 i = 7 030 990 −1.4347 j = 615 949

10 1215306625 4.6586 i = 96 330 096 −1.4717 j = 69 224 831

Q (x(k)i ), which are equal to 1/n (or which are equal to −1/n, in the case of Q (x̂(k)j )). Of course, it still takes a lot of work to
deduce (19), as we have to show that the sum over all nwhich do not divide K is not too large. See [3,5] for all the details.

Formulas (18) and (19) give us an algorithm for finding very large positive/negative values of Q (x): these extreme values
will happen at points x(k)i and x̂(k)j . This is the constructive side of this result. At the same time, there is no information on
how to find the indices i and j for which Q (x(k)i ) or Q (x̂

(k)
j )would achieve themaximum/minimum values, therefore this part

would still have to be done by brute force search, by checking all the indices in the range 1 ≤ i ≤ K(k). Clearly, this is only
feasible if k is not too large, as K(k) grows very fast as k increases.

The results of our computations are presented in Table 2. For k = 4 and k = 6 we have used the approximation Q1(x),
provided by Theorem 1 with ϵ = 0.025 and M = 4. For larger values of k we have used the approximation Q2(x), obtained
from Theorem 2 by setting M = N =

3
√
x/(2π). In this case the value of Q (x) at the extreme point was confirmed by

computing it via the more accurate approximation Q1(x). All computations were performed on a regular desktop computer
with Intel i7 2600 quad-core processor, running Ubuntu Linux. In order to fully utilize all four cores of the processor, we
have parallelized the Fortran90 code using OpenMP API.

It is instructive to compare the results presented in Tables 1 and 2. First of all, one can check that the points where Q (x)
attains extremely large local maximums/minimums in Table 1 are not located near the points x(k)i or x̂(k)j defined by (18).
Second, we see that the large values of Q (x) in Table 1 happen at smaller values of x than those in Table 2. This provides a
compelling numerical evidence that the result Q (x) = Ω±(

√
ln ln(x)) (which is derived via (19)) is suboptimal. A possible

way to prove a stronger result would be to understand how to predict the points in Table 1, where Q (x) attains its extreme
local maximums/minimums. Given the similarity between Q (x), ζ (1 + it), E(x) and other functions arising in Number
Theory, this understanding could potentially lead to establishing stronger results about oscillation of all these functions.

As we see from Table 2, there are no values of Q (x̂(k)j ) for k ≤ 10 which are smaller than −π/2. And k = 10 was the
largest value that we could possibly check on our desktop computer in a reasonable amount of time: in order to perform
the computations for the next value k = 13 (for which we need to evaluate Q (x̂(13)j ), 1 ≤ j ≤ K(13) = 64411251125) we
would need to wait for nine months. Luckily enough, after just two days of computations at the level k = 13, we have found
that at the index j∗ = 63683535496 we have

Q (x∗) = −1.5398404 . . . , (20)
where

x∗
:= x̂(13)j∗ = (4j∗ + 3)K(13)

π

2
= 8203872394818031742687.5 × π.

The value in (20) is just slightly above −π/2. However, looking at the results in Table 1, we see that the local minimums of
Q (x) tend to occur near points x such that x/π = 0.4 (mod 1). We check the value of Q (x) at this point, and find that

Q (x∗
− 0.1π) = −1.5970415 . . . . (21)

The value of Q (x∗
− 0.1π) in (21) was computed using the second approximation Q2(x), provided by Theorem 2. Given the

error estimate O(x−
1
3 ln(x)) in Theorem 2 and our previous discussion of the numerical results shown in Fig. 1, we would

expect that Q2(x) − Q (x) ≈ 10−7 when x ≈ 1022. In order to confirm this and to check the accuracy of computation in
(21), we have evaluated Q1(x∗

− 0.1π), which is the approximation given by Theorem 1 with ϵ = 0.025 and M = 4. We
found that the difference between the two results is less than 10−7, as expected. Finally, in order to eliminate the possibility
that there was some loss of accuracy in (21) due to the addition of a large number of terms in (14), we have evaluated
Q2(x∗

− 0.1π)with the working precision of 60 decimal digits. We have used D. Bailey’s MPFUNmulti-precision library for
Fortran90. Again, the results were in perfect agreement with (21). While we cannot prove (21) rigorously (since we do not
know the explicit values for the implied constants in (14)), these numerical results provide compelling evidence that (21) is
correct, and therefore, provides an explicit example for the key step of the disproof of the Clark and Ismail conjecture in [3].

The plot of Q (x) near the point x∗ is presented in Fig. 2.
In conclusion, we would like to discuss the computation time of Q (x∗

− 0.1π). This will help us to put the three
approximations to Q (x) into perspective. It takes just five seconds to establish (21) using the O(x

1
3 ) algorithm provided

by Theorem 2. Computing the same value using the O(x
1
2 ) algorithm presented in Theorem 1 took almost fourteen hours.

