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Abstract

Given a weight 2 and level p2 modular form f , we construct two weight 3/2 modular forms (possibly
zero) of level 4p2 and non-trivial character mapping to f via the Shimura correspondence. Then we relate
the coefficients of the constructed forms to the central value of the L-series of certain imaginary quadratic
twists of f . Furthermore, we give a general framework for our construction that applies to any order in
definite quaternion algebras, with which one can, in principle, construct weight 3/2 modular forms of any
level, provided one knows how to compute ideal classes representatives.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

The theory of modular forms of half integral weight was developed by Shimura in [Sh]. There
he defined a map known as the “Shimura correspondence” that associates to a half integral weight
modular form (eigenvalue of the Hecke operators) an integral weight modular form, and raised
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the question of the meaning of their Fourier coefficients. Later Waldspurger related these Fourier
coefficients to the central values of twisted L-series for the integral weight modular form (see
[Wa]). In [Gr] Gross gave (under some restrictions) an explicit method to construct, given a
weight 2 and level p modular form f , a weight 3/2 modular form (of level 4p and trivial char-
acter) mapping to f via the Shimura correspondence.

In the first section of this paper we revise the ideal theory of quaternion algebras and Hecke
operators acting on them. We then generalize the correspondence of Gross to any order in a defi-
nite quaternion algebra, obtaining a Hecke linear correspondence from the quaternary theta series
associated to ideals to the ternary theta series associated to their right orders.

In the second section we construct certain orders “of level p2” for which the correspondence
yields modular forms of level 4p2 and show how to construct ideal classes representatives from
representatives for the maximal order. In this way we improve the speed of the algorithm; more-
over, the matrices that we need to diagonalize are much smaller. For instance, we have computed
some of the weight 3/2 modular forms for p up to 500, i.e. corresponding to modular forms of
weight 2 and level p2 up to 250 000 (see [To]). In the third section we give an example of how
to construct these ideals for the case p = 7.

In the fourth section we explain the relation between the Fourier coefficients of weight 3/2
modular forms that are obtained using the methods of Sections 1 and 2, and the central values of
the L-series of the corresponding modular form f of weight 2. We conjecture a precise formula
for this relation, similar to Gross’ formula for the level p case. Furthermore, we show how
our conjecture implies an easy criteria to decide when the constructed modular forms are zero:
essentially when L(f,1) = 0.

Examples of our method, as well as an application to computing the central values for real
quadratic twists, were presented at the workshop “Special Week on Ranks of Elliptic Curves and
Random Matrix Theory” held at the Isaac Newton Institute, and can be found at [Pa-To].

1. Orders in quaternion algebras and Shimura correspondence

Let B be a definite quaternion algebra over Q. For x ∈ B we denote Nx and Trx the
reduced norm and reduced trace of x, respectively. The norm of a lattice a is defined as
Na := gcd{Nx: x ∈ a}. We equip a with the quadratic form Na(x) := Nx/Na, which is prim-
itive; its determinant is a square, and we denote its positive square root by D(a). In particular,
when R ⊆ B is an order, D(R) is its reduced discriminant. The subscript p will denote localiza-
tion at p, namely ap := a ⊗ Zp .

If R is an order in B , we let Ĩ(R) be the set of left R-ideals, i.e. the set of lattices a ⊆ B such
that ap = Rpxp for every prime p, with xp ∈ B×

p . Two left ideals a,b ∈ I(R) are in the same
class if a = bx, with x ∈ B×; we write [a] for the class of a. The set of all left R-ideal classes,
which we denote by I(R), is known to be finite.

1.1. The height pairing

Let M(R) be the free Z-module with basis I(R). We define the height paring by

〈[a], [b]〉 := 1
#
{
x ∈ B×: ax = b

} =
{

1
2 #Rr(a)× if [a] = [b],
2 0 otherwise,
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where Rr(a) is the right order of a, namely

Rr(a) := {x ∈ B: ax ⊆ a}.

The height pairing induces an inner product on MR(R) := M(R) ⊗ R; note that I(R) is an
orthogonal basis of this space.

The dual lattice M∨(R) := {v ∈ MR(R): 〈v,M(R)〉 ⊆ Z} is spanned by the dual basis

I∨(R) := {[a]∨: [a] ∈ I(R)
}
,

where [a]∨ := 1
〈a,a〉 [a]. We will identify M∨(R) with Hom(M(R),Z); indeed, a vector v ∈

M∨(R) defines a map 〈v, ·〉 :M(R) → Z, and conversely, a map f :M(R) → Z determines a
vector ∑

[a]∈I(R)

f
([a])a∨ ∈ M∨(R).

For instance, the map deg :M(R) → Z defined by deg([a]) := 1 for a ∈ Ĩ(R), corresponds to the
vector

e0 :=
∑

[a]∈I(R)

[a]∨ ∈ M∨(R).

1.2. Hecke operators

Let a ∈ Ĩ(R), and m � 1 an integer. We set

Tm(a) := {
b ∈ Ĩ(R): b ⊆ a, Nb = mNa

}
.

The Hecke operators tm :M(R) → M(R) are then defined by

tm[a] :=
∑

b∈Tm(a)

[b]

for m � 1 and [a] ∈ I(R). In addition, we define t0 :M(R) → M(R) by t0[a] := 1
2 e0.

Lemma 1.1.

Tm(a) = {
b ∈ Ĩ(R): b ⊆ a, [a : b] = m2}.

Moreover, ma ⊆ b for every b ∈ Tm(a); in particular, b ∈ Tm(a) if and only if ma ∈ Tm(b).

Proof. Let b ∈ Ĩ(R) such that b ⊆ a. Locally, since ap and bp are principal, there is some xp ∈
Rr(ap) such that bp = apxp . Then

[ap : bp] = (Nxp)2 = (Nbp/Nap)2,
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which proves the first statement. For the second, note that xp ∈ Rr(ap), and therefore map =
apxpxp ⊆ apxp = bp . �
Lemma 1.2. Fix a prime p and let xp ∈ M2×2(Zp). The set{

yp ∈ M2×2(Zp): detyp = p, xpy−1
p ∈ M2×2(Zp)

}
is invariant under left multiplication by unimodular matrices, and the number of orbits for this
action is 0 if p � detxp , 1 + p if xp ∈ pM2×2(Zp), and 1 otherwise.

