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The Rate-Distortion Function for Source Coding with 
Side Information at the Decoder-II: 

General Sources 

A. D. WYNER 

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 07974 

In this paper we generalize (to nondiscrete sources) the results of a previous 
paper (Wyner and Ziv, 1976) on source coding with a fidelity criterion in a 
situation where the decoder (but not the encoder) has access to side information 
about the source. We define R*(d) as the minimum rate (in the usual Shannon 
sense) required for encoding the source at a distortion level about d. The main 
result is the characterization of R*(d) by an information theoretic minimization. 
In a special case in which the source and the side information are jointly Gaussian, 
it is shown that R*(d) is equal to the rate which would be required if the eneoder 
(as well as the decoder) is informed of the side information. 

1. INTRODUCTION 

In  this paper we generalize (to nondiscrete sources) the results of Wyner and 

Ziv (1976) on source coding with a fidelity criterion in a situation where the 
decoder has access to side information about the source. Our problem concerns 

the system shown in Fig. 1. The sequence {(Xk, Yk)}~=l represents independent  
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copies of a pair of dependent random variables (X, Y) which take values in the 
arbitrary (i.e., discrete or nondiserete) spaces f ,  ~/, respectively. The eneoder 
output is a binary sequence which appears at rate R bits per input  symbol. The  
decoder output  is a sequence {-J~-k}~ which takes values in an arbitrary 
"reproduction" space a~. The  encoding and decoding is done in blocks of 
length n, and the fidelity criterion is E(1/n) ~.~=1 D(X~, 2k), where D: .~" x ~ -~  
[0, oo) is a given distortion function. If  switch A is closed, then the encoder, 
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as well as the decoder is assumed to have knowledge of the side information 
sequence {Yk}. I f  switch A is open, then only the decoder has access to the side 
information. For d / >  0, we are interested in the minimum rate R for which the 
system of Fig. 1 can operate with n large and average distortion 
E(1/n) ~1 D(X~, Xk) arbitrarily close to d. We define this minimum rate to be 
Rxlr(d) when switch A is closed, and R*(d) when switch A is open. 

For the special case where the spaces 2F, 02/, ~ are finite, Rx3r(d) was found 
by Berger [1971, Section 6.1, Case 4], and R*(d) by Slepian and Wolf (1973) and 
Wyner and Ziv (1976). The relatively simple generalization of the coding 
theorems concerning Rxlr(d ) to arbitrary d ,  ~/, 2~ is discussed in Appendix A. 
The generalization of the theorems concerning R*(d) (which are given for the 
finite alphabet case in Wyner and Ziv) is, we as shall see, somewhat more 
delicate. In fact, this generalization is the main contribution of this paper. 

We remark at this point that the proof of the (direct) coding theorem given in 
Wyner and Ziv for the discrete case depends rather heavily on the finiteness of 
the alphabets Y" and ~ .  In many other situations in the Shannon theory, such 
proofs can be easily adapted to the nondiscrete case by finding appropriate 
discrete approximations to nondiscrete random objects. In the present problem, 
however, this approach is particularly difficult. Among the reasons is the 
following: Let 2(, Y, Z be a "chain" of nondiscrete random variables, i.e., 
X, Z are conditionally independent given Y. Let X, 17, Z be finite approximations 
(i.e., the results of quantizations) to X, Y, Z, respectively. Then 2 ,  i 7, Z, is not 
necessarily a chain. Since chains play a vital role in the proofs here and in other 
multiple-user Shannon theory problems, it is clear that we must proceed with 
care. 

In Section 2 we give a formal statement of our problem and state our main 
results. In Section 3 we calculate Rxlr(d ) and R*(d) in the special case where 
AT, Y are jointly Gaussian. In this case it turns out that Rxlr(d ) = R*(d), so 
that knowledge of the side information at the decoder (switch _//closed) does not 
allow a reduction in the transmission rate R necessary to achieve a given dis- 
tortion level d. In Sections 4 and 5 we give the proofs of our theorems. 

2. FORMAL STATEMENT OF THE PROBLEM AND RESULTS 

We begin with some words about notation. Let Yg be an arbitrary set. The 
elements of ~n, the set of n-vectors with elements in ~ ,  will be written as 
u n = (u 1 ,..., un) , where the subscripted letters denote coordinates and boldface 
superscripted letters denote vectors. A similar convention will apply to random 
variables and vectors which will be denoted by upper case letters. When the 
dimension n of a vector is clear from the context, we will omit the superscript. 
For k = 1, 2,..., define the set 

J~ ={o ,  1,..., k -  1). 
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Next, let (~2, 0/, P) be a probability space and let ~ _C 0 /b e  a sub-a-field. 
Then for A 6 0/, let P(A [ ~ )  denote the conditional probability of A given ~ .  
Of course, P(A ] ~,~) is a q-measurable function on ~2. Next, let U~.: f2 --~ ~ 
(1 ~ j ~ 3), where ~ is a arbitrary measurable space and U~ is assumed to be 
a measurable mapping. Let 6/~- C 0/be the a-algebra induced by Uy, 1 ~ j ~ 3. 
We say that U1, U2, U 3 is a chain if U 1 and U 3 are conditionally independent 
given U 2 . In other words, for all S E 693, 

P(ST6gl ,  692) = P(S [ 6g e), a.s. (2.1a) 

An equivalent condition to (2.1a) is the condition that for all S 1 6 0/1, Sae  t7/3, 

P(S~ c~ S~ ] 0[2) = P(Sx ] GI~) P(S  3 I ~7/2), a.s. (2.1b) 

For a complete discussion of conditional independence and chains, the reader 
referred to Loeve (1955) or Ash (1972). 

