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The interaction of metal oxide nanoparticles with plants has not been extensively studied. An

attempt has been made to examine the potential variation in peanut plant leaves due to the

application of Fe2O3 nanoparticle by pre-sowing technique and to compare with its bulk coun-

terpart. Fe2O3 nanoparticle was synthesized by chemical route and characterized using X-ray

diffraction, atomic force and scanning electron microscopy. The Fe2O3 nanoparticle and its

bulk counterpart are applied to the peanut seeds by pre-soaking method at two different con-

centrations: 500 and 4000 ppm. A total of three replicates were chosen for each morphological

and physiological measurement (at an average of three plants per replica). The Fourier

transform infrared spectral analysis shows the most prominent peaks at 2923 and 1636 cm�1,

and other peaks vary due to Fe2O3 stress, which was confirmed by the calculated mean

ratio of the peak intensities for various frequency regions. All leaf samples show considerable

increase in glycoprotein, with 500 ppm bulk and 4000 ppm nano-Fe2O3 samples exhibiting a

maximum increase of 73.86% and 71.45%, respectively. The total amide I and II protein

content of leaf sample soaked in 500 ppm bulk Fe2O3 suspension decreased to a greater extent

compared with other leaf samples. The leaf samples soaked in 500 ppm concentration of

both bulk and nano-Fe2O3 suspension exhibited lower lipid content with total band area

of 76.97 ± 0.832 and 76.31 ± 0.468, respectively. The cumulative percentage of explained
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variance in secondary structure of protein of all leaf samples is 83.888% in which factor 1

accounts for 51.870% and factor 2 accounts for 32.018% of the total data variance. The

principal component (PC) loadings plot for the spectral range 1600–1700 cm�1 clearly shows

that the PC1 factor might establish the maximum variation of the secondary structure of protein

in leaf samples.

� 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Micronutrients play a vital role in plant nutrition and growth.

Iron is one of the essential elements for plant growth and cru-
cial in photosynthetic reactions, activating numerous enzymes,
which are involved in the transfer of energy, reduction and fix-

ation of nitrogen, formation of lignin, and contributing in
RNA synthesis [1]. Furthermore, in plants, several reactions
are catalyzed by compounds containing both iron and sulfur.
Yellow leaves, which indicate low levels of chlorophyll, are a

manifestation of iron deficiency. Leaf yellowing is first wit-
nessed in the interveinal tissues of younger upper leaves, while
completely yellow or almost white leaves indicate severe

deficiency; later, the leaves turn brown and eventually die.
Nevertheless, in the aerobic cellular medium, Fe insolubility
and toxicity may constitute a major problem and all organisms

have evolved strategies to preserve Fe homeostasis regardless
of its extracellular concentration. The strategies include trans-
portation by chelating to organic acids or transferrin, com-

partmentation in the apoplast space and vacuoles, storage in
ferritin, and the avoidance of the reaction with peroxides by
subcellular compartmentation and by the presence of high
levels of antioxidants. According to Graham et al. [2]

throughout the world more than 3 billion people suffer from
micronutrient deficiencies. This led to research towards devel-
oping technologies for increased uptake and accumulation of

micronutrients in comestible plant parts.
Peanuts (Arachis hypogaea L.) contain rich oil and protein,

and are an important source of oil in processing industry. In

some cases, peanut also serves as a supplementary food due
to its high nutrition. They are extremely rich in vitamin B.
They also stand out because of their high fat and protein con-
tents. Peanut is cultivated in 108 countries. In India, peanut is

grown in approximately 8 million hectares and is a popular
legume food crop. The average productivity of peanut in India
is far less at �1178 kg ha�1 compared with the world’s average

1400 kg ha�1. The reason for low productivity is that the crop
largely grown in rain-fed, low-fertile soils. Nanotechnology
has the potential to revolutionize agriculture with new tools

to enhance the ability of plants to absorb nutrients. Nanopar-
ticles interact at molecular level in living cells and nano-
agriculture involves the employment of nanoparticles in agri-

culture expecting that these particles impart some beneficial
effects to the crop in seed germination, control of plant dis-
eases and so on. Using nanoparticles and nanopowders,
controlled- or delayed-release fertilizers can be developed.