Proof. A well-known set of representatives of {yp ∈ M2×2(Zp): detyp = p) modulo left multi-
plication by unimodular matrices is{(

p 0
0 1

)
,

(
1 0
0 p

)
,

(
1 1
0 p

)
, . . . ,

(
1 p − 1
0 p

)}
.

An easy calculation shows that(
a b

c d

)(
p 0
0 1

)−1

∈ M2×2(Zp) ⇐⇒ a ≡ c ≡ 0 (modp),(
a b

c d

)(
1 i

0 p

)−1

∈ M2×2(Zp) ⇐⇒ b − ai ≡ d − ci ≡ 0 (modp),

from which the statement follows. �
Proposition 1.3. The Hecke operators have the following properties:

(1) tm is self-adjoint.
(2) If (m,m′) = 1, then tmm′ = tmt ′m.
(3) If p � D(R) is a prime, then tpk+2 = tpk+1 tp − ptpk .

Proof. (1) Note that 〈[a], tm[b]〉 = ∑
c∈Tm(b)

〈[a], [c]〉
=

∑
c∈Tm(b)

1

2
#
{
x ∈ B×: ax = c

}
= 1

2
#
{
x ∈ B×: ax ∈ Tm(b)

}
.

By the last part of Lemma 1.1, this equals

= 1

2
#
{
x ∈ B×: mb ∈ Tm(ax)

}
= 1

#
{
x ∈ B×: mbx−1 ∈ Tm(a)

}
,

2
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and as before the latter is 〈tm[a], [b]〉.
(2) For any c ∈ Tmm′(a), there is a unique b ∈ Tm′(a) such that c ∈ Tm(b), namely bp = ap for

p � m′, and bp = cp for p � m.
(3) Let c ∈ Tpk+2(a). Locally, cp = apxp for some xp ∈ Rr(ap) with Nxp = pk+2. Since

p � D, we can identify Rr(ap) with M2×2(Zp), and use Lemma 1.2 to count the number of
b ∈ Tp(a) such that c ∈ Tpk+1(b). Indeed, any b ∈ Tp(a) will be given by bp = apyp , where yp ∈
Rr(ap) is such that Nyp = p, and the condition c ∈ Tpk+1(b) is equivalent to xpy−1

p ∈ Rr(ap).
Thus, if xp /∈ pRr(ap) there is a unique such b, while for xp ∈ pRr(ap) there are 1 + p of

them. But xp ∈ pRr(ap) if and only if c = pc′ for some c′ ∈ Tpk (a), and the formula follows
since [c] = [c′]. �

It follows from this proposition that the Hecke operators tm with (m,D(R)) = 1 generate a
commutative ring T0 of self-adjoint operators; by the spectral theorem MR(R) has an orthogonal
basis of eigenvectors for T0.

1.3. Modular forms of weight 2

The following construction will show that there is a correspondence between M(R) and mod-
ular forms of weight 2 and level

L(R) := N
(
R∗)−1

,

where R∗ := {x ∈ B: Tr(xR) ⊆ Z}. Indeed, we will exhibit a T0-linear map

φ :M∨(R) ⊗T0 M(R) → M2
(
L(R)

)
,

where M2(L) is the space of modular forms of weight 2, level L = L(R) and trivial character,
with tn acting on this space by the Hecke operator T (n). We remark that this map is not in general
surjective.

Definition. Let v ∈ M∨(R) and w ∈ M(R). We set

φ(v,w) :=
∑
m�0

〈v, tmw〉qm = deg v · deg w
2

+
∑
m�1

〈v, tmw〉qm.

Proposition 1.4. φ(v,w) is a weight 2 modular form of level L(R) and trivial character. More-
over,

φ(v,w)|T (n) = φ(tnv,w) = φ(v, tnw),

for any n � 1 such that (n,D(R)) = 1. In particular, for any eigenvector v ∈ M(R) for T0, the
modular form φ(v,v) is an eigenform for T0.

Proof. Since〈[a], tm[b]〉 = 1
#
{
x ∈ B: ax ∈ Tm(b)

} = 1
#
{
x ∈ a−1b: Nx = mN

(
a−1b

)}
,

2 2
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and 〈[a], t0[b]〉 = 1
2 , it follows that

φ
([a], [b]) = 1

2

∑
x∈c

qNc(x),

is the theta series of the lattice c = a−1b, with the quadratic form Nc. Its discriminant is a square;
we claim that its level is L(R). Indeed, locally cp = xpRpyp for some xp, yp ∈ B×

p (where

ap = Rpx−1
p , bp = Rpyp) and Nc(xpapyp) = upN(ap) for ap ∈ Rp , where up = Nc(xpyp)

is a p-adic unit. Therefore, the level of Nc in c is equal to the level of N in R. The latter is,
by definition, the smallest positive integer u such that uN(R∗) ⊆ Z, since the matrix of N on
a given basis of R is the inverse of the matrix of N on the dual basis of R∗; but this is just
L(R) = N(R∗)−1, as claimed.