Finally for random variables X, Y etc., the notation H ( X), H ( X [ Y), I( X; Y), 
etc., will denote the standard information theoretic quantities as defined in 
Gallager (1968) or Pinsker (1964). A discussion of the definition of the condi- 
tional mutual information for arbitrary (nondiscrcte) random variables is 
contained in the companion paper (Wyner, 1978). All logarithms in this paper 
are taken to the base 2. 

We are now ready to define the problem. Let (f20,6g 0 P0) be an (underlying) 
probability space, and let X, Y be functions X: [20 --~ 2Y, Y: ~20 --~ ~ ,  where 
2~, a# are arbitrary measurable spaces, and X, Y are measurable mappings. 
In addition we make the assumption throughout this paper that 

I(X; Y) < oo. (2.2) 

Let (Xk, Y~), k = 1, 2,..., be independent copies of (X, Y). Let 5~ be another 
measurable space, and let D: f × 5F --+ [0, on) be a measurable "distortion" 
function. 

A code (n, M, A) is defined by two measurable mappings Fe ,  FD, an 
"encoder" and a "decoder," respectively, where 

Ve: W" ~ YM, (2.3a) 

FD: ~r~ × JM ~ ~" ,  (2.3b) 

and 

E D(X~, ~ )  = A, (2.3c) 
n /c=l 

where X~ = FD(Yn, FE(X~)). The correspondence between a code as defined 
here and the system of Fig. 1 with switch A open should be clear. 
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A pair (R, d), (R, d ~> 0) is said to be achievable if for arbitrary e > 0, there 
exists (for n sufficiently large) a code (n, M, A) with 

M ~ 2 '~(R+~), A ~< d + e. (2.4) 

We define ~ as the set of achievable (R, d) pairs, and define for d ~> 0, 

R*(d)-~ min R. (2.5) 

If  for some d, there is no R < oo such that (R, d) e ~ ,  we take R*(d) ~ oo. 
It follows from the definition ~ that if (Rk, d ) e ~ ,  k = 1,2,..., then 
(lim~ R~, d) e ~ .  Thus we conclude that the indicated minimum in (2.5) exists. 
Our main woblem is the determination of R*(d). 

We pause at this point to show that 

R*(0) = lira R*(d). (2.6) 
d-+0 

Since R*(d) is nonincreasing in d, we have R*(0) >~ limao o R*(d). If  this limit 
is infinite, then (2.6) follows. Assume that lima_,0 R*(d) = R 0 < oo. If we show 
that (Ro, 0) e ~ ,  it will follow that limd+ o R*(d) ~- R o >/R*(O), completing 
the verification of (2.6). To show that (Ro, 0) e ~ ,  it will suffice to show that for 
any e > 0, there exists a code (n, M, A) with M ~< 2n(R0+ ~), and A ~< e. To do 
this let d be sufficiently small so that [ R*(d) --  R o l <~ e/2 and d ~< e/2. Then, 
since (R*(d), d) is achievable, we can find a code (e, M, A) satisfying (2.4) with 
R = R(d) and ~ replaced by E/2, i.e., 

M ~< 2 ~(R(a)+'/e) ~< 2 n(Ro+e) 

and 

A ~ < d + ~ / 2 ~ < ~ .  

Thus we conclude that (Ro , 0) ~ ~ .  

Summary of Results 

Let (/20,0g0,1°o), X, I1, etc., be as above. Let (/21, C{1, P1) be another 
probability space and let (f2, 6g, P) = (£20 × D1, Cg o × 691, P0 ×/ '1)  be the 
product space with product measure. Of course we can assume that .32, Y are 
defined on £2, e.g., let X(~o0, %) be given by X(%), for (~o0, %) e ~20 ×/21 = /2 .  
Let ~ x ,  6gr be the sub-a-algebras (of C/) induced by X, I7, respectively. Let ~e 
be another arbitrary measurabie space, and let Z: £2--+ .ge be an arbitrary 
measurable function. Let 6g z be the a-field induced by Z. Assume that the triple 
Y, )2, Z is a chain, i.e., for all B ~ Cdz , 

P(B j ~Y~x)  = P(B I 6gx), a.s. (2.7) 

643138/I- 5 
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Intuitively we can think of Z being realized as the output of a "test channel," P , ,  
the input of which is X. /2  1 corresponds to the "noise" in the test channel. Now 
for d > 0, define dfd(d) as the set of functions Z:/2 -~ ~ ,  which satisfy (2.7), 
and have the property that there exists a measurable function f:  02/ × ~e __~ :~, 
such that 

E D(X, 2)  ~ d, where 2 = f (Y,  Z). (2.8) 

As a mnemonic for remembering the above, we can think of X, Y, Z, 2 as 
being generated by the configuration in Fig. 2. 

^ 
X ~ ~ X  = f (Y,Z) 

F I G U R E  2 

Next, for d > 0, define the quantity 

/~(d) = inf [I(X; Z) --I(Y; Z)]. (2.9a) 
Z ~./~ ( d ) 

From the data processing theorem (inequality (3.13) of Wyner (1978)), 
I(Y; Z) <~ I(X; Y) < oo. Thus (2.9a) is meaningful. 1 Further, since J//(d) is 
nondecreasing in d, R(d) is nonincreasing for d e (0, oo). Thus, we can meaning- 
fully define 

R(0) -~ l~m R(d). (2.9b) 

Our main results are Theorems 2.1 and 2.2, the proofs of which are given in 
Sections 4 and 5, respectively. We first state 

THEOREM 2.1 (Converse). For d >~ O, R*(d) >~ R(d). 