By extrapolation, we find that the O(x) algorithm from Proposition 1 would need more than forty million years in order to
complete the same task.
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Fig. 2. A region where Q (x) < −
π
2 . Here x∗

= 8203872394818031742687.5 × π .

4. Proofs

Proof of Theorem 1. We set h := 1/x and apply the Euler–Maclaurin summation formula to function G(x) =
1
x sin(

1
x ): for

every j ≥ 0

h


1
2
G(Nh)+


n≥N+1

G(nh)


=


∞

Nh
G(u)du −

j
k=1

B2k

(2k)!
h2kG(2k−1)(Nh)

+
h2j+1

(2j + 1)!


∞

Nh
B2j+1({u/h})G(2j+1)(u)du, (22)

where Bn(·) denote Bernoulli polynomials and Bn = Bn(0) are Bernoulli numbers.
Changing the variable of integration u = 1/v and using (9) we find that the first integral in the right-hand side of (22) is

equal to Si(x/N).
Let us now estimate the second integral in the right-hand side of (22). Using induction it is easy to prove that there exists

a sequence of polynomials {pn(u)}n≥0, such that deg(pn) = n and for each j ≥ 0 we have

G(2j+1)(u) = u−2j−2
[cos(u−1)p2j+1(u−1)+ sin(u−1)p2j(u−1)]. (23)

Formula (23) implies that for every j ≥ 0 there exists a constant C1(j) > 0 such that for all u > 0 we have

|G(2j+1)(u)| < C1(j)(u−4j−3
+ u−2). (24)

The periodic function |B2j+1({u/h})| is bounded fromabove by somepositive constant C2(j), thereforewe obtain the estimate ∞

Nh
B2j+1({u/h})G(2j+1)(u)du

 < C1(j)× C2(j)×


∞

Nh
(u−4j−3

+ u−2)du = Oj((Nh)−4j−2).

Using the fact that Nh ≈ x−
1
2 +ϵ as x → +∞, we conclude

h2j+1

(2j + 1)!


∞

Nh
B2j+1({u/h})G(2j+1)(u)du = Oj(x−(4j+2)ϵ). (25)

Combining (11), (22) and (25) we see that for every j ≥ 0

EN(x) = −

j
k=1

B2k

(2k)!
G(2k−1)

N
x


x2k

+ Oj(x−(4j+2)ϵ). (26)
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For every ϵ ∈ (0, 1
2 ) and M ≥ 0 we can find j large enough so that (4j + 2)ϵ > 1

2 + (4M + 3)ϵ. Also, from (24) we obtain

G(2k−1)
N

x


x2k

= x−2kOk((N/x)−4k+1) = Ok(x−
1
2 −(4k−1)ϵ).

Combining these two facts with (26) we conclude that (12) holds. �

The proof of Theorem 2 is based on the following two lemmas.

Lemma 1 (First and Second Derivative Test, see Lemmas 5.1.2 and 5.1.3 in [15]). Let f : (α, β) → R be twice continuously
differentiable and g : (α, β) → [0,∞) be monotone. For i ∈ {1, 2} we define λi = inf{|f (i)(u)| : α < u < β} and assume that
λ2 > 0. Then β

α

g(u) sin(f (u))du
 < 16 × max{g(α+), g(β−)} × min


1
λ1
,

1
√
λ2


. (27)

Lemma 2 (Truncated Poisson Summation Formula, see Lemma 5.4.3 in [15] or Lemma 4.10 in [6]). Let f : [a, b] → R have a
continuous and decreasing derivative f ′(u). Let g : [a, b] → [0,∞) be a decreasing function, such that |g ′(u)| is also decreasing.
Define α = f ′(b) and β = f ′(a). Then

a<n≤b

g(n)e2π if (n) =


α−

1
4<m<β+

1
4

 b

a
g(u)e2π i(f (u)−mu)du + O(g(a) ln(β − α + 2))+ O(|g ′(a)|). (28)

Proof of Theorem 2. The proof will be carried in three steps. Our first goal is to establish the following identity:
n≥N

1
n
sin

 x
n


=


0≤m<M+

1
4


∞

N

1
u
sin

 x
u

+ 2πmu

du


+ O(N−1 ln(x)). (29)

Note that the conditions 2πMN2
= x,M ≥ 1, N ≥ 1 imply that

M = O(x), N = O(
√
x), x ≥ 2π. (30)

We define a := N , b := x2, f (u) := −
x

2πu and g(u) :=
1
u and check that all conditions of Lemma 2 are satisfied. We find that

α = f ′(b) =
1

2πx3
and β = f ′(a) = M and note that for x ≥ 2π we have −1 < α −

1
4 < 0. Applying Lemma 2 and taking

imaginary part of both sides of (28) we obtain


N<n≤x2

1
n
sin

 x
n


=


0≤m<M+

1
4

 x2

N

1
u
sin

 x
u

+ 2πmu

du


+ O(N−1 ln(M)). (31)

Next, assume thatm ≥ 1 andw > x2. We define f (u) :=
x
u + 2πmu and note that

λ1 = inf{|f ′(u)| : x2 < u < w} = −
1
x3

+ 2πm,

λ2 = inf{|f ′′(u)| : x2 < u < w} =
2
x5
> 0.