For the second statement, in view of Proposition 1.3, it is enough to prove the identity for
n = p � D(R) a prime. But

φ(v,w)|T (p) =
∑
m�0

(〈v, tmpw〉 + p〈v, tm/pw〉)qm

(where tm/p = 0 if p � m) and

φ(v, tpw) =
∑
m�0

〈v, tmtpw〉qm,

and the result follows since Proposition 1.3 implies that tmp + ptm/p = tmtp . �
1.4. Special points

Let a ∈ Ĩ(R), and −d � 0 an integer, −d ≡ 0,1 (mod 4). The special points of discriminant
−d for a are

Ãd(a) := {
x ∈ Rr(a): �x = −d

}
,

where �x := (Trx)2 − 4Nx is the discriminant of the characteristic polynomial of x. These sets
are stable under translations by integers. For each d the set of orbits, which will be denoted by
Ad(a), is finite, and it is in bijection with any of the sets

Ãd,s(a) := {
x ∈ Ãd(a): Trx = s

} =
{
x ∈ Rr(a): Trx = s, Nx = s2 + d

4

}
,

where s is an arbitrary integer subject to the condition s ≡ d (mod 2).
The maps ad :M(R) → Z are then defined by ad([a]) = #Ad(a). When −d �≡ 0,1 (mod 4)

we set ad([a]) = 0. As before, we identify these maps with vectors

ed :=
∑

[a]∈I(R)

ad

([a])[a]∨ ∈ M∨(R).

This is consistent with the previous definition of e0.
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Lemma 1.5. Fix a prime p and let xp ∈ M2×2(Zp). The set

{
yp ∈ M2×2(Zp): detyp = p, ypxpy−1

p ∈ M2×2(Zp)
}

is invariant under left multiplication by unimodular matrices, and the number of orbits for this
action is 1 + p if xp ∈ Zp + pM2×2(Zp), and 1 + (�xp

p

)
otherwise.

Proof. As in the proof of Lemma 1.2, the statement follows from

(
p 0
0 1

)(
a b

c d

)(
p 0
0 1

)−1

∈ M2×2(Zp) ⇐⇒ c ≡ 0 (mod p),

(
1 i

0 p

)(
a b

c d

)(
1 i

0 p

)−1

∈ M2×2(Zp) ⇐⇒ ci2 + (a − d)i − b ≡ 0 (mod p),

since the discriminant of the quadratic equation above is �xp . �
Lemma 1.6. Let x ∈ Ãd(a). Then

#
{
b ∈ Tp(a): x ∈ Ãd(b)

} =
{

1 + p if x ∈ Z + pRr(a),

1 + (−d
p

)
if x /∈ Z + pRr(a),

for any prime p � D(R).

Proof. If b ∈ Tp(a) we have b and a equal outside p, and bp = apyp for some yp ∈ Rr(ap)

with Nyp = p; two such yp give the same b if and only if they are in the same orbit under left
multiplication by units of Rr(ap). Since p � D(R), we can identify Rr(ap) with M2×2(Zp), and
Lemma 1.5 proves the claim. �
Proposition 1.7. For any prime p � D(R) we have

tped = edp2 +
(−d

p

)
ed + ped/p2 .

Remark. Compare this with the formula for the action of the Hecke operators for weight 3/2 in
terms of Fourier coefficients [Sh, Theorem 1.7].

Proof. For an arbitrary [a] ∈ I(R), the left-hand side evaluated at [a] is

〈
tped, [a]〉 = 〈

ed, tp[a]〉 = ∑
b∈Tp(a)

〈
ed, [b]〉 = ∑

b∈Tp(a)

ad

([b]),
which just counts the number of pairs (b, x) such that b ∈ Tp(a) and x ∈ Ad(b). Since
pa ⊆ b ⊆ a, it is clear that x ∈ Rr(b) implies that px ∈ Rr(a). We count the number of pos-
sible pairs in each of three disjoint cases for x:
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(1) #
{
(b, x): x ∈ Z + pRr(a)

} = (1 + p)ad/p2

([a]).
There are ad/p2([a]) such x, and the count follows from Lemma 1.6.

(2) #
{
(b, x): x ∈ Rr(a), x /∈ Z + pRr(a)

} =
(

1 +
(−d

p

))(
ad

([a]) − ad/p2

([a])).
There are ad([a]) − ad/p2([a]) such x, and the count follows from Lemma 1.6.

(3) #
{
(b, x): x /∈ Rr(a)

} = adp2

([a]) − ad

([a]).
There are adp2([a])− ad([a]) such x; the count follows now from Lemma 1.6 applied to px,

since �(px) = −dp2 and
(−dp2

p

) = 0.

Adding up these expressions we get

〈
tped, [a]〉 = adp2

([a]) +
(−d

p

)
ad

([a]) +
(

p −
(−d

p

))
ad/p2

([a]),
and the statement now follows using the fact that

(−d
p

)
ad/p2([a]) = 0. �

1.5. Modular forms of weight 3/2

We will use the special points to construct modular forms of weight 3/2. Let

Ω = Ω(R) := gcd{�x: x ∈ R}.

Note that �x � 0, and �x = 0 if and only if x ∈ Q; thus

�R(x) := −�x/Ω(R)

defines a primitive positive definite ternary quadratic form on the lattice R/Z, which we denote
QR . More generally, if a ∈ Ĩ(R), it defines a positive definite ternary quadratic form on the lattice
Rr(a)/Z, which we denote Qa.

Proposition 1.8. Qa is in the same genus as QR . In particular, Qa is integral and primitive.
Conversely, any ternary quadratic form in the genus of QR will be equivalent to Qa for some
a ∈ Ĩ(R).

Proof. The claim is that Rr(a)/Z is locally isometric to R/Z. Indeed, ap = Rpxp for some
xp ∈ B×

p , and thus Rr(ap) = x−1
p Rpxp , inducing an isometry between Rp/Zp and Rr(a)/Zp .

Conversely, let Q be a quadratic form in the genus of QR . By the correspondence between
ternary quadratic forms and orders in quaternion algebras (see [Ll]), there is an order R′ in B

such that QR′ ∼ Q. Moreover, since Q and QR are in the same genus, it follows that R′ and
R are locally conjugate, i.e. R′

p = x−1
p Rpxp . Thus the right order of the R-ideal a given by

ap = Rpxp will be R′, and so Qa ∼ Q. �
Corollary 1.9. ed = 0 unless d ≡ 0 (modΩ).
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Proof. Note that ad([a]) equals the number of representations of d/Ω by Qa which, being
integral, represents only integers. Thus Ω � d implies ad([a]) = 0 for any a, so that ed = 0. �
Proposition 1.10. The level of Qa is 4L(R)/Ω(R), and its discriminant is, up to squares, Ω(R).