The "direct" theorem, i.e., the reverse of the inequality in Theorem 2.1, 
will also be shown to hold. We will however, have to make the following two 
technical assumptions about X, the space a~, and the distortion function D. 

(i) The first assumption, one that is sometimes made in source coding 
theory, is that for all & ~ a~, 

E D(X, &) < oo. (2.10) 

(ii) The second assumption concerns the "smoothness" of the function D. 
It  is as follows. For all measurable functions 2~: /2--+~,  such that 

x That is, the right member of (2.9a) is not "oo -- oo." 
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0 < E D(X, 2 )  < o% and all e > 0, there exists a finite subset (]j}~__'~ C 5~, 
and a "quantization" mappingfo :  5~ ~ {1i}, such that 

E D ( X ,  fo(X))  <~ (1 + ~)ED(X, 2) .  (2.11) 

We show in Remark (E) below that when 2~ = oq~ = the reals, and D(x, ~) = 
] x - -  N ]~, r > 0, and if E ] X I r < o% then conditions (i) and (ii) hold. We now 
state 

THEOREM 2.2 (Direct Theorem). I f  conditions (i), (ii) above hold, then 
R*(d) ~< ~(d), 0 ~< d < oo. 

Remarks. (A) From (2.6) and (2.9b), it will suffice to prove Theorems 2.1, 
2.2 for d > 0. 

(B) In Appendix B we show that R(d) is a convex function of d. 

(C) L e t X ,  Y, Z be a chain. From Lemma 3.1 of Wyner, I(Y; Z I X )  =- O. 
Thus,  using Lemma 3.2 of Wyner, we have 

I(X; Z) --  I(Y; Z) = I (XY;  Z) -- I(Y; Z ] X )  -- I(Y; Z) 

= I (XY;  Z) -- I(Y; Z) = I(X; Z I Y). 

Thus  it follows that 

(2.12) 

R(d) = inf I(X; Z] Y). (2.13) 
Z e ~  ( d) 

(D) Let  Z ~ J{(d),  and let 2 = f ( Y ,  Z). Then  from the data-processing 
theorem (use Lemma 3.4 of Wyner, with U1 = X,  U2 = Z, Ua = 2 ,  U4 = Y), 

I(X; z l Y) >~ I(x; 21 Y) .>> R~y(d), (2.14) 

where the last inequality follows from the discussion in the Appendix where 
Rxl r(d) is defined (since J{ a d{0(d)). Minimizing (2.14) with respect to Z a Jd(d),  
we have 

R*(d) >~ R~jy(~), 

which is, of course, obvious from the "physical" situation. Inequality (2.14), 
however, also tells us that R*(d) = Rxlr(d) if the 2 E  d{0(d ) which achieves 
I ( X ; 2 ] Y )  = Rxly(d ) can be generated as in Fig. 2 with I(X; Z I Y ) =  
I(X;  2 ]  Y). This occurs (see (3.11) of Wyner) if and only i f I (X;  Z t 2 Y )  = 0. 
In Section 3 we give an example of a source for which this rather severe condition 
holds and R*(d) = Rxjy(d). 

(E) Condition (i) is a rather common assumption for source coding 
theorems. Furthermore, neither condition (i) nor (ii) is especially restrictive. 
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We will now show that when f = 5T = the reals, and D(x, ~) = I x - -  ~ f ,  
r > 0, and if E ] X ]r < o% then conditions (i) and (ii) hold. T o  do this we 
exploit the Minkowski inequality, which states that for arbitrary random 
variables U, V, 

E l/n[ U +  V f  <~E1/~1 UI~@E1/n!  V f .  

Thus,  if E ] X [  n < 0% then 

E I X - - ~ I  n ~< (E1/n I XLn + I~l) n < oo, 

which is condition (i). We now turn to condition (ii). 
0 < E I X - - X l n <  0% a n d E l X l n  < oo. I t  follows that 

EI  X [  ~ <<. (E ~/n I X I n + g 1/~ I X - -  .f(In) n < o o .  

Now, for N = 1, 2,..., define 

fo(k)  = (N  + 1)A, 

= - - N A ,  

= (n -l- 1)2, 

> / ( N  + 1)A, 

< - -NA ,  

nA <~ k < (n + l)A, 

nA ~ k < (n + 1)A, 

O <~ n <~ N,  

- - N  ~ n ~ --1, 

(2.15) 

Suppose that 

(2.16) 

where A = N-l~ 2. Let  )£n = f o ( X )  • Note that, as N -+  0% )~r  --~ )£. Also, 
since ] )~n - -  2 1 <~ 2 1 2 I, we have f rom the dominated convergence theorem, 

E ] 2 - -  2 N  In--~ 0, as N - *  oo. 

Now let e > 0 be given. Choose N sufficiently large so that 

E tIn l f (  - -  XN I n = Ellnl 5 2 - - f o ( 2 ) l  n 

~(E) E 1In [ X - -  2 f ,  

where 3(e) = (1 + e) 1In - -  1. Then  

E~/n 1 X  --fo(fg)in <~ E~/n I X - -  f£ [n + E~/, I 2 - - f o ( 2 ) l  ~ 

~< (1 + 3(E)) E~: , I X - -  2 l" 

= [(1 + E) E I  X - -  X ln]l/t 

Raising both sides to the r th power yields 

ElX--fo(2)I n <~ (I + e ) E I X - 2 [ * ,  

which is (2.11). Thus  condition (ii) holds. 
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3. AN EXAMPLE: X, Y JOINTLY GAUSSIAN 

In  this section we consider the special case where 5F = q / =  ~ = the reals, 
D(x ,  de) = (x - -  ~)2, and A T, Y are jointly Gaussian with zero mean. With no 
loss of generality we can write 

Y = ~(X q- U), (3.1) 

where a > O, and X, U are independent Gaussian variates with E X  = E U  = O, 

and E X  2 = ¢x  ~, E U  ~ = au  2. Thus  the side information Y,  is a noisy version 
of X. A straightforward application of Bayes' rule yields that given Y = y ,  

X is normally distributed with conditional mean 

E ( x l  Y = y)  = (4~ , )y ,  (3.2a) 

and conditional variance 

where 

Var(X I Y = y )  = C ¢ v  z, (3.2b) 

c = ¢x2/(ex  2 + c~u2). (3.2c) 

By analogy with the conventional situation where there is no side information, 
we are inclined to guess that 

R x f r ( d )  : ½ log c crv2/d, 0 < d < c a~: ~ 

= O, d ~ c cry 2. 