Nanoparticles are highly reactive owing to specific surface
area, high-density reactive areas, or increased reactivity of
these areas on the particle surfaces. These features facilitate

easy absorption of pesticides and fertilizers produced in nanos-
cale [3]. Broadcast, foliar spray and pre-sowing seed treatment
methods were used for the application of micronutrients. To

decrease the expenditure and obtain better income, pre-
sowing seed treatment of micronutrients is a good technique.
A method for economizing the use of fertilizer, which involves
soaking the cereal seeds in nutrient solution before sowing, has

been reported [4–6]. Furthermore, they stated that adequate
amounts of deficient elements could be added in this manner
to assist the plant through the critical stages of early growth

and to contribute in the significant increase of yield
parameters.

Although iron toxicity is not common, some plants show

symptoms, which include bronzing and stippling of leaves.
Controlling free radicals, which are formed due to high iron
levels, by the enzymes produced by the plants causes leaf dis-
coloration. Some plants that are prone to iron toxicity include

tomatoes, basil, Phlox and Impatiens. Fe3O4 ENPs in Ara-
bidopsis thaliana did not significantly affect seed germination
and the number of new leaves, whereas the root elongation

was negatively influenced at all exposure concentrations (400,
2000, and 4000 mg/L of Fe3O4 nanoparticle suspensions) [7].
Ionic iron showed only slight toxicity effects at 1570 mg/L

and, therefore, no median effect concentrations were deter-
mined. Microscopic examinations did not reveal ENPs in pal-
isade cells or xylem. Apparently, aggregates of NZVI

(nanoscale zerovalent iron) were found in Sinapis alba and
Sorghum saccharatum, although false positives during sample
preparation cannot be excluded [8].

Many works focused on the application of nanoparticles to

improve the germination percentage but none of the works
studied the potential variation in fully grown plant due to
soaking seeds in nanoparticle-dispersed suspension. In this

work, the effects of pre-sowing peanut seeds in nanoparticle
and bulk Fe2O3 suspension are studied to ascertain the effect
of nanoparticle on peanut plant leaves [4–6]. The entire plant

can be analyzed for potential variations due to nanoparticles
but leaves are the most sensitive part of a plant that could
respond to any toxins showing symptoms such as leaf chlorosis
and bull’s eyespot. Hence, plant leaves were analyzed, as iron

is involved in chlorophyll formation and its deficiency will
cause an abnormal condition of the leaves – chlorosis.

Experimental

Synthesis of nanoparticles

The Fe2O3 nanoparticle was synthesized by chemical precipita-
tion method. The solution of ferric nitrate, the precursor mate-

rial, was taken in a beaker and stirred well using a magnetic
stirrer. Ammonium hydroxide solution was added in drops



Fig. 1 XRD pattern of Fe2O3 nanoparticles.
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to form iron hydroxide precipitate. The solution was continu-
ously stirred to avoid agglomeration of precipitated particles.
The precipitate was washed several times with distilled water

and annealed at 400 �C for 4 h to remove the water content
and form Fe2O3 nanoparticle.

Characterization of Fe2O3 nanoparticle

The average grain size was determined from the XRD patterns
using the Debye–Scherrer formula: s = 0.9k/b cosh, where

wavelength (k) of Cu Ka1 is 1.54060 Å, and b is the full width
half maximum of the most intense peak (104). X-ray diffrac-
tion (XRD) patterns were recorded on an X-ray powder

diffractometer (Rich Seifert, Model 3000). Scanning electron
microscope (JEOL JSM-6360) was used for sample analysis.
The surface topology was investigated by using AFM Seiko
SPI3800N (series SPA-400; Tokyo, Japan).

Seed preparation and presoaking

The peanut seeds were obtained from the Regional Agricul-

tural Research Institute, Virudhachalam, India. The seeds
were sterilized in a 1:8 (volume) solution of 5% sodium
hypochloride and water for 5–10 min, and then rinsed thor-

oughly several times with deionized water. The seeds were then
treated with two different concentrations of both bulk and
nano-Fe2O3 suspension (500 and 4000 ppm) for 10 h. The
nano and bulk Fe2O3 suspensions were prepared by ultrasoni-

fication of the solution for 1 h. Later, the seeds were sowed in
separate pots for each concentration of both nano and bulk
Fe2O3 metal oxides. The seeds were watered periodically and

the leaves were collected after 30 days. A total of three repli-
cates were chosen for each morphological and physiological
measurement (at an average of three plants per replica).