Proof. It is enough to find the level and discriminant for QR . Consider the map ρ :R/Z → R

given by ρ(u) = u − ū. Note that Nρ(u) = Ω · �Ru. Now, if u ∈ R we have ρ(u) = 2u − Tru ∈
Z + 2R, and conversely for t ∈ Z we can write, t + 2u = t + Tru + ρ(u) ∈ Z + ρ(R/Z). Thus
Z +ρ(R/Z) = Z + 2R, where the first sum is orthogonal (with respect to the quadratic form N).
It follows that the quadratic form N in the lattice Z + 2R is equivalent to the quadratic form
1 +Ω ·QR . The assertion follows now from a straightforward calculation, since the determinant
of Z + 2R is a square, and its level is L(Z + 2R) = 4L(R). �

Accordingly, we define the level and the character of an order R to be

N(R) := 4L(R)/Ω(R) and χR(n) :=
(

Ω(R)

n

)
.

We will be constructing a T0-linear map

Θ :M(R) → M3/2
(
N(R),χR

)
,

where M3/2(N(R),χR) is the space of modular forms of weight 3/2, level N = N(R) and charac-
ter χ = χR , with tn acting on this space by the Hecke operator T (n2) (see [Sh] for the definition
of modular forms of half integral weight and the Hecke operators acting on them).

Definition. Let v ∈ M(R). We set

Θ(v) := 1

2

∑
d�0

〈ed,v〉qd/Ω = deg v
2

∑
d�1

ad(v)qd/Ω.

Proposition 1.11. Θ(v) is a weight 3/2 modular form of level N(R) and character χR . It is a
cusp form if and only if deg v = 0. Moreover,

Θ(v)|T (n2) = Θ(tnv),

for any n � 1 that (n,D(R)) = 1.

Proof. We have

Θ(a) = 1

2

∑
x∈Rr(a)/Z

q�R(x),

is the theta series of the quadratic form Qa, and the claim on the level and character follows from
Proposition 1.10.

For the second claim, note that Θ(v) is a linear combination of theta series corresponding to
quadratic forms in the same genus; thus it vanishes at all the cusps if and only if it vanishes at
the ∞ cusp.

The last statement is exactly Proposition 1.7. �
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Proposition 1.12. If R′ = Z + bR for some b ∈ Z, then D(R′) = b3D(R), L(R′) = b2L(R), and
Ω(R′) = b2Ω(R), hence

N(R′) = N(R) and χR′ = χR.

Moreover, Θ(M(R′)) = Θ(M(R)).

Proof. Indeed since R′/Z = b(R/Z) it is obvious that Ω(R′) = b2Ω(R) and that indeed QR′ =
QR . Everything else follows easily as in the proof of Proposition 1.10. �
Definition. An order R is called primitive if it is not of the form R = Z+bR′ with b ∈ Z, b �= ±1
and R′ an order.

Corollary 1.13. For the purpose of constructing modular forms of weight 3/2, it is enough to
consider primitive orders.

1.6. Subideals

Let R, R′ be orders and a be a left R-ideal. We define

Ψ R
R′(a) := {

b ∈ Ĩ(R′): b ⊆ a, Nb = Na
}
.

This induces a map ψR
R′ :M(R) �→ M(R′) by ψR

R′([a]) := ∑
b∈Ψ R

R′ (a)[b].

Proposition 1.14. Let R and R′ be orders in B . Then

tmψR
R′ = ψR

R′ tm

provided (R)p = (R′)p for all primes p dividing m.

Proof. Let a ∈ Ĩ(R). Given b ∈ Ψ R
R′(a) and c ∈ Tm(b) there is a unique b′ ∈ Tm(a) such that

c ∈ Ψ R
R′(b′). Namely, if p � m, bp = cp and b′

p = ap . Otherwise, ap = bp and b′
p = cp . Similarly,

given b ∈ Tm(a) and c ∈ Ψ R
R′(b) there is a unique b′ such that b′ ∈ Ψ R

R′(a) and c ∈ Tm(b′). �
In the particular case where R′ ⊂ R the hypothesis of the proposition is equivalent to

gcd(m, [R′ : R]) = 1.

2. Orders of level p2

Fix a prime p > 2, and let B be the quaternion algebra over Q which is ramified at p and ∞.
Let O be a maximal order in B and let Õ := {x ∈ O: p | �x} be the unique order of index p in O.
Note L(Õ) = D(Õ) = p2, but N(Õ) = 4p since Ω(Õ) = p.

Lemma 2.1. Let R be an order, and let x ∈ B . A necessary and sufficient condition for R′ =
Zx + R to be an order is that x be integral and xR ⊆ R′.
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Proof. Clearly if R′ is an order, x has to be integral, and since R′R′ = R′, we have xR ⊆ R′. The
other implication follows from the fact that x being integral implies x2 = Tr(x)x − N(x) ∈ R′,
hence R′ is closed by multiplication. �
Proposition 2.2. Let L ⊂ Õ be a lattice such that [Õ : L] = p. Then L is an order if and only if
Z + pO ⊂ L.

Proof. Let O′ be an order of index p in Õ. Locally, O′ is already maximal outside p hence
all orders are the same. At p there is a unique maximal order since B is ramified there. Let
{u0 = 1, u1, u2, u3} be an orthogonal basis for O′

p . If Z + pO �⊂ O′ then there exists v ∈ O′

such that O = Z v

p2 + O′. Since p4 | N(v) we claim that one of the basis elements of O′
p has

norm divisible by p4. Note that v/p /∈ O′ hence v can be written as v = ∑
aiui with some ai

not divisible by p. If p4 � N(ui) for i = 0, . . . ,3 we would have a non-zero solution of N(v) =
0 mod (p4) which by Hensel Lemma would lift to wp , a non-zero element in Bp with N(wp) = 0.
This cannot happen since the quadratic form norm is anisotropic on Bp . Hence p4 | N(ui) for
some i (say p4 | N(u3)). Then Zp

u3
p2 + O′

p = Op . O′
p being an order and the chosen basis being

orthogonal implies u1u2 = ku3 with k ∈ Zp , i.e. O = {l, u1, u2,
u1u2

k
}. But p2 � N(ui) for i = 1,2

and u1u2
p2k

∈ O then N(u1)N(u2)

p4k2 ∈ Zp therefore k /∈ Zp which is a contradiction.