(3.3) 

The  random variable X e J g ( d )  which would achieve I ( X ;  X T j Y ) =  R x i r ( d  ) 

can be realized by the system given in Fig. 3, with ¢ a zero-mean Gaussian 
variate with variance c clav2/(c au  2 - -  d).  Fig. 3 is the same as Fig. 9.7.3 in 
Gallager (1968) with the conditional mean, cY/c~, subtracted out at the input and 
then added in at the output. In  fact we shall give a proof that R x l y ( d  ) is given by 
(3.3) at the conclusion of this section. 

ll) )~ 

c ~¥ 

FIGURE 3 
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Z 

( I -o )Y  

FIGURE 4 

We now observe that the system of Fig. 3 can be redrawn as in Fig. 4 (where 
a = (avZc -- d)/av~c). Note that Fig. 4 is of the same form as Fig. 2, with 
2 = f ( Y ,  Z)  = Z -k (c/a)(1 --  a)Y. Observe that if we are given the values 
of X and Y, then we can calculate Z. Thus given the values of (2~, Y),  the 
random variable Z is a constant, which implies that 

s ( x ;  z lRY) = o. (3.5) 

This is the condition given in Section 2, Remark (D), for the equality of R*(d) 
and Rxlr(d ). Thus we conclude that for X, Y as in (3.1), 

1 ~X2~U 2 
R*(d) = Rxlr(d  ) = ~ log (Crx z -k ~rv2)d ' 

~ -  O, 

IF X21F U s 

O < d < Cr x2_k a y~ 

Cr X 2 ~  U 2 

d >/  ~x  ~ q_ ~ v  2 . 

(3.6) 

It  remains to verify (3.3). A straightforward calculation yields that with 2~ 
as in Fig. 3, E ( X  -- 2 )  3 = d and I (X;  2 1  Y) = the right member of (3.3). 
Thus we must show that for arbitrary 2~ ~ Jd0(d), 

1 C 
I ( X ; 2 [ Y )  > ~ l o g  av2d ' 0 < d < c a v  z. (3.7) 

Now inequality (3.7) follows from a standard bounding technique in which the 
information is written as the difference of the differential entropy and the 
conditional differential entropy. There is, however, a question as to the existence 
of the probability density functions which define these differential entropies. 
We therefore digress to establish a simple lemma about conditional densities. 

Let U, V be a pair of real-valued random variables which define a joint 
probability measure on the plane. Let Pu be the marginal probability measure 
corresponding to the random variable U. Suppose that Pv  is absolutely 
continuous with respect to Lebesgue measure, denoted/~L • Also assume that g 

N oO), and that Pr(V 0, takes its values only on the set {vj}j= 1 (1 ~< N < • vj} > 
1 <~ j ~< N. We now state 

LEMMA 3.1. Let U, V be random variables as above. Then for each j = 1, 
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2,..., N, there exists a Borel measurable (density) function qj(') such that for all 
Borel sets B, 

P r { U ~ B ,  V ~ %} 
Pj(B) ~= Pr{V ~ B]  V = vj} = Pr{V = vj} 

= fB q~(x) dx. 

Pro@ Observe first that Pj( ' )  is a probability measure on the Borel sets. 
Our result will follow from the Radon-Nikodym theorem if we show that P~ is 
absolutely continuous with respect to/~L • Let  B be such that P~(B) > 0. Then  

N 

Pu(B) = ~ Vr{V = / ' }  P;(B) >/Pr{V = %} P~(B) > O, 
j ' = l  

so that the hypothesis implies IxL(B) > O. | 

We now return to (3.7). Let  2 a Je'0(d), d > 0, and let ~ > 0 be arbitrary. 
Since D(x, Yc) = ( x -  ~)2 satisfies condition (ii) in Section 2, there exists a 
function 

fo: ~ -+ {xJ}f C 2~, (3.8a) 

such that 

E(X -- 2 o )  2 ~< (1 q- e) E(X -- 2 )  2 ~< d(1 + e), (3.8b) 

where 3~ o = fo(X).  I t  follows from the data-processing theorem (use Lemma  3.4 
in Wyner,  with U 1 = X, U 2 = X, U~ = 2 0 ,  U 4 = Y) that 

I(X; 2 1 Y) >~ I(X; 2 o [ Y). (3.9) 

Now we can apply exactly the same reasoning which we used to obtain (A.6) 
to assert the existence of a random variable I7 which takes but a finite number  of 
values for which 

[ I (X;  2 o  ] Y) -- I(X; 2 o [ 17)i ~ e, (3.10a) 

and 

I I(X; r )  - ~(x;  ?)f < ,. (3.lOb) 

Next, we define the differential entropy. Let  U, V be random variables with 
joint probability density function ply(u, v). Let  

and 
f 

co 

pl(u) = ply(,, v) &,  
--oa 

p2,1(~ l u) - p,2(u, v) pdu) ' pl(u) > o. 
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Then the differential entropy of U and the differential entropy of V given U are 
defined by 

