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Abstract 

We introduce a new class of partially ordered sets, called tree-visibility orders, containing 
interval orders, duals of generalized interval orders and height one orders. We give a characteri- 
zation of tree-visibility orders by an infinite family of minimal forbidden suborders. Furthermore, 
we present an efficient recognition algorithm for tree-visibility orders. (~) 1998 Elsevier Science 
B.V. All rights reserved 

1. Introduction 

The motivation of this work is to extend the class of interval orders in a fashion 
similar to the extension of interval graphs to chordal graphs (for more details on these 
graph classes we refer to [7]). A survey about two other generalizations of interval 
orders, one allowing intervals to overlap with a given ratio and the second dealing 
with intervals of partial but no more total order, has been done by Bogart [1]. Another 
generalization of interval orders dealing with convex subsets of partial but no more 
total order, has been introduced by Miiller and Rampon [9]. This generalization is 
close to the one presented by Bogart [1] when convex subsets are restricted to be 
intervals. Generalized interval orders form a class of orders considered by Faigle et 
al. [3], extending the successor set inclusion property of interval orders. 

We have chosen the characterization of chordal graphs as intersection graphs of sub- 
trees of a tree and the 'visibility definition' of interval orders for extending interval 
orders. The combination of these two concepts leads to a class of partially ordered sets 
defined via visibility in a rooted directed tree. Thus tree-visibility orders are exactly the 
class of orders defined (in the sense of Miiller and Rampon [9]) by convex subsets of 
partial orders whose transitive reduction is an in-rooted directed tree. By definition, the 
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tree-visibility orders contain all interval orders. Furthermore, they also contain the dual 
order of  any generalized interval order and all height one orders. Our major contri- 

butions are a characterization of tree-visibility orders by an infinite family of minimal 

forbidden suborders and an efficient recognition algorithm for tree-visibility orders. 

As this is the case for graph classes, we are convinced that there must be more 

interesting classes of  orders worth to be studied. In fact we are sure that tree-visibility 

orders form an interesting new class of  orders and we hope that they have nice 
structural properties still to be established. The tree model of  a tree-visibility order is 

likely to support the design of efficient algorithms. For example, PRECEDENCE CONSrRAIm" 

3-PROCESSOR SCHEDUCIN6 (problem [OPEN8] of [5]) might be solvable by a polynomial 

time algorithm when restricted to tree-visibility orders. Recall that PRECEDENCE CON- 

StrainT 3-PROCESSOR SCHEDUCrNG is one of the remaining problems in the list of  12 open 

problems in [5] for which the algorithmic complexity is still unknown. For relations 
to coding of orders we refer the reader to Section 6. 

2. Preliminaries 

Most of  the terminology on partially ordered sets (for short orders), used in this 

paper, can be found in the book of Trotter [10]. For graph theoretic notions we refer 

to Bondy and Murty [2]. 
We mention some order-theoretic definitions. Let P = (V(P),-<e) be an order. Two 

elements u, v E V are comparable, denoted by u % v, if u -<e v or v -~p u. If  u ~ v 

and neither u ~p v nor v -<p u then u and v are incomparable, denoted by u lie v. 
The comparability graph of an order P, denoted by G(P), is an undirected graph with 
vertex set V and two vertices u, v E V are joined by an edge if and only if u and v 

are comparable. The undirected graph G(P) = (V(P),E) with E = {{x,y} :x [[e y} is 
the complement of the comparability graph of P and it is called the cocomparability 
graph of P. 

We denote the set of  all maximal (respectively, minimal) elements of  P by 

MAX(P) (respectively, MIN(P)).  P red (x ) :=  {y C V(P):y  -<e x} and Succ (x ) :=  

{y E V(P):x -<e Y} are the predecessor set and the successor set, respectively, of  an 
element x E V(P). An element x ~ MAX(P) is said to be universal if its predecessor 
set Pred(x) := {y E V(P):y  -~e x} is equal to V(P)-MAX(P) .  Hence a maximal 

element x is universal if  it is comparable to all elements of  P except the maximal ones. 

