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1. INTRODUCTION 

A result of fundamental and far-reaching importance in the study of 
existence, uniqueness, boundedness, and stability properties of ordinary 
differential equations is the Gronwall-Bellman inequality [I, 21. Several 
authors (see, e.g., [3], [4], [5], [6]) h ave developed extensions of the inequality 
to functions of more than one independent variable and exhibited applications 
to partial differential equations. Rasmussen [7] has recently obtained a 
nonlinear two-dimensional version of the inequality by using ideas previously 
applied to functions of one independent variable by Opial [8] and others. 
In the present note we show that these techniques can be further exploited 
to obtain nonlinear extensions to any number of independent variables. 

Let G be an open connected (possibly unbounded) set contained in 
N-dimensional Euclidean space R N. For any two points x and y in G, with 
x = (Xl ,..., xN) and y = (yl ,..., yN), define the set G(x, y) to be the closed 
rectangular parallelepiped with one diagonal joining the points x and y; 
that is, 

G(x,Y) = {t E RN j tj = (1 - hj)‘J’i + hi~j, 0 < /\j 6 l,i = 1, 2 ,..., N}. 

We remark that the identity G(x, y) = G( y, x) is an immediate consequence 
of the definition of G(x, y). This symmetry wil enable us to drop the require- 
ment in [7] that the line joining the points x and y have non-negative (though 
not necessarily finite) slope. 

For fixed 5 in G, define the integral operator K by setting 

w4 (4 = s,,, p) WY n(t)) 4 (1) 
where 21 and R are real-valued functions (K being continuous on G x Rl), x 
is a point of G, the set G(x, 6) is contained in G, and dt is Lebesgue measure 
on RN. 
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2. RESULTS 

In this section we prove a Gronwall-type inequality for nonlinear integral 
operators on functions of N independent variables. Theorem 1 extends the 
corresponding result in [7] not only to N dimensions but also to more general 
linear operators. Consequently, Theorem 2, the N-dimensional analog of 
the main result of [7], follows readily. It should be noted that Theorem 2 
also contains the analogous two-dimensional result of Snow [5] for linear 
integral operators. 

THEOREM 1. Let f and y be points in a (possibly unbounded) domain 
G C RN such that G(f, y) C G. Let g and k be real-valued functions, with g 
continuous on G, and with k continuous on G x R1 and nondecreasing with 
respect to its last argument. Let (en) (n = 1, 2,...) b e a strictly decreasing sequence 
of real numbers with limit ‘zero. Suppose that there exists a family 
{vn 1 n = 1,2 ,... } of functions continuous on G(y, f) such that, for n = 1,2 ,..., 
and all x in G(y, f), 

%2(x) = g(x) + l n + (%J (x). (3 

Let U be the maximal solution on G(y, 6) of the nonlinear Volterra integral 
equation 

f44 = g(x) + (9 (4 (3) 

Then limn+m v, = U on G(y, f). 

Proof. If & = yi for some j, then the parallelepiped G( y, 4) has volume 
zero and the result is trivially true. We therefore suppose that & # yj for 
j = 1, 2,..., N. We shall show that the sequence (v,J is strictly decreasing 
and satisfies the hypotheses of the Ascoli-Arzell Theorem [9, p. 1121. 
Accordingly, we first note that v,(f) - v,(f) = E, - E, < 0 whenever 
m > n. If the sequence (a,) were not strictly decreasing, then it would 
follow from the continuity of the functions v, and v, that, for some z in 
G(y, .$, with z # 5, we would have v, < V~ on the set G(x, 6) - {z}, whilst 
v,(z) = v,(x). But then it follows from the definition of v, and the mono- 
tonicity of (en) and k that 

whenever m > n. This contradicts the definition of z and shows that 
v,(x) < v,(x) whenever m > n and x E G(y, 5). It follows that the sequence 
(v,J (n = 1,2,...) is bounded above by Mr = max{v,(x) 1 x E G(y, f)}. Let 
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u be any solution of (3) on G(y, 5). Then ~(8) < v,(t) for n = 1, 2,.... We 
now show that u(x) < v,(x) for IZ = 1,2,... and all x in G(y, 6). If this were 
not true, then there would exist some function v, satisfying (2) and some 
point 7 in G(y, LJ), with 7 # 5, such that U(X) < v,(x) for all x in 
G(T, .$) - {T}, whilst V,(T) = u(7). But then it follows from (2), (3) and the 
monotonicity of k that 

w = A+?) + K4?7) <g(T) + %L + Wm) (4 = %(?7)* 

This contradicts the definition of 7 and shows that u(x) < v,(x) for each 
positive integer n and all x in G(y, 5). C onsequently, the sequence (vn) is 
bounded below by 

M2 = min{u(x) 1 x E G(y, f)}. 

To prove equicontinuity, let E be any positive number, and let yf and y” 
be any two points in G(y, 0, with y’ = (yr’,..., yN’) and y” = (~2 ,..., y;l). 
For n = 1, 2,..., the first two terms on the right side of the identity 

%(Y’) - %(Y”) = Wd (Y’) - VW (Y7 + dY’) - %dY”) (4) 

may be written in the form 

W4 (Y’) - WV,) (Y”) = s, WC vn(t)) dt - s, Wt, v&N 4 (5) 

where 

E = G(Y’, 69 - WY”, 0 and F = WY”, E) - G(Y’, 0, 

the negative signs denoting relative complementation. 
The set E may be decomposed into N disjoint (possibly degenerate) 

rectangular parallelepipeds El ,..., EN as follows 

El = {x E E I min(y,‘, rl) < x1 < mdy,‘, ri)l, 

Ej = (x E E - Ej-, 1 min(yj’, yjn) < xj < max(yj’, yy)} (j = 2, 3 )..., N). 