~/a(U) = --E logp~(U), 

Ha(V[ U) = - - E l o g  plT2(V I U), 

respectively. Note that Ha(X),  g a ( x l Y ) ,  and Ha(X l1?  ) are meaningful 
(by Lemma 3.1 the conditional density for X given 17 exists). Further we can 
write 

and 
I(X; Y)  = Ha(X) --  Ha(X ] Y)  

X(X; 17) = H~(X) -- H~(X l 17), 

so that (3.10b) and (3.11) yield 

(3.11a) 

(3.11b) 

Note that 

where c is given by (3.2c). 
We now establish (3.7) by writing 

(a) 

I ( x ;  R [ Y)  >~ I ( x ;  2 o  I ? )  - 
(b) 
= Ha(XI  17) - -  Ha(X] 2o17 ) - -  e (3.13) 
(e) 

½ log 27rec c~v 2 - -  Ha(X ] fi5o17) - -  2~. 

Step (a) follows from (3.9) and (3.10@ Step (b) is meaningful in the light of 
Lemma 3.1, and step (c) follows from (3.12). Now, denote the range of 17 by (i}, 
and let 

Also let 

d~j = E[(X --  2o )  ~ ] ~ = i, 2 0  = ~].  

a ~  = P r { ?  = i, 2 o  = ~J}. 

dij ~> Var(X [ 17 ----- i, Y£o = ks), 

so that a standard inequality (Ash, 1965, Theorem 8.3.8) yields 

H ( X  [ 17 = i, 2 o -- ~;) ~< ½ log 2~re di~. (3.15a) 

Also note that, from (3.8b), 

a~sd~j = E ( X  - -  Xo)Z ~ d(1 -}- e). (3.15b) 

(3.14a) 

(3.14b) 

Ha(X[ i?) > /Ha(X[  Y) -- e = ½[log 2~recov 2] - -  e, (3.12) 
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Inequalities (3.15) and the concavity of the logarithm imply that 

H(X ] 7{, Xo) = ~. a~jH(X I Y = i, 2 0 = Nj) 
i , j  

< ~ y ~  i~(~ log 2~re di~) 
i , j  

½ log (2rre .~. aefl,, ) <~ ½- log(2rre d(1 q- e)). 

Substituting 0.16) into (3.13) we obtain 

z(x; 2 !  Y) > ½ log 2,~e~J ~ - a log 2~ed(1 + ~)) -- 2~, 

and letting e --~ O, we have (3.7). 

71 

(3.16) 

4. THE CONVERSE THEOREM 

In this section we will give a proof of Theorem 2.1 which asserts that 
R*(d) >~ R(d), d >~ O. As pointed out in Remark (A) following Theorem 2.2, 
we need only establish this result for d > 0. The ideas in the proof are essentially 
identical to those used in the proof for the discrete case in Wyner and Ziv. 
The merchanics of the proof are, however, slightly simpler here than in that 
reference. 

Let (Fe, FD) define a code with parameters (n, M, A). We will show that 

(l/n) log M >~/~(A). (4.1) 

If d > 0 and (R, d) a ~ ,  then for arbitrary E > 0, with n sufficiently large, there 
exists a code (n, M, A) with M ~< 2 n(R+~), and A ~< d @ e. Inequality (4.1) 
and the monotonicity of/~(-) imply that 

(4.2) 

Letting e ~ 0, and invoking the continuity of/2(d) (which follows from the 
convexity of ff,(d), which is established in Appendix C), we have R >//~(d) 
for (R, d) E ~ ,  d > 0. This implies Theorem 2.1. It remains to establish (4.1). 

Let W = Fe(X~), so that X ~ = (X71 ..... -J~) = FD(Y ~, W). Let 

zJ~ = E D(X~ , 2~), (4.3) 

so that 

1 n 

A = n ~ Ak" (4.4) 
~=1 
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Now 
(a) 

log M ~> I(X% W I Y~) 

(b) 
= I(X'~; Y~W) -- I(X'~; V") (4.5) 

(c) n 

= F, [I(x~ ; v w I  x ~-1) - x(x~ ; Y~)]. 
1~=1 

Step (a) follows from W ~ J i .  Step (b) follows from Lemma 3.2 of Wyner, and is 
meaningful since (by (2.2)) I(X% Y~) < oo. Step (c) follows from the indepen- 
dence of {(Xk, Yk)}k and from Lemma 3.3 of Wyner (repeated n times). 

Further, since X~ and X ~-1 are independent 

I(X~ ; YWI X e-l) = I(X~ ; YWX ~-~) -- I(X~ ; X ~-~) 
(4.6a) 

= I(X~ ; YWX ~-~) = I(X~ ; Y~Z~), 

where 

Zk = (X k-l, Y1 ,..., Y~-I, Y~+I ,.-., Y- ,  W). (4.6b) 

Substituting (4.6) into (4.5) we obtain, using Lemma A.2, 

log M >~ ~ [I(X~ ; Yz, Z~) - -  I (Xk  ; gk)] 
k = l  

= ~ [z(x~ ; z ~ l  Y~)]. 
k = l  

(4.7) 

We now point out two facts about Zk: (a) J~e is the kth coordinate Of FD(Y n, W), 
so that we can write X~ as a deterministic function of Y~ and Ze,  say X~ = 
f ( Y k  , Z~). Of course (4.3) still holds, so that E D(X~ , .f2k) = A k . (b) Ye , Z~ 
are conditionally independent given Xk. Facts (a), (b) imply that Zk: ~2 _+ f ~ - i  × 
~j~-i × JM belongs to ~(Ak), so that from the definition, 

I (X~ ; Zk ] Y~) = I(X~ ; Z~) - -  I (Y~ ; Z~) >~ -~(Ak). (4.8) 

Substituting (4.8) into (4.7) and invoking the convexity of -~(') (Appendix B), 
we have 

log M ~> R ( ~ )  ~> nR 2~ = nR(~), 
k = l  

where the last step follows from (4.4). This establishes (4.1), and completes the 
proof of Theorem 2.1. 
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5. THE DIRECT HALF 

In  this section we will outline the proof of Theorem 2.2 which asserts that, 
subject to conditions (i) and (ii) of Section 2, R*(d) <~ R(d). The  proof leans 
very heavily on the proof given in Wyner  and Ziv for S ,  ~/, ~ finite. In  fact, 
the discussion in this section will be devoted to showing how the proof for the 
finite case be modified to hold in the general case. 