The height of P is the number of  elements of  a maximum size chain minus one. 
Given any subset A c_ V(P) the suborder of P induced by A is the order denoted P[A] 
such that V(P[A]) =A  and for any a,b EA we have a -'<P[A] b if and only i f a  -<e b. 
For short we denote by P - A the suborder P[V \ A]. 

The dual poset of  P is the poset P* such that V(P) = V(P*) and for any a,b C V(P) 
we have a -~p b if and only if b -'<e* a. 

A class ~ '  of  orders is hereditary if P ~ :~ implies that any suborder P '  of  P 
belongs to ~'. Many interesting classes of  orders are hereditary, as e.g. interval orders 



D. Kratsch, J.-X. Rampon/Discrete Mathematics 190 (1998) 163-175 165 

6 
6 5 6 3  

3 - - 4 - -  5 5 4 3  

1 2 

1 5  2 3  

1 2 

(a) (b) (c) 

Fig. 1. In (a) a tree-visibility order P is given by its Hasse diagram. In (b) the forcing graph (see Section 3) 
of P, that is not chordal, is depicted. In (c) we give a visibility tree for P. The nodes of T are labeled in 
such a way that for any x C V(P) the subtree Tx is induced by all nodes of T having label x. 

and two dimensional orders. I f  a class ~ is hereditary then it can be characterized by 

the (possibly infinite) list o f  all its minimal forbidden suborders, where Q is a minimal 

forbidden suborder of  the class ~ if  Q ~ ~ but any proper suborder of  Q belongs 

to ~ .  Then an order P belongs to the hereditary class ~ i f  and only i f  none of  the 

minimal forbidden suborders o f  ~ is contained as a suborder in P.  This nice type o f  

characterization is certainly a very powerful tool for studying structural properties of  

orders as well as for applications o f  certain classes of  orders. 

For an order P depicted by its Hasse diagram (Fig. 1) we assume that given 

two elements a, b we have a -<p b if  they are connected by an edge and a is 

below b. 

Now we introduce a new class of  orders extending the class of  interval orders. 

Notice that we assume that in a rooted directed tree each edge is directed away from 

the root. 

Definit ion 1. An order P is a tree-visibility order i f  there exists a rooted directed tree 

T = (V(T) ,  E ( T ) )  and a one-to-one mapping from V(P) to a family (Tx, x E V(P)) 
of  directed rooted subtrees of  T such that u -<e v if  and only i f  

( i )  V ( T , ) A  V(To) = 0, and 

(ii)  there are x~ E V(Tv) and x~ E V(T~) such that there is a directed path from xv 

to x~ in T. 

The rooted directed tree T is said to be a visibility tree of  P and the tuple (T, (Tx, 
x C V(P) ) )  is said to be a tree-visibility model of  P.  

Of  course several elements o f  a tree-visibili ty order P may be associated to the same 

subtree of  a visibil i ty tree T of  P. 

R e m a r k  1. Condi t ion  (ii) can be replaced by the condition 

( i i ' )  there is a x~ E V(T~) such that for any x,  E V(Tu) there is a directed path from 

x,, to xu in T. 
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Remark 2. Let P be a tree-visibility order and (T, (Ix,  x C V(P)))  a tree-visibility 
model of  P. Then 

(i) for any u C V(P) the (unique) directed path ~ ( u )  from the root of  T to the root 

of  Tu contains the root of  the subtree Tv for any v C V with u -<p v. 

(ii) for any pair u,v E V(P) we have u -<e v if and only if V(Tu)f3 V(Tv) = ~ and 

the root of Tv is an ancestor of  the root of Tu in the visibility tree T. 

Clearly, a tree-visibility order may have various visibility trees and, a tree-visibility 

order P may have different tree-visibility models (T, (Tx, x E V(P)))  for a fixed 

visibility tree T. Hence it is natural to look for tree-visibility models that are minimal 

in a certain sense. 

Remark 3. Let (T, (Tx, x E V(P)))  be a tree-visibility model of  order P and let P '  be 
a suborder of  P induced by the set A C_ V(P). Then (T, (Tx, x C A))  is a tree-visibility 

model of  P ' .  