Similarly, the set F may be decomposed into N disjoint (possibly degenerate) 
rectangular parallelepipeds Fl ,..., FN defined by 

Fl = ix EF I min(y,‘, Y;) < xl < max(y,‘, Y;)), 

Fj = {x E F - Fj-, 1 min(yj’, yjn) < yj < max(yj’, yJ} (j = 2,..., N). 

For j = 1, 2,..., N, consider the parallelepipeds Ei and Fj . Each edge 
parallel to the xi-axis has length 1 yi’ - y; 1 , and each edge parallel to the 
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x,-axis (r # j) has length not greater than max(l yT’ - 4, [ , 1 y’: - t, I), 
and therefore not greater than j y,. - (,I . It follows from (5) that, for 
71 = 1, 2,..., 

where 

I(%) (Y’) - (Kv,) (~‘7 < 2AB f I yj' - y; I , 
j=l 

and 

A = sup{1 k(x, u)l: x E G(y, 6% M, < u < Ml} 

B = max{(y, - 5,. I: T = 1, 2 ,..., N). 

We now introduce the norm 

I/y’-yy” I!= 5 Iyj’-yy; I. 
j=l 

Since g is continuous and therefore uniformly continuous on the compact 
set G(y, t), there exists a positive number 8, such that 1 g(y’) - g(y”)j < c/2 
whenever y’, y” E G(y, 5) and (( y’ - y” (( < 6, . For A > 0, choose 6, so 
that 0 < 8, < c/(4AB), and let 8 = mm@, , 8,). It follows from (4) that, 
for n = 1, 2,..., I %(Y’) - %(Y”)l -=c Q whenever y’, y” E G(y, 5) and 
II Y’ - 9 II -=c 6. 

If A = 0, this estimate is trivially true for all S < S, . We have therefore 
shown that the sequence (v,) is equicontinuous and uniformly bounded on 
the compact set G(y, [). According to the Ascoli-Arzela theorem, there 
exists a subsequence v,, (i = 1, 2,...) which converges uniformly on G(y, 6). 
The sequence (v,J, bding decreasing and bounded below, converges on 
G(y, 0. It is thus clear that limn+m v, = lim,+m v,$ . If we let i -+ 00 in the 
identity 

v&4 = g(x) + cni + (%zJ (4 (x E G(Y, f>), 

we see that, in view of the continuity of k and the uniform convergence of 
the sequence (v,,), the function limi,, vlti is a solution of (3). Moreover, 
since each solution u of (3) satisfies the inequality U(X) < vn(z) for x in 
G(y, 5) and n = 1,2 ,.,., so does the maximal solution U; consequently 

U(x) s ;+2 v,(x) = 5: V,‘(X) < U(x) 

for all x in G(y, 0. Th is completes the proof of the theorem. 
We remark that the existence of maximal solutions for the integral equa- 

tions in this section is a consequence of general results proved in Walter’s 
monograph [IO, pp. 131, 1391. 
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THEOREM 2. Let f and y be points in a (possibly unbounded) domain G C RN 
such that G([, y) C G. Let g, v, and k be real-valued functions, with g and v 
continuous on G and with k continuous on G x R1 and nondecreasing with 
respect to its last argument. Let v be a solution on G(y, 6) of the nonlinear 
integral inequality 

44 G g(x) + VW (4. 

Then v(x) < U(x) for all x in G(y, Q, w h ere U is the maximal solution on 
G(y, 5) of the integral equation 

Proof. If tj = yi for some j, then the result is trivially true. We therefore 
suppose that & # yi for j = 1, 2 ,..., N. Let (en) (n = 1, 2 ,...) be a strictly 
decreasing sequence of real numbers with limit zero. For n = 1,2,..., let v, 
be a continuous solution on G(y, 6) of the integral equation 

We now show that w(x) < ZJ%(X) for all positive integers n and all x in G(y, E). 
If this were false for some U, at some point of G(y, 0, then, in view of the 
inequalities 

it follows from the continuity of v and V~ that there must exist some point x 
in G(y, [), with z # e, such that v(x) < vnz(x) on the set G(y, 6) - {z>, 
whilst v(z) = w,(z). But then 

This contradicts the definition of z and shows that V(X) < V&V) for 
n = 1, 2,..., and all x in G(y, I). It follows from Theorem 1 that, for all x in 

G(Y, 51, 
v(x) < pi v,(x) d U(x). 

This completes the proof of the theorem. 
It should be noted that G need not be connected. It is enough if [, y and 

G(.$, y) lie in the same component (= maximal connected subset) of G. 
In closing, we point out that inequalities similar to that proved here have 

been successfully applied by several authors to the study of parabolic partial 
differential equations in N independent space variables. A detailed and 
comprehensive account of typical applications, together with a full biblio- 
graphy, may be found in [IO]. 
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