We apply Lemma 1 (the first derivative test) with the above function f (u) and g(u) := u−1 and conclude that for m ≥ 1,
x ≥ 2π and anyw > x2 w

x2

1
u
sin

 x
u

+ 2πmu

du ≪

16
x2

1
−

1
x3

+ 2πm
 ≪

1
x2
.

Therefore for all x ≥ 2π and m ≥ 1 we have
∞

x2

1
u
sin

 x
u

+ 2πmu

du ≪

1
x2
.

Whenm = 0 we have the following trivial estimate
∞

x2

1
u
sin

 x
u


du ≪


∞

x2

1
u

sin  x
u

 du ≪


∞

x2

x
u2

du =
1
x
.
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The above two estimates and the fact thatM = O(x) give us
0≤m<M+

1
4


∞

x2

1
u
sin

 x
u

+ 2πmu

du


≪

M
x2

+
1
x

≪
1
x
. (32)

Combining (30), (31), (32) and the following simple estimate
n≥x2

1
n
sin

 x
n


≪


n≥x2

x
n2

≪
1
x
,

we obtain (29).
The second step consists in establishing the following result:

0≤m<M+
1
4

 N

0

1
u
sin

 x
u

+ 2πmu

du


≪ N−1 ln(x)+ x−

1
2 N

1
2 . (33)

We change the variable of integration u = 1/v and obtain N

0

1
u
sin

 x
u

+ 2πmu

du =


∞

N−1

1
v
sin


xv +

2πm
v


dv. (34)

Define f (v) := xv + 2πm/v and assume that 0 ≤ m ≤ M̂ , where M̂ := ⌊M −
1
4⌋. Then for v > N−1 we have

f ′(v) = x −
2πm
v2

> x − 2πmN2.

Note thatm ≤ M̂ ≤ M −
1
4 implies

x − 2πmN2
≥ x − 2π


M −

1
4


N2

=
π

2N2
,

thus λ1 = inf{|f ′(v)| : N−1 < v < ∞} = x − 2πmN2 and λ1 > 0. Applying Lemma 1 (the first derivative test) to the
integral in the right-hand side of (34) we conclude that N

0

1
u
sin

 x
u

+ 2πmu

du =


∞

N−1

1
v
sin


xv +

2πm
v


dv ≪

16N
x − 2πmN2

.

Using the above estimate we obtain

M̂
m=0

 N

0

1
u
sin

 x
u

+ 2πmu

du


≪

M̂
m=0

16N
x − 2πmN2

=

M̂
j=0

16N

x − 2π(M̂ − j)N2

≤

M̂
j=0

16N
x − 2π


M −

1
4


N2 + 2π jN2

=

M̂
j=0

32
πN(1 + 4j)

≪ N−1 ln(2 + M̂) ≪ N−1 ln(x), (35)

where we have changed the index of summation j = M̂ − m and have used (30) and the fact that


1≤n≤y(1/n) ≪ ln(y).
In order to finish the proof of (33) we have to consider the possible integral term with M̂ < m < M +

1
4 in the sum in

the left-hand side of (33). We again change the variable of integration v = 1/u and consider the following two integrals N

0

1
u
sin

 x
u

+ 2πmu

du =

 2N−1

N−1

1
v
sin


xv +

2πm
v


dv +


∞

2N−1

1
v
sin


xv +

2πm
v


dv. (36)

Define f (u) := xu +
2πm
u , then f ′(u) = x −

2πm
u2

and f ′′(u) =
4πm
u3

. It is easy to see that

λ2 = min{|f ′′(u)| : N−1
≤ u ≤ 2N−1

} =
1
2
πmN3.

Applying Lemma 1 (the second derivative test) we obtain the following estimate 2N−1

N−1

1
u
sin


xu +

2πm
u


du ≪ (mN)−

1
2 ≪ x−

1
2 N

1
2 (37)
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where in the last step we have used the facts thatm > M −
3
4 and MN = x/(2πN). Next, we find that for u > 2N−1

f ′(u) = x −
2πm
u2

> x −
1
2
π


M +

1
4


N2

=
3x
4

−
π

8
N2 >

x
2
,

thus by Lemma 1 (the first derivative test) we obtain
∞

2N−1

1
u
sin


xu +

2πm
u


du ≪ Nx−1

≪ N−1, (38)

where in the last step we have used the upper bound Nx−1
= N−1/(2πM) ≪ N−1. Eqs. (36)–(38) show that for M̂ <

m < M +
1
4 N

0

1
u
sin

 x
u

+ 2πmu

du ≪ N−1

+ x−
1
2 N

1
2 .