Conversely, if L is such a lattice, let x ∈ L such that x /∈ Z+pO, so that L = Zx + (Z+pO).
But x(Z + pO) = Zx + pxO ⊆ Zx + (Z + pO), and Lemma 2.1 implies that L is an order. �

The orders as in the above proposition will be said to be the orders of level p2, and will be
denoted by O′. Note that L(O′) = D(O′) = p3 and N(O′) = 4p2.

Remark. There are no orders R with L(R) = p2 and N(R) = 4p2.

Lemma 2.3. Let x ∈ O′. If x /∈ Z + pO then p ‖ �x and
(�x/p

p

) = ±1 is independent of x.

Proof. Let x0 ∈ O′ be such that O′ = Zx0 + (Z+pO). Any element x ∈ O′ is of the form ax0 +v

where v ∈ Z + pO, hence x /∈ Z + pO if and only if p � a. But �x = a2�x0 + 2a(N(x0v) −
N(x0v̄)) + �x ≡ a2�x0 (mod p2), hence the Kronecker symbol is independent of x. �

We define the character of O′ to be

σ(O′) :=
(

�x/p

p

)
,

where x is in the conditions of the lemma.

Proposition 2.4. Two orders O′
1 and O′

2 of level p2 are locally conjugate if and only if σ(O′
1) =

σ(O′
2).

Proof. It is clear that σ(O′) is an invariant by conjugation, since �(αxα−1) = �x for any α ∈
B×

p .
For the converse, let xi ∈ (O′

i )p (i = 1,2) such that Tr(xi) = 0 and (O′
i )p = (Zp + pOp) +

Zpxi . We can assume that N(x1) = N(x2), since �xi = 4N(xi) implies N(x1/x2) ∈ (Z×
p )2. In
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this case there is an element α ∈ Bp that sends x1 to x2 via conjugation. Clearly conjugation by
α sends (O′

1)p onto (O′
2)p since the maximal order being unique at p, any conjugation has to

send Op onto Op , and thus Zp + pOp onto Zp + pOp . �
Define the group H := Z×

p (1 + pOp)\O×
p , the group G := Z×

p (1 + pOp)\Õ×
p and the group

S := Z×
p (1 + pOp)\(O′

p)×.

Lemma 2.5. The groups defined above satisfy:

(1) #H = p2(p + 1), #G = p2 and #S = p.
(2) S � G � H.

Proof. Let π be a generator of the unique order of norm p in Op (in particular π2 = pu with
u ∈ Z×

p ), then:

O×
p = {

a0 + a1π + a2p + · · · : ai ∈ Op/〈π〉 and a0 ∈ (
Op/〈π〉)×}

,

Õ×
p = {

Z×
p + a1π + a2p + · · · : ai ∈ Op/〈π〉}

and

Z×
p (1 + pOp) = {

Z×
p + a2p + · · · : ai ∈ Op/〈π〉 and a0 ∈ (

Op/〈π〉)×}
.

These equations and the fact that O′
p �= Zp + pOp imply the first statement. Also it is clear that

Õ×
p � O×

p and (O′
p)× � Õ×

p for any order O′ which proves the second statement. �
Given an order R and A ⊂ Ĩ(R), we denote [A] := {[a]: a ∈ A}.

Theorem 2.6. Let O, Õ and O′ as before. Then:

(1) I(Õ) = ⊔
[a]∈I(O)[Ψ O

Õ
(a)] (disjoint union).

(2) The set Ψ O
Õ

(a) is a principal homogeneous space for the cyclic group G\H.

(3) I(O′) = ⊔
[b]∈I(Õ)[Ψ Õ

O′(b)]. Furthermore #[Ψ Õ
O′(b)] = #Ψ Õ

O′(b) = p.

(4) All elements in Ψ Õ
O′(b) have the same right order for any [b] ∈ I(Õ).

(5) Ψ Õ
O′(b) is a principal homogeneous space for S\G.

Proof. Points (1) and (2) are Section 3.3 of [Pa-Vi], where the action of xp ∈ B×
p on an ideal b

is given by right multiplication by the adele

(xq) =
{

xp if q = p,

1 if q �= p.

Note that G\H might not act freely on [Ψ O
Õ

(a)]. Indeed, one can see that the stabilizer of this
action is a subgroup of order 〈[a], [a]〉.
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In (3) the union is clearly disjoint: if ci ∈ [Ψ Õ
O′(b)] with bi ∈ I(Õ), for i = 1,2 and c1 = c2x

for some x ∈ B , then b1x = Õc1x = Õc2 = b2. Now let c be any left O′-ideal. Then Õc is a left
Õ-ideal, and Nc = N(Õc), hence c ∈ Ψ Õ

O′(Õc).

Hence we are led to prove that Ψ Õ
O′(b) has exactly p elements, all non-equivalent. Clearly if

c ∈ Ψ Õ
O′(b), [b : c] = p.

Lemma 2.7. The set Ψ Õ
O′(b) is non-empty.

Proof. Let b be a left Õ ideal, say bq = Õqxq , then the lattice c given locally by cq = O′
qxq is in

Ψ Õ
O′(b). �

Consider the left action of G on Ψ Õ
O′(b) defined by g ∈ G on an ideal c ∈ Ψ Õ

O′(b), say cq =
O′

qxq locally, by

(g · c)q =
{

O′
pgxp if q = p,

O′
qxq = cq if q �= p.