FT-IR spectral analysis

The leaf samples were removed from the plant collected after

30 days of sowing. All the leaf samples were oven-dried at
100 �C for 48 h to remove moisture and ground to fine powder.
The infrared spectra of leaves were recorded using KBr pellet
technique in FT-IR spectrometer (BRUKER IFS 66V model)

in the 4000–400 cm�1 region. For each spectrum, 100 scans
were co-added at a spectral resolution of 4 cm�1. The spec-
trometer was purged continuously with dry nitrogen. The fre-

quencies for all sharp bands were accurate to 0.001 cm�1. Each
sample was scanned under the same conditions with three dif-
ferent pellets and these replicates were averaged. Baseline

method was used to calculate the absorption intensity of the
peaks. Care was taken to ensure that the pellets were of same
thickness by applying same pressure to the same amount of the

sample. Hence, directly relating the intensities of the absorp-
tion bands to the concentration of the corresponding func-
tional groups is possible [9]. The spectra were analyzed using
Origin 8.0 software (OriginLab Corporation, Massachusetts,

USA).
For discussion, the samples were named L1, L2, L3 and L4,

where

L1 – leaf samples of plant seeds soaked in 500 ppm bulk
Fe2O3 suspension collected after 30 days of sowing,
L2 – leaf samples of plant seeds soaked in 4000 ppm bulk

Fe2O3 suspension collected after 30 days of sowing,
L3 – leaf samples of plant seeds soaked in 500 ppm

nano-Fe2O3 suspension collected after 30 days of

sowing,
L4 – leaf samples of plant seeds soaked in 4000 ppm

nano-Fe2O3 suspension collected after 30 days of
sowing.

For many plant species, EC50 values of iron oxide nanopar-
ticles have been reported to be more than 5000 ppm [10];

hence, 4000 ppm was chosen as the higher concentration.

Statistical analysis

Statistical analyses were performed using SPSS 16.0 software.
Principle component analysis (PCA) was carried out to deter-
mine the factors that influence the variation in secondary
structure protein among the leaf samples treated with bulk

and nano-Fe2O3 compared with control sample [11,12]. For
data analysis, the region of 1700–1600 cm�1 of the FTIR spec-
tra was baseline-corrected using the rubber band method with

vector normalized and mean-centered. Then, the data were
used for PCA, which removes the redundancy of data points
varying in a correlated way by transforming the original data

into a set of new and uncorrelated principal components
(PCs). The two-factor loadings were plotted to collect informa-
tion on the principal components responsible for variability in

the fingerprint region of the IR spectrum. Graphical work was
carried out using Origin software 8.0.

Results and discussion

XRD, SEM and AFM analyses of Fe2O3 nanoparticles

Fig. 1 visualizes the XRD pattern of Fe2O3 nanoparticle,
which confirms the formation of Fe2O3 phase in 400 �C
annealed sample. The average particle size of the nanoparticle

was found to be 21 nm. The peaks were matched using JCPDS
software and it was well matched with the Fe2O3 of file no



Fig. 2 SEM images of Fe2O3 nanoparticles.

Fig. 3 The 2D and 3D atomic force microscopy images of Fe2O3 nanoparticles.
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‘‘Pdf # 892810”. The SEM image confirms the uniformity of
phase formation and the particle size of the Fe2O3 nanoparti-

cle. Fig. 2 visualizes the SEM image of Fe2O3 nanoparticle.
The 2D and 3D atomic force microscopy images of iron

oxide nanoparticle confirm that the particle size exists in
nanorange. The average particle size of the iron oxide calcu-

lated from XRD results nearly matches with AFM results as
shown in Fig. 3.

FTIR spectral studies of leaf samples

The tentative frequency assignment of averaged spectra for the
peanut leaf samples collected after 30 days of sowing is shown

in Table 1 and spectra are shown in Fig. 4. The strong charac-
teristic band from �3405 cm�1 to �3422 cm�1 in all the sam-
ples is assigned to the OAH or NAH stretching of amide A.