Therefore the class of  tree-visibility orders is hereditary. 

Our characterization of tree-visibility orders, given in Section 4, directly implies that 

height one orders as well as interval orders form subclasses of the class of tree-visibility 

orders. To enhance the familiarity of the reader with tree-visibility models, we show 
how to obtain a tree-visibility model for these well-known classes of  orders. 

Height one orders. Let A = {al,a2 . . . . .  ar}, r > 1, be the set of  minimal elements 

of the height one order P and let B = {bl,b2 . . . . .  bs}, s~>0, be V ( P ) \ A .  
We construct a visibility tree T of P as follows. The vertex set of  T is V(T)  = 

{u} U {Vl,V2 . . . . .  vr}. The edge set of  T is E ( T )  = {(u, vi):i  = 1,2 . . . . .  r}. The sub- 
trees Tx are induced subtrees of  T, hence it suffices to give their vertex sets. For any 

ai E A we take V(Tai) = {vi} and for any bj E B we take V(Tb/)  : {u}U{v i : ai lie bj}. 
Interval orders. The visibility tree T is a directed path for which the vertices cor- 

respond to the endpoints of the intervals in the interval model of  the interval order P. 

The subtree Tx associated to the element x of  P is a directed subpath and consists 

of all vertices associated to interval endpoints r with a(x)<.r<~b(x), where a(x) (re- 
spectively b(x)) denotes the left endpoint (respectively fight endpoint) of the interval 

associated to x. 

3. Chordal sandwich graphs 

In this section we derive a necessary condition for an order to be a tree-visibility 
order. 

Lelmna 2. Let P be a tree-visibility order and (T,  (Tx, x E V(P)))  a tree- 
visibility model o f  P. Then V( Tx)N V( Ty) ~k ~ for any pair o f  incomparable elements 
x, y E V(P) having a common predecessor z. 
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Proof. Let x and y be two incomparable elements with a common predecessor z. Thus 
the root of Tx and the root of Ty o c c u r  on the unique directed path ~(z )  from the 
root of T to the root of Tz. Hence there is either a directed path from the root of Tx 
to the root of Ty or vice versa. Hence x and y have V(Tx)fq V(Ty) ~ ~ since they 
are incomparable. [] 

Lemma 2 leads to the following concept of a forcing graph which is helpful when 
studying tree-visibility orders. 

Definition 3. Let P be an order. The undirected graph G = (V(P),E) with E = 

{{x,y}  :x lip y for which x and y have a common predecessor} is called the forcing 
graph of P. 

Thus the forcing graph of an order P is a subgraph of the cocomparability graph 
of P. We are going to show that the existence of a tree-visiblity model for an order 
P requires that there exists a chordal sandwich graph between the forcing graph and 
the cocomparability graph of P. The concept of a sandwich graph has been introduced 
and extensively studied by Golumbic et al. [8]. 

Definition 4. A graph G is a spanning subgraph of the graph G' if both graphs have 
the same vertex set and G is a subgraph of G' (i.e. E(G)C_E(G')), 

Let G = (V,E) be a spanning subgraph of the graph G' = (V,E'). Then H = 
(V,E(H)) is said to be a sandwich graph for (G,G') if G is a spanning subgraph of 
H and H is a spanning subgraph of G t (i.e. E(G)C_E(H)C_E(G')). 

Now we are able to formulate our necessary condition for tree-visibility orders. 

Theorem 5. Let P be an order with forcing graph G and cocomparability graph 
G' -- G(P). I f  P is a tree-visibility order then there exists a chordal sandwich graph 
H for (G,G'). 

