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Abstract-The paper studies a class of Dirichlet problems with homogeneous boundary conditions 
for singular semilinear elliptic equations in a bounded smooth domain in W. A numerical method is 
devised to construct an approximate Green’s function by using radial basis functions and the method 
of fundamental solutions. An estimate of the error involved is also given. A weak solution of the 
above given problem is a solution of its corresponding nonlinear integral equation. A computational 
method is given to find the minimal weak solution U, and the critical index X* (such that a weak 
solution U exists for X < X’, and U does not exist for X > X’). @ 2002 Elsevier Science Ltd. All 
rights reserved. 
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1. INTRODUCTION 

Let R be a bounded smooth domain in Rn, dR be its boundary, and q be a real number greater 

than 2. We consider the following singular semilinear elliptic boundary value problem: 

-AU = Xg(z)h(U), in 0, U = 0, on 69, (1) 

where g E L’J(R) is positive and may have singularities in R, and h(U) E C’( [0, c)) for some 

positive constant c such that h(0) > 0, h’ 2 0, and lim u-,~- h(U) = co. Let G(z;<) denote 

Green’s function of -AU = 0 in R corresponding to the boundary condition U = 0 on dQ. Then, 

A weak solution of the Dirichlet problem (1) is a solution of the nonlinear integral equation (2). 

We call X* the critical index of problem (1) if a weak solution U exists for X < X*, and U does 

not exist for X > X*. 

When g(z) E 1, computational methods for X* have been given by Chan [l] using Green’s 

function for elliptic domains, Chan and Chen [2] using fundamental solutions (cf. [3]) with the 

dual reciprocity method, and Chan and Ke [4] using the finite-difference method for rectangular 

domains. 
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Due to the singularity of g(z), none of the methods used above works for problem (1). Our 

main purpose here is to introduce a numerical method to compute Green’s function and the 

critical index X*. In Section 2, we introduce a numerical method to construct an approximate 

Green’s function by using radial basis functions and the method of fundamental solutions. An 

estimate of the error involved is also given. In Section 3, we give examples to illustrate the errors 

involved in computing the approximate Green’s function, the computation of the minimal weak 

solution U, and the critical index X*. 

As an application of our study here, we note that problem (1) is the steady-state of the following 

singular (quenching) problem: 

u,_ - Au = Xg(z)h(u), in 0, 

U(Z, 0) = 0, on !C& ~(2, t) = 0, on dR x (0, T), 

where T 5 co, and fi denotes the closure of a. A solution u is said to quench if there exists a 

finite time T such that 

sup U(Z, t) -+ c-, ast-+T. 
xEc2 

The critical index X* corresponds to the size of the domain such that a solution u does not quench 

for X < X*, and u quenches at some finite time T for X > X*. 

2. NUMERICAL METHOD 

We note that 

G(z; E) = Y(Z; 6) + V; 0, 

where y(z;t) is the fundamental solution of the operator A, and I’(z;<) is the solution of the 

following problem: 

-Ar(~c; 6) = 0, in R, l?(s; t) = -y(s; 0, on 6%. (3) 

Since y(rc; <) is known, we use the method of fundamental solutions to construct l?(z; I). For any 

fixed < E R, 

I(x;5) = J 4% EMT 77) d% 
t?B 

where a(~; <) is an unknown source density function, and B is an arbitrary domain containing R 

with 8B denoting the boundary of B (cf. [5]). Let us approximate g(q;<) by 

N 

aN(%t) = ~Ck(t)fih - Vk)> 

k=l 

for n E 8B, 

where {nk}~!i is a set of points on the boundary dB. Hence, 

By selecting a set of points {xj}jN_i on Xl, we have 

&k(th(xj;rik) = -r(zj;t)> j = 1,2,3 ,...>N. 

k=l 

To construct Green’s function, let us choose a set of points {&}zi in R, and compute 

{ck (#:=r Y for i = 1,2,3 ,..., m. 
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Once {f(z; <i)}gi is known, we construct I’(z; <) by interpolation. Since I’(s; 5) is an approxi- 

mation, it need not satisfy (3). Thus, there exists a function E(Z; E_) such that 

-Ai?@; E) = E(IC; <), in R, F(s;<) = -y(z;J), on 30. 

Let w = l? - r. We have 

-Aw = E(Z; E), in R, w = 0, on Xl. 

Thus, 

From 

we have an estimate of the error: JjwJI2 5 C i E oo, where Cl is a constant depending only on 0. 11 (1 

For the linear problem, 

-AU = p(x), in R, U = 0, on 8R, 

once F(x; 5) is known, we can use (2) to compute an approximation U(x) of U(z). If G(x; E) is 

an approximation of G(x; S), then 

[ G(x; rl) - &; v)] P(V) dv 

= II W(l7)PCrl) dv 

5 lIPi lbll2 

5 c2 IIPII:! 1141, 

for some positive constant CZ. 

For the nonlinear case, we have the successive iterations: 

U(O)(x) = 0, 

U(n+l)(x) = A s, G(x; rl)drl)h (U(%)) dv, n = 0, 1,2, . . . . 

Since g and h are positive in R, and h is a nondecreasing function, it follows that {U(“)} is a 

nondecreasing sequence. If {U(n)} converges to a function U(x) pointwise, then by the monotone 

convergence theorem, U(x) is a solution of the integral equation (2). Because the construction 

starts with a lower solution, it follows that U is the minimal solution. 

To construct Ucn), we use the following algorithm. Let n = 0, and we choose a set of points 

{Ei)Si c fi. 

(1) We construct Green’s function G(x; 17) according to the above algorithm. 