The band at �2954 cm�1 was absent in L1 leaf sample but a
weak band is observed in all other samples. The CH3 symmet-
ric stretching and CH2 asymmetric stretching of lipid, protein
band at �2923 and �2853 cm�1, respectively, show elevated

intensity in L4, L1 and L2 leaf samples. The very strong band
at �1734 cm�1 was absent in L1 and L3 leaf samples, which
shows some decrease in lipids content of these samples com-

pared with the L2 and L4 samples. The amide I protein is pre-
sent in all the samples, which was observed from the very
strong band at �1636 cm�1. A very weak band at

�1556 cm�1 indicates the presence of amide II in leaf sample
soaked in L3 sample but it was not present in other samples
indicating the influence of protein variation in these samples.

The bands at �1238 cm�1, �1138 cm�1, and �977 cm�1 were
present only in L3 leaf sample, which shows that the influence
of carbohydrates and other nucleic acids is slightly higher in
this sample compared with other samples. The other character-

istic frequencies were evenly poised in all the samples (Table 1).
From these results, it can be understood that the pre-soaking
with Fe2O3 nanoparticle suspension of 500 ppm concentration

might have some positive effects such as increase in protein
content and carbohydrates; however, at higher concentrations
there may be some negative effects on the biological contents

of these samples. Many peaks were hidden in the raw FT-IR
spectra, which can be unleashed by deconvolution and deriva-
tive spectra [13]. The spectral regions between 3200 and
3450 cm�1, 3000 and 2800 cm�1, 1800 and 1500 cm�1, and

1200 and 1000 cm�1 were chosen to analyze amide A and B
proteins, lipids, proteins, and carbohydrates, respectively
[14,15].

Table 2 shows the total band area calculated for all the
Fe2O3 soaked samples and compared with the control leaf
sample. The total band area of the 1000–2000 cm�1 region in

all the samples shows a considerable increase, which in turn
denotes the rise in carbohydrates when compared with the con-
trol sample, and the maximum variation in carbohydrate con-

tent was found in L3 leaf sample with a band area value of
103.24 ± 0.0349. The total amide I and II protein content of



Table 1 Tentative frequency assignment of FTIR spectra for the peanut leaf samples collected after 30 days.

Control Fe2O3 bulk Fe2O3 nano Tentative frequency assignment

L1 L2 L3 L4

3417 (vs) 3417 (vs) 3405 (vs) 3422 (vs) 3413 (vs) Bonded OAH stretching/NAH stretching

2955 (vw) – 2954 (vw) 2955 (vw) 2954 (vw) CH3 symmetric stretching; lipid, protein

2923 (m) 2921 (s) 2919 (s) 2923 (m) 2919 (s) CH2 asymmetric stretching; mainly lipid, protein

2853 (w) 2851 (m) 2852 (m) 2854 (w) 2851 (m) CH2 symmetric stretching; lipid, protein

– – 2366 (w) 2366 (w) –

1734 (vw) – 1734 (vw) – 1734 (vw) Carbonyl C‚O stretch: lipids

1636 (vs) 1631 (vs) 1623 (vs) 1630 (vs) 1636 (vs) Amide I: C‚O stretching of proteins

– – – 1556 (vw) – Amide II: NAH Bending/CAN stretching of proteins

1425 (w) 1414 (m) 1424 (m) 1425 (w) 1424 (m) CAN stretching/in-plane OH bending

1388 (w) 1385 (m) 1387 (w) 1376 (m) 1388 (w) CH3 symmetric bending; protein

1260 (vw) 1255 (vw) 1262 (vw) 1272 (m) 1260 (vw) C-0 stretching (ethers)/CAN stretching (amines)

– – – 1238 (s) – PO2 – asymmetric stretch: mainly nucleic acids

– – – 1138 (m) – CH deformation, CAO, CAC stretching (carbohydrates)

1105 (vw) 1104 (vw) 1108 (w) 1108 (w) –

1098 (w) 1098 (vw) 1099 (w) 1099 (w) 1099 (w)

1056 (w) 1070 (m) 1072 (w) 1055 (m) 1071 (m) PO2 – symmetric stretch: mainly nucleic acids

1035 (vw) 1032 (vw) 1035 (vw) 1034 (vw) 1035 (vw) CAO stretching/CAO bending of the CAOAH carbohydrates

– – – 977 (m) – CAN+AC symmetric stretch: nuclei acids

931 (vw) 934 (vw) 930 (vw) 930 (w) 930 (w) CH out of plane bending (carbohydrate)

898 (vw) 899 (vw) 899 (vw) 898 (vw) 895 (vw) Carbonate asymmetric stretching

– – 857 (w) 856 (w) 855 (w) CH out of plane bending (carbohydrate)

839 (vw) – 833 (vw) 843 (w) –

– – – 767 (m) – CH2 bending, carbohydrates, proteins and lipids (sterols of fatty acids)

663 (vw) 663 (vw) 664 (vw) 666 (w) 665 (w)

611 (vw) – 612 (vw) 612 (w) 612 (w) CAOAO, PAOAC bonding (aromatics) phosphate

vs – very strong, s – strong, m – medium, w – weak, vw – very weak.