Proof. Let P be a tree-visibility order and (T, (T~, x E V(P))) a tree-visibility model 
of P. Let T be the underlying undirected tree of T and for any x E V(P) let Tx be 
the underlying undirected tree of Tx. Hence (Tx :x E V) is a family of subtrees of 
the tree T. Let H ~- (V(P),E(H))  be the vertex intersection graph of the subtrees 
Tx, x C V(P), i.e., u,v E V(P) are adjacent in H if and only if V(Tu) M V(T~) ~ 0. 
Hence H is a chordal graph since it is the intersection graph of subtrees of a tree [6]. 
The forcing graph G of P is a spanning subgraph of H, since {u, v} C E(G) implies 

V(Tu) M V(T~) ~ 0 by Lemma 2, hence {u,v} C E(H). H is a spanning subgraph 
of the cocomparability graph G' of P since {u,v} E E(H) implies V(Tu)A V(Tv) 

thus u lip v, by Definition 1. Consequently, H is a chordal sandwich graph for 
(G,G'). [] 
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4. A characterization of tree-visibility orders 

The aim of this section is to determine all minimal forbidden suborders for the class 
of tree-visibility orders. 

Definition 6. Let k ~> 1. The order Qk is defined as follows. The groundset of Qk is 

V(Qk ) = {al,a2 . . . . .  a, } tA {bl,b2,...,bk+l } tA {cl,c2}. Furthermore, ai -<9_, bj if and 
only i f j  E { i , i+  1}, ai-<9_~ cj for all i E {1,2 . . . .  k} a n d j  E {1,2}, bi-<Qk cl for 

i E {1,2 . . . .  k} and b~ -<Ok c2 for i E {2,3 . . . .  k + 1}. (See Fig. 2.) 

Theorem 7. The order Qk is a minimal forbidden suborder for the class o f  tree- 
visibility orders for all k >~ I, 

Proof. First we show that for any k/> 1 the order Qk is not a tree-visiblity order. 
Assume that Qk would be a tree-visibility order for some k~> 1. We consider the 
forcing graph G of Qk- The graph G is not chordal, since it contains the chordless 

cycle C = (bl,b2 . . . . .  bk+l,cl,c2,bl). By Theorem 5, there is a chordal sandwich graph 
H for the pair (G, G') where G' is the cocomparability graph of Qk. Taking the vertices 
cl and c2 of the cycle C there is no vertex bj, j E {1,2 , . . . ,k  + 1}, in the cycle C 
adjacent to Cl and cz in H since the only neighbors of cl in G' are c2 and bk+l and 
the only neighbors of c2 in G' are cl and bl. Take cl and c2 and the vertices of a 
shortest path between cl and cz in the graph obtained from H[C], the graph induced 
in H by the vertices of C, by deleting the edge {cl,c2}. This vertex set induces a 
chordless cycle of length at least 4 in H. Hence, H is not chordal. Consequently, by 
Theorem 5, Qk is not a tree-visibility order for all k ~> 1. 

Now it is a matter of routine to construct a tree-visibility model for any proper 
suborder Qk - {x}, x E V(Qk), of Qk and any k~>l (see Fig. 3 for a tree-visibility 

model of Q4 - {b3}). [] 

C1 C2 

0,1 0, 2 O~3 G,k 

Fig. 2. The order Qk Hasse diagram. 
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C1 C2 

bl C2 CI b5 

ba b2 b4 b5 

al bl a2 a3 b,~ a4 

Fig. 3. The tree visibility model produced by the algorithm TREE-VISIBILITY of Section 5 for the order 
Q4 - {b3}. 

For showing that the set o f  all orders Qk, k ~> 1, is exactly the set of  all minimal 

forbidden suborders for the class of  tree-visibility orders, we present Proposition 8 and 

Lemma 9. Both of  them are also crucial for the recognition algorithm for tree-visibility 
orders, that we present in the next section. 