We begin by establishing a simple lemma. 

LEM~A 5.1. Let (~o, 6go, Po) be a probability space and U: ~o --~ [0, oo) 
a random variable such that EU < oo. Then for all 3 > O, there exists a 
v = v(S, U) such that 

S~6go, Po(S) < v ~ E I s U  = fs UdP° < ~' (5.1) 

where I s is the indicator function of S. 

Proof. Let A ---- {U ~< a}, and write 

 ±su = eisi u + essi ou 

Since E U < o% l i m a ~  EIAoU = 0. Thus,  with 3 > 0 specified, let a be 
sufficiently large so that E IAO U <~ 3/2, and then set v = 3/2a. This  choice of v 
satisfies (5.1). | 

We now give 

LnMMA 5.2. I f  ~/, W are finite sets, and conditions (i) and (ii) of Section 2 
are satisfied (37 is not assumed finite), and if ./d(d) is defined as above except that :£f 
is required to be finite, then Z ~ /d(d)  implies that (R, d ) =  (/(X; Z ) -  
z(Y; z), d) 

Pro@ A careful examination of the proof of the direct half given in Section 4 
of Wyner  and Ziv will indicate that the only places which the finiteness of 
is exploited are in (63) and (79) of that reference. In  a number  of other places 
in that proof, it is of course necessary to give the appropriate measure-theoretic 
interpretations to various expressions. 

I t  is easy to see that we can rewrite (63) in Wyner and Ziv as 

- -  j~-i E 1 ~ D( Xj~ , X *~ 

n~ .= ~=(j_~)~o+~ (5.2) 

nl nl j=l j=l 
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where Cj is (as in Wyncr and Ziv) the term in brackets in (5.2), and the event 
ozj = {W~- :/: l?/j.} and I¢j is its indicator. Note that, for 1 ~< j ~ nl ,  

1 Yno 

n O  k = ( j _ l ) n o +  1 

<~ 1 
max - -  2 D(X~, x%(y, i)) zx U(X~), 
y E ~ n O  n 0 / ¢  

l <~i <xM o 

(5.3) 

where x*k(y, i) is the kth coordinate ofF~)(y, i), and Xj = (X0._1)%+ 1 ..... Xj%). 
Note that E U(Xg) < oo. Substituting (5.3) into (5.2) yields 

(5.4) 
n 1 

~< ,Jo + ! Z E~%U(X3. 
nl j=l 

Now we would like to show that the conclusion of (63) of Wyner and Ziv, i.e. 
A ~< A 0 + 8 can be made to hold. Applying Lemma 5.1 to U(Xj), we have that 
EI~jU(Xs) <~ 8 if Pr{#~.} ~< v(8, U). This will be satisfied if condition (62) of 
Wyner and Ziv is replaced by 

Pr{d~} = Pr{Wj =/= 12/j} ~< v(8, U). (5.5) 

A check of the Slepian and Wolf (1973) result, indicates that with n~ sufficiently 
large, (5.5) Can be made to hold. 

It remains to find a replacement for (79) in Wyner and Ziv. It is easy to see 
that it will suffice to show that, as n o ---> ~ ,  

Q-o ~ E ¢,oDno(X%, f%(y-o, F(X~o)) < ~. (5.6) 

To do this, put ~ o  = F(X~o), and write 

n 0 

Dno(X%, f~o(y%, q.%)) = 1 Z D(Xk , f(Y~ , Z,~)) 
no k=l 

no n 0 

- -  ,~1 max D(X~ , f(y,  z)) A 1 Z U(X~), 

where E U(X~) < oo. Thus 

n 0 

1 Z E¢,oU(X~)" 
Q"° <~ no~=l 

(5.7) 

Since ¢% is the indicator of a sequence of events whose probabilities vanish, 
(5.6) follows from Lemma 5.1. This completes the proof of Lemma 5.2. | 
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Theorem 2.2 will follow from Lemma 5.2 and the following lemma, which 
asserts the existence of discrete approximations to arbitrary Y, Z. 

LEMMA 5.3. Assume that conditions (i) and (ii) of Section 2 are satisfied. 
(A~}i=:L and {Bj}j= 1 Let Z ~ ~ ( d ) .  Then for all ~ ~ O, there exist finite partitions ~ ~ 

of ql and ~L ~, respectively, and a function 

which satisfies 

(a) 

(b) 

(c) 

where 

f ~ : ~  x ~r -.~-,~" 

E D(X,f~(Y, Z)) ~ d + e 

f l  is constant on the rectangles Ai × B~ , 

~(x; 2)  - s(~; 2) ~< I(x; z )  - I(r; z )  + ~, 

(5.8a) 

(5.8b) 

(5.8c) 

~" = i for Y ~ A ~ ,  2 = j . f o r  Z E B s ,  (5.8d) 

1 <~i<~N1,1 <~j<~N~. 
We now show to obtain Theorem 2.2. From (5.8b) and (5.8c) we can think of 

f l  as a function of ~, Z, and from (5.8a) 

E D(X, fl(~', 2)) <~ d + ~. 