L1 – Leaf samples of plant seeds soaked in 500 ppm Fe2O3 bulk suspension collected after 30 days of sowing, L2 – leaf samples of plant seeds

soaked in 4000 ppm Fe2O3 bulk suspension collected after 30 days of sowing, L3 – leaf samples of plant seeds soaked in 500 ppm Fe2O3

nanosuspension collected after 30 days of sowing, L4 – leaf samples of plant seeds soaked in 4000 ppm Fe2O3 nanosuspension collected after

30 days of sowing.

Fig. 4 FT-IR spectra for the peanut leaf samples collected after

30 days.
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L1 leaf sample is decreased to a greater extent, whereas protein
contents of the L2, L3 and L4 leaf samples are approximately

close to the control sample, which was clearly observed from
the calculated band area in the region 1500–1800 cm�1. Also,
the comparison between the samples denotes low band area
value of 95.55 ± 0.983 in L1 leaf sample, which shows the
greater impact on total amide I and II protein content when
soaked in Fe2O3 bulk suspension of 500 ppm concentration.
The region around 2800–3000 cm�1 contributes mainly to the

lipid content of the leaf samples, which was found to decrease
in all the leaf samples when compared with the control leaf
sample. The leaf samples soaked in 500 ppm concentration
of both bulk and nano-Fe2O3 suspension have lower lipid con-

tent with total band area of 76.97 ± 0.832 and 76.31 ± 0.468,
respectively, but total area of control leaf sample was found to
be 91.69 ± 0.856. In contrast to the total amide I and II pro-

tein variation of the leaf samples, the amide A protein was very
low in L3 leaf sample alone with total band area of 74.48
± 0.623, and all other leaf samples increase when compared

with control leaf sample of band area 101.10 ± 0.152.
The mean ratio of the peak intensities of the bands at

1547 cm�1 and at 3296 cm�1 (I1547/I3296) was used as an indi-
cator of the relative concentration of the amide II and amide

A protein in the leaf samples (Table 3). In the present work,
the calculated ratio of L1, L2 and L4 corresponds to 37.99%,
12.24% and 17.69% decrease in protein compared with the

control. On the contrary, the protein content increases by
18.66% in L3 sample alone. The mean ratio of the intensity
of absorption of the methyl and methylene bands (I2951/I2858)

decrease by 17.06%, 18.85%, and 17.19% in L1, L2 and L4,
respectively. The decrease in the ratio indicate a decrease in
the number of methyl groups in protein fibers compared with

methylene groups in these leaf samples. However, there is no



Table 2 The total band area calculated for all the leaf samples pre-soaked with Fe2O3 suspension and compared with the control leaf

sample.

Total band area Control L1 L2 L3 L4

1000–1200 78.46 ± 0.2 95.90 ± 0.05 (+22.23) 92.18 ± 0.1 (+17.49) 103.24 ± 0.03 (+31.58) 85.71 ± 0.3 (+9.24)

1500–1800 113.27 ± 1.2 95.55 ± 0.9 (�15.64) 108.73 ± 1.5 (�4.01) 110.09 ± 0.5 (�2.81) 110.13 ± 0.5 (�2.77)

2800–3000 91.69 ± 0.8 76.97 ± 0.8 (�16.05) 84.94 ± 0.2 (�7.36) 76.31 ± 0.4 (�16.77) 90.71 ± 1.02 (�1.07)

3200–3450 101.10 ± 0.1 107.02 ± 0.2 (+5.86) 107.51 ± 0.4 (+6.34) 74.48 ± 0.6 (�26.33) 102.09 ± 0.4 (+0.98)

Values in parentheses represent percent increase (+) or decrease (�) over control values.

The values are the mean ± S.E. for each group. The number of replicates is 3.