We shall need some more concepts for the proof  of  the main theorem. An order P 

is said to be connected if  its comparability graph G(P) is connected. Let u and v be 
elements of  a connected order P. Then there is a shortest u,v-path (u = xo,xl . . . . .  xr = 

v) in G(P) such that the internal vertices xl . . . . .  Xr-1 of  the path are alternately minimal 
and maximal elements of  P. Such a u, v-path is said to be normalized. To see that 
a normalized path exists for any pair u,v E V(P),  take any shortest u,v-path (u = 

Yo, Yl . . . .  , Yr = v) in G(P). Then either Yi-i  "~P Yi and Yi+l -<P Yi, or yi -'<P Yi-i  and 
yi '<e Yi+l for any i E {1 . . . . .  r - 1}. I f  Yi ~ M A X ( P )  in the first case then replace 
it by a maximal element y~ that is a successor of  Yi. I f  Yi q[ MIN(P)  in the second 

case then replace it by a minimal element y; that is a predecessor of  Yi. This leads to 
a normalized path between u and v. 

In the remainder of  the paper we consider only normalized paths (u = Xo,Xl . . . . .  

x~ = v) between maximal elements of  an order. Thus in any path (u = Xo,Xi . . . . .  

x,  = v), xi is a maximal element if  i is even and xi is a minimal element if  i is odd. 
Moreover, r is even. 

Proposition 8. Let  P be a connected order with no universal element such that 

P -  MAX(P)  is connected. Then there is a k ~ l  such that P contains Qk as a 

suborder. 

Proof.  Let P be an order that fulfills the assumptions of  the theorem. We denote the 
connected suborder P - M A X ( P )  by P'. We say that a maximal element x of  P has 

a private predecessor Px if Px -<p x and Px lip Y for all y E (MAX(P)  \ {x}). 
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Case 1: P has a maximal element x with a private predecessor Px. W.l.o.g. Px is 
a maximal element of  P ' .  Since x is not a universal element of P, there are elements 

u E MAX(P')  with u lip x. We choose t E MAX(P ' )M {u:u  lip x} such that the 

length of a shortest path between t and Px in G(PI), is minimum among all elements 

u E MAX(P I) that are incomparable to x. Let (Px = xo,xl . . . . .  x2s = t), s>~l, be a 

normalized Px, t-path in P ' .  Clearly the set A = {Px = Xo,Xl . . . . .  x2s = t} induces a 
fence in P~. Furthermore x2i E MAX(P' )  for all i E {0, 1 . . . . .  s}. By the choice of  t 

we have x2i -<e x for all i E {0, 1 . . . . .  s - 1}. 

Since t is not a maximal element of P, there is a y E MAX(P) with t -<p y. 

Furthermore, there is a j with x2j lip Y since px is a private predecessor of  x = xo 

implying x lip y. Now let j be the largest subscript such that x2j [1~ Y. Then the set 

{x, x2j,x2j+l . . . . .  X2s = t, y} induces a Q~_j in P. 
Case 2: No maximal element o f  P has a private predecessor. We choose among 

all elements of MAX(P t) an element w having a successor set of  minimum cardinality. 

Then let R C_ MAX(P) be a subset of  Succ(w) containing all but one of the successors 

of  w in P. Let x be the only successor of  w in P not belonging to R. Notice that 

R ~ 0, otherwise w would be a private predecessor of  the maximal element x of  P. 
By the choice of R, every maximal element of  pr belongs to P -  R and has at least 

one successor in P - R. Thus, the maximal elements of  the order P - R are exactly 
the elements of  M A X ( P ) \  R. Hence the order ( P -  R ) -  ( M A X ( P -  R)) is exactly Pt 

and thus connected. Furthermore, P -  R has no universal element since any universal 
element u E M A X ( P -  R) of P -  R had to fulfill MAX(P t) C_ Pred(u) which would 

imply that u is universal in P, a contradiction. Finally w is private predecessor of x in 

P - R .  
Altogether, P -  R fulfills the assumptions of  Case 1. Hence, P -  R has a Qk for 

some k ~> 1 as a suborder. Hence Qk is also a suborder of  P. [] 

We will need the following technical lemma. 

Lemma 9. Let P be a tree-visibility order. Then for any tree-visibility model 

(T, ITx,x E V(P)) ) of  P there is another tree-visibility model of  P on the same visi- 
bility tree T, say (T, (T' x, x E V(P))), such that the root of  T belongs to Ttx 

for all x E MAX(P). 