Since (O′
p)× � Õ×

p it is easy to check that this action is well defined and that the stabilizer of this

action is S. Furthermore if c,d ∈ Ψ Õ
O′(b), then Õc = Õd. Hence, if cp = O′

pxp and dp = O′
pyp ,

there exists g ∈ Õ×
p such that xp = gyp , thus g · d = c, i.e. Ψ Õ

O′(b) is a principal homogeneous

space for S\G. In particular the number of elements in Ψ Õ
O′(b) is p and they all have the same

right order. Two elements cannot be equivalent since there are no units in Õ other than ±1 and
all elements in Ψ Õ

O′(b) have the same norm. �
A left Õ-ideal b ∈ Ψ O

Õ
(a) can be computed using Lemma 2 in [Pa-Vi]. Acting on the right of b

by representatives of G\H we obtain all of Ψ O
Õ

(a). Repeating for all a in a set of representatives

of I(O), we can obtain a set of representatives for I(Õ).

Lemma 2.8. Let m = mO′ := {x: xÕ ⊂ O′}. Then mO′ is a bilateral Õ-ideal of index p2 in Õ.

Proof. Since mq = Õq for all primes q �= p it is clear that m is bilateral. Also from the chain
Rp � Õp � O′

p � mp � pRp we see that m has index p2 in Õ. �
Proposition 2.9. mO′b ⊂ b with index p2 for any left Õ-ideal b. Furthermore,

Ψ Õ
O′(b) = {c: mO′b � c � b and Nc = Nb}.

Proof. The first claim follows directly from the lemma. Thus, the number of lattices c such that
mO′b � c � b is p+1. The left O-ideal corresponding to the different of O times b is among these
p + 1 lattices but has norm pNb, then the set on the right is empty or has exactly p elements.
Hence we are led to prove that there exists a left O′-ideal c ∈ Ψ Õ′(b) such that mO′b � c � b
O
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and Nc = Nb. Let cq = bq for all primes q �= p and if bp = Õpxp , let cp = O′
pxp , then c has the

required properties. �
Remark. We can obtain representatives for I(O′) by applying this proposition to each one of a
set representatives for I(Õ).

3. Example: Prime p = 7

Let B = B(−1,−7), the quaternion algebra ramified precisely at 7 and ∞. This quater-
nion algebra has class number 1 (hence type number 1 also). A maximal order is given
by

O =
〈
1, i,

1 + j

2
,
i + k

2

〉
.

Its index 7 suborder is given by

Õ =
〈
1,7i,

1 + j

2
,

7i + k

2

〉
.

A generator of G\H is the element 1+2i+j
2 ∈ O×

p . Hence, we get all the left Õ-ideals by

repeatedly acting on Õ by this element.
Let b be a lattice in B , and let xp ∈ B×

p . We denote b 
 xp the action, by right multiplication,
of the adele

(xq) =
{

xp if p = q,

1 if p �= q,

on the lattice b. Let R be the right order of b. We can compute this action as follows:

(1) Let k be the smallest integer such that pkRp ⊆ Rpxp (so that pkbp ⊆ bpxp). For instance,
let k = t + s, where t is the valuation at p of Nxp , and s is the smallest integer such that
psxp ∈ Rp .

(2) Let y ∈ R[p−1] such that y − xp ∈ pkRp . For instance, write xp in a basis of R with coeffi-
cients in Qp , and then reduce the coefficients modulo pk .

(3) It now follows from a local computation that b 
 xp = pkb + by. Indeed, at q �= p we have
y ∈ Rq , and bq = pkbq . At p it follows from (2), since pkbp ⊆ bpxp .

As an example, consider the case b1 = Õ and 1+2i+j
2 ∈ B×

p , with p = 7. The right order of b1

is R = Õ, and we can take k = 1. Note that xp ∈ R[1/7], hence we can use 1+2i+j
2 ∈ B×. It is

now easy to compute b2 = 7b1 + b1y.
Repeating, we obtain Ψ O

Õ
(O) = {bi : 1 � i � 8}, where the left Õ-ideals bi and their characters

are shown in Table 3.1. The ideals bi and b4+i for 1 � i � 4 are equivalent (since 〈[a], [a]〉 = 2),
hence

I(Õ) = {bi : 1 � i � 4}.
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Table 3.1
Table of left Õ-subideals

Õ-subideals χ

b1 = 〈1,7i,
1+j

2 , 7i+k
2 〉 +

b2 = 〈7,4 + i,
7+j

2 , 4+i+k
2 〉 −

b3 = 〈7,1 + i,
7+j

2 , 8+i+k
2 〉 +

b4 = 〈7,2 + i,
7+j

2 , 2+i+k
2 〉 −

b5 = 〈7, i,
7+j

2 , i+k
2 〉 +

b6 = 〈7,5 + i,
7+j

2 , 12+i+k
2 〉 −

b7 = 〈7,6 + i,
7+j

2 , 6+i+k
2 〉 +

b8 = 〈7,3 + i,
7+j

2 , 10+i+k
2 〉 −

We fix two index 7 suborders of Õ

O+ =
〈
1,7i,

1 + j

2
,

7i + 7k

2

〉
,

O− =
〈
1,7i,

1 + 7j

2
,

1 + 7i + 5j + k

2

〉
in the + and − genus respectively. Table 3.2 shows the subideals under each bi for O+ (respec-
tively O−), for i = 1, . . . ,4.

4. Gross formula for level p2

The aim here is to conjecture a formula that applies to modular forms of level p2, similar to
the one proved by Gross in [Gr, Proposition 13.5, p. 179] for prime level. Keep the notation of the
previous section, and let f be a newform of weight 2 and level p2, such that f is an eigenform
for the Hecke operators. We denote by L(f, s) the Hecke L-series of f , and for D a fundamental
discriminant we define its twisted L-series as

L(f,D, s) := L(f ⊗ D,s),

where f ⊗ D is (the newform corresponding to) the twist of f by the quadratic character n �→(
D
n

)
. Recall that L(f,D, s) is an entire function of the complex plane with a functional equation

relating its values at s and 2−s, with central value L(f,D,1). The sign of the functional equation
will be denoted by ε(f,D). This sign determines the parity of the order of vanishing of L(f,D, s)

at s = 1; in particular when ε(f,D) = −1 it is trivial that L(f,D,1) = 0.
We denote by M(Õ)f the f -isotypical component of M(Õ), i.e. the eigenspace of T0 with

the same eigenvalues as f . We have the following result due to Pizer [Pi, Theorem 8.2, p. 223]:

dimM(Õ)f =
{2 if f is not the twist of a level p form,

1 if f is a level p form twisted by a quadratic character,
0 iff is a level p form twisted by a non-quadratic character.