L1 – Leaf samples of plant seeds soaked in 500 ppm Fe2O3 bulk suspension collected after 30 days of sowing, L2 – leaf samples of plant seeds

soaked in 4000 ppm Fe2O3 bulk suspension collected after 30 days of sowing, L3 – leaf samples of plant seeds soaked in 500 ppm Fe2O3

nanosuspension collected after 30 days of sowing, L4 – leaf samples of plant seeds soaked in 4000 ppm Fe2O3 nanosuspension collected after

30 days of sowing.

Table 3 Mean ratio of peak intensities of the bands at different wave numbers.

Ratio of

bands

Control L1 L2 L3 L4

1547/3296 0.9918

± 0.012

0.6150 ± 0.006

(�37.99)

0.8704 ± 0.003

(�12.24)

1.1769 ± 0.015

(+18.66)

0.8164 ± 0.006

(�17.69)

2951/2858 1.1021

± 0.022

0.9141 ± 0.019

(�17.06)

0.8943 ± 0.001

(�18.85)

1.1011 ± 0.008

(�0.091)

0.9127 ± 0.011

(�17.19)

1547/1656 0.6265

± 0.001

0.6002 ± 0.013

(�4.20)

0.5868 ± 0.001

(�6.34)

0.5769 ± 0.002

(�7.92)

0.7095 ± 0.003

(13.25)

1083/1547 1.1417

± 0.025

1.9850 ± 0.003

(+73.86)

1.4279 ± 0.023

(+25.07)

1.4242 ± 0.012

(+24.74)

1.9575 ± 0.010

(+71.45)

1743/1458 0.9071

± 0.009

0.5196 ± 0.006

(�42.72)

1.1154 ± 0.021

(+22.96)

0.8964 ± 0.001

(�1.18)

0.7392 ± 0.005

(�18.51)

1743/1547 1.1714

± 0.003

0.9850 ± 0.011

(�15.91)

1.3692 ± 0.009

(+16.89)

1.0747 ± 0.004

(�8.26)

1.1630 ± 0.022

(�0.72)

1458/1547 1.2914

± 0.017

1.8957 ± 0.014

(+46.79)

1.2276 ± 0.007

(�4.94)

1.1989 ± 0.011

(�7.16)

1.5734 ± 0.014

(+21.84)

Values in parentheses represent percent increase (+) or decrease (�) over control values.

L1 – Leaf samples of plant seeds soaked in 500 ppm Fe2O3 bulk suspension collected after 30 days of sowing, L2 – leaf samples of plant seeds

soaked in 4000 ppm Fe2O3 bulk suspension collected after 30 days of sowing, L3 – leaf samples of plant seeds soaked in 500 ppm Fe2O3

nanosuspension collected after 30 days of sowing, L4 – leaf samples of plant seeds soaked in 4000 ppm Fe2O3 nanosuspension collected after

30 days of sowing.
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considerable change in the mean intensity ratio for L3 sample,
which indicated that there is no variation in number of methyl

and methylene group of proteins over control sample [16–18].
The mean ratio of the intensities of the bands at 1547 cm�1

and 1656 cm�1 (I1547/I1656) could be attributed to a change in

the composition of the whole protein pattern [19]. The calcu-
lated mean ratio of intensities of L1, L2 and L3 samples
decreases in whole protein of 4.20%, 6.34%, and 7.92% in
these samples, respectively. The L4 sample of leaves shows

13.25% increase in total protein, which indicates that the seeds
soaked in 4000 ppm of Fe2O3 nanoparticle suspension increase
the total protein content, which is more unusual trend

observed since the seeds soaked in 500 ppm of Fe2O3 nanopar-
ticle suspension decrease the total protein such that the percent
difference between these concentrations is 22.98%.

The mean ratio of peak intensities of the bands 1083 cm�1

and 1547 cm�1 (I1083/I1547) explains the variation in glycopro-
tein of the samples. All leaf samples show considerable
increase in glycoprotein where L1 and L4 samples exhibit max-

imum increase of 73.86% and 71.45%, respectively. The lipid
variation was analyzed from the calculated mean ratio of peak
intensities of the bands 1743 cm�1 and 1458 cm�1 (I1743/I1458),
and the results show 42.72%, 18.51% and 1.18% decrease in

L1, L4 and L3 leaf samples, respectively, and a 22.96% increase
in L2 leaf sample compared with the control sample. The
increase in ratio suggested that lipids are being oxidized in

L2 sample. Since oxidation can cause an increase in carbonyls
and a degradation of lipids, both of these changes could
contribute to the elevated ratio. Furthermore, the ratio of
integrated areas of both I1458/I1547 and I1743/I1547 is less com-

pared with the control tissues, suggesting that lipid degrada-
tion predominates carbonyl formation.