Proof. Let R(T)  be the root of  T, and let L(T)  = {x E V(P), R (T)  E V(Tx)}. 
Clearly L ( T ) C  MAX(P). Suppose L(T)  ~ MAX(P). For all x E M A X ( P ) \  L(T),  

let A(x) be the set of  elements of T which do not belong to the maximal subtree 
of  T rooted in the root of  Tx. For any such x, the root of  T belongs to A(x) and 
since x is a maximal element of  P any element y of  P such that V(Ty) f3A(x )  5~ 
is incomparable to x in P. Then (T, (T'  x, x E V(P))), where T' x is the subtree of  
T induced by V(Tx)tO A(x) if x E M A X ( P ) \  L(T)  and T' x = Tx otherwise, is a 
tree-visibility model for P fulfilling the claimed property. [] 
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This leads to the major theorem of this paper, that gives a characterization of tree- 
visibility orders by an infinite family of  forbidden suborders of  height two. 

Theorem 10. An order P is a tree-visibility order if  and only i f  it does not conta& 
an order Qk, k >1 1, (see Fig. 2) as a suborder. 

Proof. By Theorem 7, it remains to show that every order P, which does not contain 

an order Qk as a suborder, has a tree-visibility model. We prove this claim by induction 

on the number of  elements. Trivially, a one element order has a tree-visibility model. 

Now let P be an order on at least two elements which does not have a Qk as a 
suborder. Clearly, none of the suborders of P has an order Qk as suborder. 

Case 1: P is not connected. Let the orders P1 . . . .  ,Pt, l>/2, be the connected 

components of  P. By induction, any order Pi, i E {1,2 . . . .  , l}, has a tree-visibility 
model (T i, (T' x, x E V(Pi))). Let T be the rooted directed tree obtained from all 

the Ti's by adding a new root NR such that its sons are the roots of the Ti's. Then 

(T, UiE{1,...,k}(Tix, x E V(Pi))) is a tree-visibility model of P. 
Case 2: P is connected. 
Case 2.1: P has a universal element. Let u be a universal element of P. By induction 

and by Lemma 9, P '  = P - {u} has a tree-visibility model (T ' ,  (T'~, x E V(P'))) such 
that the root of  T ~ belongs to Ttx for all x E M A X ( P -  {u}). Let T be the rooted 

directed tree obtained by adding a new root NR to T'  such that the unique son of NR 

is the root of T'. Then (T,(T~, x E V(P))) with (i) Tx = T' x i f x  E V ( P ) \  MAX(P), 

(ii) Tx is the subtree of T induced by V(T'x) U {NR} if x E MAX(P) \ {u}, and (iii) 
Tu is the subtree of T induced by {NR}, is a tree-visibility model for P. 

Case 2.2: P has no universal element. Proposition 8 implies that P -  MAX(P) is 

not connected. Let the orders K1 . . . . .  Kt, l >~2, be the connected components of  P -  

MAX(P), and let Pi, i E {1,2 . . . . .  l}, be the suborder of  P induced by V(Ki)U Mi, 
where Mi is the set of those elements of  MAX(P) having at least one predecessor 

in V(Ki). By induction and by Lemma 9, every order Pi has a tree-visibility model 

(T  i, (T~x, x E V(Pi))) such that the root of  T i belongs to T' x for all x E MAX(Pi). 
Let T be the rooted directed tree obtained from all the Ti 's  by adding a root NR such 

that its sons are the roots of the Ti's. Then (T, (Tx, x E V(P))) with (i) Tx = T' x if 
x E V(Pi) \  MAX(P), and (ii) Tx is the subtree of  T induced by {NR} U {V(Tx/), x E 

V(Pi)} U {V(Ti), x ~ V(Pi)} i f x  E MAX(P), is a tree-visibility model for P. [] 

Since none of the minimal forbidden suborders is an interval order or an order of 

height one, Theorem 10 immediately implies 

Corollary 11. The class of  height one orders as well as the class of  interval orders 
are proper subclasses of  the class of  tree-visibility orders. 
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Faigle, Schrader and Turhn introduced the generalized interval orders in [3]. A linear 
time recognition algorithm for generalized interval orders has been given by Garbe [4]. 