Further,  ~, X, 2 is a chain, so that Z ~ J / ( d )  for the source (X, ~). Finally 
since (R, d) ~ ~ for the source (_X-, I~) implies that (R, d) ~ ~ for source (X, Y), 
we conclude from Lemma 5.2 (R, d) = (I(X; Z) - -  _/(Y; Z) ~- e, d -[- e) is 
achievable for source (X, Y). Since the region ~ is closed, letting e ~ 0 yields 
Theorem 2.2. It remains to give the 

Proof of Lemma 5.3. Since Z~#g(d) ,  there exists a function f :  ag × ~ _~ 
such that with _~ = f ( Y ,  Z), 

E D(X, 2)  <~ d. 

Condition (ii) of Section 2 asserts that for all e ~ 0, there exists a finite set 
{~j}~ C ~ and a mappingfo A f o  of:  ~ X ~e __> {[3} such that 

E D(X, fo(Y, Z)) <~ d - k  e/2. (5.9) 

Let  C 5 = {(y, z):fo(y,  z) = 2~}, 1 ~ j  -~< N. At the conclusion of this proof 
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we will show that for arbitrary e i > 0, there exists a collection of disjoint sets 
{S~.}f, where each Sj _C_C Y/×  :~e is a finite union of rectangles, for which 

Pr{C~./~ S~} ~ q ,  1 ~ j ~ N. (5.1o) 

Defining fi:  ~ × ~e ~ ~ by 

we write 

fa(y,z) = ~ . ,  ( y , z )  eS~ ,  1 < ~ j ~ N ,  
N 

= , ( y ,  ¢ U , 
1 

(5.11) 

E D(X,f~(Y, Z)) = EIgD + EI,~,D, (5.12) 

where g = ujN1 (C a O Sj). When g~ occurs, f l (Y , Z) = fo(U, Z), so that 

E I~ <~ E D(X, fo(Y, Z)) <~ d + e/2. (5.13) 

Also 

E I~,D ~ E I ~  max D(X, ~)  zx E I~o. 
1 ~ j ~ N  

Since E U < ~ ,  Lemma 5.1 and (5.10) imply that E I - U  can be made ~ / 2 ,  
if E i is sufficiently small. With such a choice of el, we have using (5.12) and (5.13), 

E D(X, f~(Y ,Z) )  <~ d-+- E/2-t- E/2 = d +  ~, (5.14) 

which is (5.8a). Furthermore since f l  is constant on each Sy (a finite union of 
rectangles), we can find finite partitions say {A~ 1~} and {B~ 1~} which satisfy (5.8b). 
Finally, ([(X; Z) , I (Y;  Z)) can be approximated arbitrarily closely by 
(I(X; Z), I(X; #)) for 17, 2 defined as in (5.8d) with a suitable pair of partitions 
say (A~2)}{B~)}. Lemma 5.3 then follows on letting partition {Ai} be the common 
refinement of {A~ i)} and {A~2)}, and letting {B~-} be the common refinement of 
{B~ i)} and {B~2)}. To complete the proof of Lemma 5.3 we must verify (5.10). 

Since the field of finite unions of rectangles generates the product a-field 
which corresponds to Y/ X L~ e, (5.10) will follow from 

, A N LEMMA 5.4. Let (I-2o, 0[0 Po) be a probability space. Let { J}i, Aj ~ 6~ 0 , be 
a Partition of d o . Let ~ be a field of subsets of I2 o which generates Go. Then for all 
ei > O, there exists a collection {B~.}i n of disjoint sets, where Bj ~ ~ ,  such that 

Po(A~ /k Bj) <~ el, 1 <~j <~ N. (5.15) 

Proof. A standard result from measure theory (Ash, 1972, p. 20) asserts the 
existence of a collection {B'~}f, B'~ ~ ~l, such that 

Po(B'~ A Aj) <~ el/N, 1 <~j <~ N. (5.16) 
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The  {B'j} are not necessarily disjoint, however. Let 

B 1 = B '  1 

B 2 = B'2B'I ~ 

B 3 = B'3B'lcB'2~ 

BN = B'NB'lcB'2 ~ "'" B'~v-1. 

The {Bj} are disjoint, and 

' ' c ' c . . . B  ' c  "~ Po(AflB~) = Po(A~AB jB 1 B 2 J--l] 

(5.17) 

J--1 
¢ ! I 6 <~ eo(Aj B j) + Po(AjB j ) -~ ~ Po(AjB',) (5.18) 

i~1 

J--1 

: Po(AjAB'j) -k ~ Po(NjB'i). 
i = 1  

Now since the {Aj} are disjoint, Aj C Ai  ¢ (i < j), SO that Po(A~B'i) 
6 ! Po(Ai B ~) ~ Po(Ai A B'i) <~ el/N. Substitution of this and (5.16) into (5.18) 

yields 

ff 1 E 1 Po(AflBj) ~ -~ -k ( X - -  1 ) N  = el .  | 

A P P E N D I X  A: DISCUSSION OF Rxlr(d ) 

In  Section 1 we defined RxIr(d) as the minimum rate R required in the system 
of Fig. 1 with switch d closed for reproduction at an average distortion 
E D(X, f2) of about d. In  this appendix we will show how to generalize Berger's 
characterization of Rxlr(d) for discrete X Y to the case where X Y are arbitrary 
random objects. 