In what follows we will assume that f is not in the last case, i.e. that M(Õ)f �= 0.
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Table 3.2
Table of left O+- and O−-subideals

Õ-ideals O+-subideals O−-subideals

b1 〈1,7i,
1+j

2 , 7i+7k
2 〉 〈1,7i,

1+7j
2 ,

1+7i+5j+k
2 〉

〈7,7i,
7+j

2 , 2+7i+k
2 〉 〈7,7i,

1+j
2 , 2+7i+k

2 〉
〈7,7i,

7+j
2 , 4+7i+k

2 〉 〈7,7i,
3+j

2 , 6+7i+k
2 〉

〈7,7i,
7+j

2 , 6+7i+k
2 〉 〈7,7i,

5+j
2 , 10+7i+k

2 〉
〈7,7i,

7+j
2 , 8+7i+k

2 〉 〈7,7i,
9+j

2 , 4+7i+k
2 〉

〈7,7i,
7+j

2 , 10+7i+k
2 〉 〈7,7i,

11+j
2 , 8+7i+k

2 〉
〈7,7i,

7+j
2 , 12+7i+k

2 〉 〈7,7i,
13+j

2 , 12+7i+k
2 〉

b2 〈7,4 + i,
7+7j

2 ,
11+i+3j+k

2 〉 〈7,4 + i,
7+7j

2 , 4+i+k
2 〉

〈7,7i,
1+2i+j

2 , 4+i+k
2 〉 〈7,7i,

1+2i+j
2 , 7i+k

2 〉
〈7,7i,

3+6i+j
2 , 12+3i+k

2 〉 〈7,7i,
3+6i+j

2 , 7i+k
2 〉

〈7,7i,
5+10i+j

2 , 6+5i+k
2 〉 〈7,7i,

5+10i+j
2 , 7i+k

2 〉
〈7,7i,

9+4i+j
2 , 8+9i+k

2 〉 〈7,7i,
9+4i+j

2 , 7i+k
2 〉

〈7,7i,
11+8i+j

2 , 2+11i+k
2 〉 〈7,7i,

11+8i+j
2 , 7i+k

2 〉
〈7,7i,

13+12i+j
2 , 10+13i+k

2 〉 〈7,7i,
13+12i+j

2 , 7i+k
2 〉

b3 〈7,1 + i,
7+7j

2 ,
8+i+6j+k

2 〉 〈7,1 + i,
7+7j

2 ,
8+i+2j+k

2 〉
〈7,7i,

1+8i+j
2 , 8+i+k

2 〉 〈7,7i,
1+8i+j

2 , 12+5i+k
2 〉

〈7,7i,
3+10i+j

2 , 10+3i+k
2 〉 〈7,7i,

3+10i+j
2 , 8+i+k

2 〉
〈7,7i,

5+12i+j
2 , 12+5i+k

2 〉 〈7,7i,
5+12i+j

2 , 4+11i+k
2 〉

〈7,7i,
9+2i+j

2 , 2+9i+k
2 〉 〈7,7i,

9+2i+j
2 , 10+3i+k

2 〉
〈7,7i,

11+4i+j
2 , 4+11i+k

2 〉 〈7,7i,
11+4i+j

2 , 6+13i+k
2 〉

〈7,7i,
13+6i+j

2 , 6+13i+k
2 〉 〈7,7i,

13+6i+j
2 , 2+9i+k

2 〉
b4 〈7,2 + i,

7+7j
2 ,

9+i+5j+k
2 〉 〈7,2 + i,

7+7j
2 ,

9+i+j+k
2 〉

〈7,7i,
1+4i+j

2 , 2+i+k
2 〉 〈7,7i,

1+4i+j
2 , 6+3i+k

2 〉
〈7,7i,

3+12i+j
2 , 6+3i+k

2 〉 〈7,7i,
3+12i+j

2 , 4+9i+k
2 〉

〈7,7i,
5+6i+j

2 , 10+5i+k
2 〉 〈7,7i,

5+6i+j
2 , 2+i+k

2 〉
〈7,7i,

9+8i+j
2 , 4+9i+k

2 〉 〈7,7i,
9+8i+j

2 , 12+13i+k
2 〉

〈7,7i,
11+2i+j

2 , 8+11i+k
2 〉 〈7,7i,

11+2i+j
2 , 10+5i+k

2 〉
〈7,7i,

13+10i+j
2 , 12+13i+k

2 〉 〈7,7i,
13+10i+j

2 , 8+11i+k
2 〉

Since N(Õ) = 4p, it follows that Θ(M(Õ)f ) = 0. In order to obtain modular forms of weight
3/2 and level 4p2, we have to employ the orders of level p2 introduced in Section 2. Let O′ be
such an order. The general construction of Section 1 gives a Hecke-linear map

Θ :M(O′) → M3/2
(
4p2, �p

)
,

where �p(n) := (p )
is the character of O′. However, the space M(O′) represents weight 2
n
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modular forms of level p3, and hence it is too big. Indeed, by Theorem 2.6(3) we know that
dimM(O′) = p dimM(Õ).

To overcome this problem, we will use the theory of Section 2 and define Hecke-linear maps

ΘÕ
O′ := 1

p
Θ ◦ Ψ Õ

O′ :M(Õ) → M3/2
(
4p2, �p

)
,

which in view of Theorem 2.6 can also be defined, for [b] ∈ I(Õ), by

ΘÕ
O′

([b]) := Θ
([c]),

where c is any ideal in ψÕ
O′(b). Note that, although the map ΘÕ

O′ depends on Õ and O′, its image
depends only on σ(O′), so that we really have only two different constructions.