Definition 12. An order P is said to be a 9eneralized interval order if for all 
x, y E V(P) either Succ(x) fq Succ(y) = 0, Succ(x) C Succ(y) or Succ(y) C Succ(x). 

Since Pred(cl ) f3 Pred(c2) # 0 for all Qk, k/> 1, and since any height one order is 
a tree-visibility order, Theorem 10 implies 

Corollary 13. The class of  the duals of  oeneralized interval orders is a proper subclass 
of  the tree-visibility orders. 

5. Recognition algorithm 

In this section we present an efficient algorithm to recognize tree-visibility or- 
ders. Our algorithm TREE-VIsIBILITY(P) works by recursive calls of a subroutine TREE- 
VIsmlurv (K,N, INC). 

It is started by calling TREE.VIsmILITY(P,R,O), where R is a reference variable point- 
ing to the future root of the eventual tree-visibility model of the given order P. The 
algorithm computes a visibility tree T of P, if there is one, by assigning to each node 
N of T a label set that is going to be the set of all those vertices u for which Tu 
contains the node N. 

Subroutine TREE-VIsIBILITY(K, N, I~C)  
K: / ,  Current order. */ 
N: / ,  Father of the root of the subtree representing K. , /  
INC: / ,  Set of all elements of the label set of node N that , /  

/ ,  are incomparable to all elements of the order K. , /  
Begin 

MAX(K) := {x :x maximal in P}; 
Compute the connected components K1,K2,.. . ,Kt of K -  MAX(K); 
Create a node C in T with father N and label set INC U MAX(K); 
If K -  MAX(K) has exactly one connected component 
Then 

U(K) := {u : u universal in K}; 
If  U(K) = 0 
Then 

EXIT; output "K is not a tree-visibility order." 
Else 

TREE-VISIBILITY(K -- U(K); C; INC); 
EndIf 

Else/, The subroutine terminates if K - U(K) = 0 */ 
For all connected components Ki = (V(Ki), "~e) of K -  MAX(K) 
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Do 

Li := {x E Mi : V(Ki) \ Pred(x) # 0}; 
TREE-VIsmILITv(K[V(Ki) U Li]; C; INC U (MAX(K) \ Mi)); 

EndFor 

Endlf 
End; 

The algorithm TREE-VISIBILITY(P) terminates in two different ways. Either it outputs 

'P  is not a tree-visibility order' or it terminates with a tree-visibility model of  the 

given order P, that is constructed as a tree T with a label set assigned to each node 

of T. 

Theorem 14. Given an order P, the algorithm TREE-VIsIBILITY(P) decides whether P 
is a tree-visibility order. I f  so, the algorithm computes a tree-visibility model of P 
such that the number of nodes in the visibility tree is at most IV(P)[. The running 
time of the algorithm is t~(nm), where n denotes the number of elements of P and m 
denotes the number of edges in the comparability graph of P, 

Proof. Suppose the algorithm terminates with the output 'P  is not a tree-visibility 

order'. Hence a recursive call of TREE-VISIB1LITY(K,N, INC) found a connected suborder 

K of P such that K -  MAX(K) is connected and has no universal element. Therefore 

K contains a suborder Qk for some k/> 1 by Proposition 8. Consequently there is a 
Qk that is a suborder of  P, thus P is not a tree-visibility order by Theorem 7 and the 
algorithm is correct in this case. 

Otherwise, the algorithm TREE-VISmILITV(P) constructs a tree T such that the ref- 

erence variable R points to the root of T. This means that any subroutine TREE- 

VlsmmlTv(K,N, INC), recursively called during the execution of the algorithm, ei- 

ther recursively called l >/1 subroutines, where l is the number of  connected com- 

ponents of K - MAX(K), or terminated by creating a leaf of  the final tree T since 
V(K) \ MAX(K) = 0. Consider T as a directed tree T with the root specified by R. 

For any v E V the corresponding subtree Tv consists of those nodes of  T that have a 
label set containing v. 