(2) For n = n + 1, we compute {U(n)(&)}zn=l, and construct U(“)(z) in R. 

(3) We compute 6 = JIU(n) - U(n-l)ll,, and if 6 is less than a given tolerance, we stop; 

otherwise, we repeat Step (2). 
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3. EXAMPLES 

We give several two-dimensional numerical examples by using Meschach (a linear algebra pack- 

age in C, developed by School of Mathematical Sciences, Australian National University), GNU C, 

and Mathematics. We also use the thinplate spline interpolation to construct the approximate 

Green’s function and the function Ucn) from the discrete data. Let 

j=l,2,3 ,..., N, 

where {x(j)}& is a given set of points in R2, and {fj}$‘=i is a given set of real numbers. In 

the thinplate spline interpolation, we seek a smooth function s(.) : R2 H IIt by minimizing the 

following integral: 

I(s) =L2 [($)‘+ (&J2+ (g)2] dx. 

Duchon [6] showed that s(a) has the form 

s(x) = 5 ,Bj 112. - x(j)JII In IJx - x(j)li2 + p(x), x E R2, 
j=i 

where {&},“,, is a set of real coefficients, p(x) is a linear polynomial, and I(s) is finite if and 

only if 

ep, = &Jjxi” = &JjXPJ = 0. 

j=l j=l j=l 

Thus, to find the interpolation, we only need to solve 

where 

A = (11 .(i) _ x(d 21n .(i) _ .(j) II I/ 2 II> 2 ’ 

f=(fl,f21f3,...,fN)T, 

P=(P1,P2,P3,...,PN)T, 
a = (al, a2, a3). 

3.1. Green’s Function 

For illustration, let us consider a unit disk, 

s-2 = {(x1,22) : XI +x,2 < l}. 

Its Green’s function is given by 

G(xl,x2;El,G) = & ln 2 , ( > 
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Figure 1. 85 grid points in a unit disk. 
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Figure 2. Errors of the approximated Green’s function with magnification factor 103. 

where p is the distance between (0,O) and (<I, &), Rr is the distance between (&, ~$2) and (51, Q), 

and Rz is the distance between (cl, &)/p’ and (zr, ~2). Let us take 50 points on the boundary XI 

and 85 points in R. See Figure 1. 
We choose 6’B to be XT + z$ = 4. Figure 2 shows the accumulated errors of 100 random points 

in R for some fixed (<I, (2). 

3.2. Linear Equation 

Let us consider 
_av = Iln [(xl - 0.5)2 + 61 I 

4 

in the ellipse domain, 

R= (21,22): T+z; < 1 . 
{ 

X1 

1 

As shown in Figure 3, we set up the grid with 100 boundary points on dR and 125 interior points 

in a. 

We choose dB to be x:/S + xz/4 = 1. With this setting, the solution is shown in Figure 4. 
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Figure 3. 125 grid points in an ellipse. 
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Figure 4. Linear problem. 

3.3. Nonlinear Equation 

Let us consider 
_av = x Iln [@I - @512 + +I / 

1-u 

in the elliptic domain, 

I ‘ I 

with the same grid setting as in the previous example. For X = 1, we have the minimal solution U 

as shown in Figure 5. 

1 

Figure 5. Nonlinear problem: nine iterates, andX Lm norm of successive difference 
= 0.000096. 
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3.4. Critical Index 

Let us consider the problem 

_*v = x lln I@1 - O.5)2 + 611 
1-U ’ 

in R, U = 0, on do. 

Let VI be the solution of 

-AU = Iln )(zl - 0.5)~ + lcgl\, in 52, U = 0, on do. 

We note that X(O) = l/llU~lloo is an upper bound of X*. Since 0 is a lower bound of X* , we develop 

the following bisection procedure to determine the critical index X*. 

STEP 1. The first estimate of X* is X(l) = X(O)/2. 

STEP 2. For each approximation Xtn), we compute the sequence {Uti)} defined by U(O) = 0 on fi, 

and for i 2 1, 

If {Cdi)} is bounded by 1 and converges, then we take this value Xcn) as a lower bound of X*; 

otherwise, it is an upper bound of X*. 

STEPS. Forn=n+l,ifJX (n-l) - X(n-2)l < E (a given tolerance), then (l/2)(X(n-1) + Xcne2)) 

is accepted as the final estimate of the critical index, and we stop; otherwise, we go to the next 

step. 

STEP 4. We update Xcn) by the following criterion: if the sequence {U(i)} in Step 2 is bounded 

by 1 and converges, then 

otherwise, 

X(n) = X+-l) + a X(n-1) _ X(n-2) ; 

x(n) = Jj(“-1) _ 1 X+-l) - x(“-2) . 
2 

STEP 5. We go back to Step 2. 

Applying the above algorithm, we obtain 1.205 for the critical index X*. We remark that the 

above bisection method works for any positive g(z) E Lq(s1) with q > 2. 
We note that Green’s function needs to be computed only once, even for the nonlinear problem. 

Once Green’s function is obtained, the domain integration required for obtaining U(z) (for the 

linear case or in each successive iterate for the nonlinear case) is computationally intensive. 

However, from the representation formula, the computations of U(z) at different points z are 

independent of each other. Thus, a parallel algorithm can be used to compute U(z) at different z 

at the same time. Such a parallelization is sometimes called an “embarrassing parallelization”. 

In the iterative procedure for solving the semilinear problem, parallel computations can be used 

to integrate the integrals at different 2 in each iterate since each iterate corresponds to a linear 

problem. We also remark that these algorithms are not only natural, but also excellent for 
distributed computations on a network cluster such as PVM and MPI, because they require only 
a very small amount of communication between subtasks. 
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