Proposition 4.1. Let p∗ = (−1
p

)
p be the prime discriminant associated to p. Note that the level

of f ⊗ p∗ can be p or p2. If ε(f,1) = +1 and either

(A) f ⊗ p∗ has level p and ε(f,p∗) = (−1
p

)
σ(O′), or

(B) f ⊗ p∗ has level p2 and ε(f,p∗) = (−1
p

)
,

then ΘÕ
O′(M(Õ)f ) = 0.

Proof. From ε(f,1) = +1 it follows that ε(f,−d) = −1 for any fundamental discriminant
−d < 0 not divisible by p. Either of the conditions imply that for any fundamental discrimi-
nant −pd < 0 with

(
d
p

) = σ(O′) we have ε(f,−pd) = −1 (see Lemma 30 and Theorem 6 of
[At-Le]), and in particular L(f,−pd,1) = 0. The result now follows from Waldspurger’s for-
mula [Wa, Théorème 1]. �

It is worth noting that the first examples of f satisfying condition (B) above (e.g. the modular
form of level 132 and degree 2 over Q, as well as the two rational modular forms of level 372

and rank 0, or one of the rational modular forms of level 432 and rank 0), we found that indeed
M(Õ)f = 0. It is an interesting question whether condition (B) characterizes all modular forms of
level p2 and trivial character coming from level p ones by twisting by a non-quadratic character.

Conjecture 1. Assume M(Õ)f �= 0

(1) if L(f,1) = 0, then ΘÕ
O′(M(Õ)f ) = 0;

(2) if L(f,1) �= 0, then ΘÕ
O′(M(Õ)f ) �= 0, unless f and O′ are in the conditions (A) or (B) of

Proposition 4.1.

Remark. In case L(f,1) �= 0, the conjecture asserts that our construction yields two different
weight 3/2 modular forms (in Kohnen space) in Shimura correspondence with f , unless f ⊗ p∗
has level p, where the construction yields only one modular form, or if f is in condition (B),
where we obtain no modular forms. It follows from [Ue88, Proposition 3] that this is exactly
what is available in Kohnen space, even when L(f,1) = 0.
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Note that the analogue of our conjecture for the case of level p is true, and follows from
Gross’s formula [Gr]. This has been extended to the case of odd square free level in [Bö-SP90]
and [Bö-SP92]. To support our conjecture we will give an explicit version, namely a formula,
which has been verified numerically for many cases.

The strong multiplicity one theorem of Ueda [Ue93, Theorem 3.11, p. 181] implies
that dimΘÕ

O′(M(Õ)f ) � 1. The above conjecture gives conditions on O′ and f so that

ΘÕ
O′(M(Õ)f ) �= 0. In that case, kerΘÕ

O′ has codimension 1 in M(Õ)f , and thus a vector

ef,O′ ∈ M(Õ)f is well defined up to a constant by requiring it to be orthogonal to kerΘÕ
O′ ;

we will write

Θf,O′ := ΘÕ
O′(ef,O′) =

∑
d�1

cf,O′(d)qd .

Otherwise, although our method yields the zero modular form, we will use ef,O′ to denote any
non-zero vector in M(Õ)f , with the understanding that it does not really matter which one we
choose since Θf,O′ = 0 regardless of this choice, because our conjectural formula below is non-
trivial even in this case.

Define the rational constant αf by

αf := 1

2
·
{

1 if f is not the twist of a level p form,
p

p−1 if f is the quadratic twist of a level p form.

Conjecture 2. Let d be an integer such that −pd < 0 is a fundamental discriminant, and such
that

(
d
p

) = σ(O′). Then

L(f,−pd,1)L(f,1) = αf

〈f,f 〉√
pd

cf,O′(d)2

〈ef,O′ , ef,O′ 〉 .

Remark. The formula is true up to a constant (depending on f and O′), by Waldspurger’s theo-
rem. Moreover, in case f is rational it is possible to prove that L(f,−pd,1)L(f,1)

√
pd/〈f,f 〉

is a rational number of bounded height, and a similar result holds for general f . Thus there is an
effective procedure to determine if the formula is true for any particular f . See [Pa-To] for some
numerical examples in the cases p = 7,11,17,19, where the formula has been verified.

We note the following complement of Proposition 4.1:

Lemma 4.2. Assume f and O′ are such that neither of the conditions (A) nor (B) of Proposi-
tion 4.1 hold. Then there is a fundamental discriminant −pd < 0 such that ( d

p
) = σ(O′), and

L(f,−pd,1) �= 0.

Proof. It is easy to see that if neither (A) nor (B) hold, then for any fundamental discriminant
−pd ′ < 0 such that

(
d ′
p

) = σ(O′), we have ε(f,−pd ′) = +1. It now follows from [BFH] that

there is a fundamental discriminant d ′′ prime to d ′ such that d ′′ > 0 and
(

d ′′
p

) = +1, for which
L(f ⊗ −pd ′, d ′′,1) �= 0. It is clear that d = d ′d ′′ will satisfy the claimed conditions. �
Proposition 4.3. Conjecture 2 implies Conjecture 1.
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Proof. If L(f,1) = 0, then clearly the formula implies that Θf,O′ = 0. Conversely, if the con-
ditions of Proposition 4.1 are not satisfied, the lemma asserts the existence of some d in the
hypothesis of Conjecture 2 for which L(f,−pd,1) �= 0. Thus, if L(f,1) �= 0, it follows that
cf,O′(d) �= 0, i.e. Θf,O′ �= 0. �
Remark. When p ≡ 3 (mod 4), and f is a modular form of level p or p2, this method can be
used to compute a weight 3/2 modular form whose Fourier coefficients are related to the central
values of real quadratic twists of f . See [Pa-To] for an exposition of this method and examples.
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