We show that (T, (To, v E V(P))) is a tree-visibility model of P. First we claim 

that Tv is a subtree of T for any v E V(P). Suppose not. Then there is a v c V(P) 
such that Tv is a disconnected subtree of  T. On the one hand if v does not belong to 

the label set of a node N but belongs to the label set of its father then v is not an 
element of the current order, when the node N is created. Moreover, since v does not 
belong to the label set of N, v does not belong to the current INC and hence v does 

not belong to an INC, for any recursive call creating a node, which is a successor of  
N in T. On the other hand, if v belongs to the label set of a node N and never appears 
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before on a node in the path from the root of T to N, then v is a maximal element in 
one of the connected components o f / ¢ -  MAX(/¢) where/¢ is the current order when 
N' the father node of N has been created. This guarantees that v cannot belong to the 
current INC when N'  has been created, that v is not a maximal element of/¢,  and that 
v is not an element of any of the other order obtained when applying the subroutine 
to the remaining connected components of k - MAX(/¢). Thus N is the root of Tv. 

It remains to show that the final tree indeed creates a tree-visibility model of P. This 
follows immediately when noting that our algorithm guarantees that when calling the 
subroutine TREE-VIsIBILITY(K;N; 1NC) the set INC is actually the set of all elements 

of P that belong to the label set of a node in the path from the root of the tree to 
N and that are incomparable to all elements of K. This is ensured by the use of the 
auxiliary sets Li and M,- in the For loop. 

Let u -~p v. Consider the first subroutine TREE-VIsmILIXV(K; N; INC) executed during 
the algorithm for which u E MAX(K) holds. Clearly v ~ INC and v ~ V(K). Hence 
v is not in the label set of node N and Tu and Tv have no node in common. On the 
other hand, there is a directed path from the root of T~ to the node N, i.e., the root 
of u, since K is a suborder of /¢ ,  the current order when creating the root of Tu. 

Finally, consider the execution of TREE-VISmILI~(K;N; INC) and suppose v E V is 
not an element in the label set of node N but it appears in the label set of the father 
N'  of N. Then v is an element that has all elements of the order K as successor. This 

is guaranteed by the construction of the current orders for the recursive call. 
The recognition algorithm can be implemented such that its running time is C(nm). 

The important fact to notice is that the tree T, which is isomorphic to the recursion 
tree of the algorithm, has at most n vertices since each node N of  T has in its label 
set an element which only appears in the label set of nodes belonging to the subtree 
of T rooted in N. Indeed, if N '  is the father of N then there is an element in the 
label set of N that belongs to the maximal elements of the connected component of 
K - MAX(K) inducing the node N where K is the current order when creating the 
node N'. Thus this element can appear only in the label set of nodes of the subtree of 
T rooted in N. Finally the running time of each subroutine TREE-VISIBILITY(K; N; INC) 
without counting the recursive calls is O(m) when a linear time algorithm for the 
computation of the connected components of a graph is applied. [] 

Remark 4. One can also show that the height of the visibility-tree constructed by our 
algorithm is minimal among the height of all visibility trees T in any tree-visibility 

model (T, (Tx, x E V(P))) of the order P. 

6. Conclusion 

We introduced a new class of  orders defined by visibility on subtrees of rooted 
directed trees. This definition leads to two main types of further investigation related 
to the efficient coding of orders: 
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• the characterization of orders defined by visibility on isomorphic subtrees, 
• the characterization of orders defined by visibility on subtrees with a bounded number 

of leaves. 
A well known illustration of the former type is given by semiorders and intervals 
orders. For the latter type recall that a subtree of a rooted directed tree is completely 
defined by its root and its leaves, and that a rooted directed tree is the transitive 

reduction of a 2-dimentional order. Thus for orders P, defined by visibility on subtrees 
with at most k leaves, k a fixed positive integer, one can answer the query 'x -<p y?'  
in constant time. As noted in [9], in the case k -- 1 the corresponding class of orders 
are exactly the duals of generalized interval orders, but the question is still open for 
any fixed k with k >~ 2. 
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