The above estimate combined with (35) complete the proof of (33).
Now we have all the ingredients for the last step of the proof of Theorem 2. We combine the two results (29) and (33)

and conclude that
n≥N

1
n
sin

 x
n


=


0≤m<M+

1
4


∞

0

1
u
sin

 x
u

+ 2πmu

du


+ O(N−1 ln(x)+ x−

1
2 N

1
2 )

=
π

2
+ π


1≤m≤M−

1
4

J0(2
√
2πmx)+ O(N−1 ln(x)+ x−

1
2 N

1
2 ) (39)

where we have used the following integral identities (see formulas 3.721.1 and 3.868.1 in [9]):
∞

0

1
u
sin

 x
u


du =

π

2
,


∞

0

1
u
sin

 x
u

+ 2πmu

du = π J0(2

√
2πmx).

In order to obtain (14) one has to combine (39), the asymptotic expression (16) for J0(2
√
2πmx) and the following simple

estimate
1≤m<M+

1
4

(xm)−
3
4 ≪ x−

3
4 M

1
4 ≪ x−

1
2 ≪ N−1. �

The proof of Theorem 3 is based on the following result from the theory of exponential sums.

Theorem 4 (Theorem 2.9 in [16]). Let q ≥ 0 be an integer and Q = 2q. Suppose that f has q + 2 continuous derivatives on an
interval I and that I ⊂ (N, 2N]. Assume also that there is some constant F such that for 1 ≤ r ≤ q + 2 we have

|f (r)(u)| ≈ FN−r , u ∈ I. (40)

Then 
n∈I

e2π if (n) ≪ F
1

4Q−2 N1− q+2
4Q−2 + F−1N. (41)

The implied constant in (41) depends only upon the implied constants in (40).

Proof of Theorem 3. Let N be any positive number. For u ≥ N we define

S(u) :=


N≤n≤u

sin
 x
n


and S(u) := 0 for u < N . We also define f (u) := x/(2πu) and F := x/N . Computing f (r)(u) one can easily check that for
N ≤ u ≤ 2N and 1 ≤ r ≤ q + 2

r!
22+rπ

× FN−r
≤ |f (r)(u)| ≤

r!
2π

× FN−r ,

therefore all the conditions of Theorem 4 are satisfied. Taking the imaginary part of (41) we conclude that for all q ≥ 0,
N ≥ 1 and N ≤ u ≤ 2N

S(u)≪q x
1

4Q−2 N1− q+3
4Q−2 + x−1N2 (42)
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where Q = 2q. We apply the integration by parts and find that for all N ≤ M < 2N we have

M
n=N

1
n
sin

 x
n


=

 M+
1
2

N−
1
2

dS(u)
u

=
S

M +

1
2


M +

1
2

+

 M+
1
2

N−
1
2

S(u)
u2

du

≪ N−1 max

|S(u)| : N −

1
2

≤ u ≤ M +
1
2


≪q x

1
4Q−2 N−

q+3
4Q−2 + x−1N, (43)

where in the last step we have used (42).
Let us define N := ⌊xϵ⌋ and

j = j(x) := ⌊log2(N
−1x3/5)⌋, α = α(q, ϵ) := ((q + 3)ϵ − 1)/(4Q − 2).

Dividing the interval N ≤ n < x3/5 into subintervals of the form N1 ≤ n ≤ N2 < 2N1 we obtain


N≤n<x3/5

1
n
sin

 x
n


=

j−1
i=0

2i+1N−1
n=2iN

1
n
sin

 x
n


+


2jN≤n<x3/5

1
n
sin

 x
n


≪q x

1
4Q−2 N−

q+3
4Q−2 (j + 1)+ x−1(x3/5 − N)≪q x−α ln(x)+ x−

2
5 , (44)

where we have used the facts that j ≪ ln(x) and N ≈ xϵ . We choose q = ⌊ϵ−1
⌋ − 1 and find that

α =
⌊ϵ−1

⌋ϵ + 2ϵ − 1

2⌊ϵ−1⌋+1 − 2
>

ϵ

2⌊ϵ−1⌋+1 − 2
> ϵ2−

1
ϵ = δ(ϵ).

This fact combined with the estimate (44) shows that
xϵ≤n<x3/5

1
n
sin

 x
n


= Oϵ(x−δ). (45)

Taking ϵ = 1/10 in (13) we find that

Q (x) =


1≤n<x3/5

1
n
sin

 x
n


+
π

2
+ O(x−

2
5 ).

Combining this result with (45) ends the proof of Theorem 3. �
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