We begin with some definitions. For the case where switch A is closed we 
define the source (X, Y)  exactly as in Section 2. A code (n, M, A) is also defined 
as in Section 2, except that in this case the encoder operates on X ~ and yn.  
Thus  (2.2a) is replaced by 

F e : ~  '~ × ~ - ~  ~M. (A.1) 

The  set of achievable rate pairs (R, d) is also as defined in Section 2. Letting ~ i  
be the set of achievable rate pairs, we define 

Rxly (d )= min R. (A.2) 
( R , d ) e ~  
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The characterization of Rxlr(d ) is given as follows: For d ~> 0. let dt'o(d ) be the 
set of measurable functions X: f2 ~ 5~. such that E D(X, 2)  <~ d. Then for 
d > O .  

Rxlr(d) = - inf I(X; X [ Y )  /x /~(d). (A.3) 
X ~ [ o ( d )  ~ -  

Since Rxlr(d ) is continuous at d = 0, (A.3) characterizes Rxlr(O ) also. 
Berger (1971) established (A.3) for the case where 2F, ~ ,  5~ are discrete. 

(See Gray (1972, 1973) for a more complete discussion of Rxl r .) The extention 
of (A.3) to the general case is a fairly straightforward task. The converse, i.e., 
Rxlr(d ) >/ff~x(d), is proved by writing for any code (~ M, A) 

_1 log M ~> I(X~; F~(X% Y~) 1 Y) (b)~> I(X~; X~I¥) 
n 

(e, 1 ~ I(X~ " 2 ~ Y k ) -  I(Xk" Y£) = I(X; :~Y) -- I(X; Y) /> n ' ' 
k=l 

(A.4) 

(d} 1 k~__ 1 (e) = i ( x ~  ; 2~ I G) ~> ~I(G) >~ ~I(A), 
k = l  = 

where Ak = E D(Xk, 2~), so that A = (l/n) 27e A~. These steps are justified 
as follows: (a) from the fact that Fe(X n, yn) e JM ; (b) from the data-processing 
theorem (Lemma 3.4 of Wyner); (c) from a standard inequality which follows 
from the independence of the pairs {(X~, Yk)} (see Kadota, 1971); (d) from the 
definition of/~1 ; (e) from the concavity of Rl(d) which can easily be verified. The 
converse follows on applying the definition of Rxlr(d). 

To prove the direct half, i.e., Rxlr(d) ~ -Rl(d), we first observe that Berger's 
result, goes over exactly when ~t is finite. For arbitrary ~ ,  let Re.go(d). 
Then write 

I(X; 2 1 Y) = I(X; YX) -- I(X; Y), (A.4) 

which is meaningful since I(X; Y) < oo (2.2). Next, let e > 0 be arbitrary and 
let ~ r  be a finite partition such that the corresponding l 7 satisfies 

It follows that 

l I(x; ~72)_ z(x; Y2)l <~ 42, 

I I(x; ?) - I ( X ;  Y)t < ,/2. 

x(x; 21 ?) ~< i(x; 21 Y) + ,. 

We then apply Berger's proof with Y replaced by I7. 

(A.5a) 

(~.5b) 

(A.6) 
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APPENDIX B: CONVEXITY OF R(d) 

We must show that for d l ,  4 ~ 0 and 0 ~< 0 ~ 1, 

_K'(0 d x + (1 - -  0),/2) ~ 0 R(dx) + (1 - -  0)_K'(a2). (B.1) 

To  begin with, let E > 0 be given, and let Z 1 ~ J / (d l )  , Z 2 ~= rid(d2) be such that 
(use (2.13)) 

and 
I(X; Zi ] Y) ~ R(d~) + E, 

E D(X,f~(Y, Zi) ) ~ d~ , 

i = 1, 2. (B.2) 

i = 1, 2. (B.3) 

Here fi(Y, Zi), i = 1, 2, are the functions whose existance is guaranteed by the 
definition of ~ ' ( d )  (see (2.8)). Now let V be a random variable which is inde- 
pendent of X, Y, Z1, Z2, with 

Then  set 

Letting 

Pr{V = 1} = o, Vr{V = 2} = 1 - o. 

z = ( z , ,  v ) ,  v = 1, 

= ( G ,  v ) ,  v = 2.  

f (Y,  Z) = A(Y, ZI), w h e n  V = 1, 

= f2(Y, Z2),  when V = 2, 

we have, using (B.3), 

E D(X,f(Y, Z)) = 0 E D(X,A(Y &)) + (1 - -  O)E D(X,G(Y, G)) 
<~ Od~ + (1 - 0)4. 

Thus Z~./d(O 4 + (1 - -  0) d2) , and I(X; Z I Y) >/R(O d 1 @ (1 - -  0) 4 ) .  Further, 

R(O 4 + (1 - -  0)4  ) 

~< z ( x ;  Z l r )  (~2 
(b) 

(e) 

(d) 

I(X; z v  r Y) - [ ( x ;  v j YZ) 

i ( x ;  v ! Y ) - ?  [(x;  z IYU)  

I (y ;  z I Y v )  = Pr(V = 1) I (X;  z [  Y, v = 1) 

q- Pr(V = 2) I (X;  Z j Y, V = 2) 

OI(X; Zl I V) + (1 -- O)I(X; Z2 ] Y) 

O(R(dl) + e) + ( 1  - -  O)(R(D2) + E). 

643/381I-6 
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Step (a) follows from Lemma 3.3 of Wyner (1977) and I (X;  V I YZ)  < oo; 
step (b) from the same lemma and the fact that V is determined by Z so that 
I(X; V] YZ)  ~- 0; step (c) from the independence of (X, Y) and V so that 

I(X; V[ Y) ---- 0, and step (d) from (B.2). Letting E ~ 0, we have (B.1). | 
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