FT-IR spectroscopy is one of the principal techniques used

to determine the secondary structure of proteins. The Fourier
self-deconvolution and second derivative spectra could explain
in more detail about the impact of bulk and nano-Fe2O3

suspension on peanut plant leaves. Further analysis has been
carried out by resolving the amide I band using the curve
fitting method to study the secondary structure of proteins.
To find out the number of peaks in the amide I region for

curve-fitting process, the second derivative spectra were
calculated by using Origin 8.0 software (Savitzky–Golay as a



Table 5 Variation of secondary structure of protein due to the

metal treatment is calculated using varimax rotated factor

analysis of principal component extraction method.

Component Rotation sums of squared loadings

Eigen value % of Variance Cumulative%

1 0.593 51.870 51.870

2 1.601 32.018 83.888

Sample Component

1 2

L1 �0.078 0.933

L2 0.885 0.101

L3 0.903 0.099

L4 0.355 0.837

Control 0.930 0.099

L1 – Leaf samples of plant seeds soaked in 500 ppm Fe2O3 bulk

suspension collected after 30 days of sowing, L2 – leaf samples of

plant seeds soaked in 4000 ppm Fe2O3 bulk suspension collected

after 30 days of sowing, L3 – leaf samples of plant seeds soaked in

500 ppm Fe2O3 nanosuspension collected after 30 days of sowing,

L4 – leaf samples of plant seeds soaked in 4000 ppm Fe2O3

nanosuspension collected after 30 days of sowing.

Fig. 5 Principle component analysis explained variance in

secondary structure of protein of all leaf samples.
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derivative operation) in the amide I region. Derivatives gave
the number and positions, as well as an estimation of the band-
width and intensity of the bands making up the amide I region.

After baseline correction, the best fit for decomposing the
amide I bands in the spectral region of interest was obtained
by Gaussian components using the same software. The under-

lying bands of amide I band as deduced by curve-fitting anal-
ysis for the control, and samples treated with various
concentration of bulk and nano-Fe2O3 were tabulated. The

band around 1656 cm�1 is assigned for a-helix of secondary
structure of protein and its integrated band area is found to
decrease in all the samples except in L2 sample, which
increased by 9.07%. The decrease in band area of L3 and L4

samples is found to be 6.38% and 9.35%, respectively, which
is comparatively lesser than L1 sample value of 29.17% varia-
tion from control sample. The band at 1633 cm�1 is due to the

b-sheet of secondary protein structure, which shows a steep
increase in the band area of 147.28%, 112.99%, 64.13% and
99.75% in L1, L2, L3 and L4 samples, respectively. The random

coil of the secondary structure of protein observed from the
peak centered at 1648 cm�1 shows decrease in the band area
of all the samples considerably expect L1 sample where a steep

66.20% increase was observed. The bands centered around
1666, 1673 and 1684 cm�1 were assigned for the b-turn of
the secondary protein structure (Table 4). The integrated band
area for 1666 cm�1 is found to increase in L2, L3 and L4 sam-

ples by 71.78%, 152.30% and 39.93% respectively, whereas it
was slightly decreased in L1 sample by 1.62%. The integrated
band area of 1673 and 1684 cm�1 was increased and decreased,

respectively, for all the leaf samples. The percentage increase in
the band area of b-sheet and b-turn and decrease in the band
area of a-helix of secondary structure of protein might be due

to the interaction of peanut seeds with Fe2O3 particles.

Principal component analysis

Furthermore, PCA using SPSS 16.0 software is performed for
understanding the protein secondary structure variation
among the samples treated with bulk and nano-Fe2O3 particles
and also the variation among the frequency bands. The result

in Table 5 shows that the variation of secondary structure of
protein due to the Fe2O3 metal oxide treatment is calculated
using varimax rotated factor analysis of PC extraction method.

Using rotated factor loading and commonalities varimax
rotation analysis, information about the principal factors in
Table 4 Frequency assignment for secondary protein obtained by s

Frequency (cm�1) Assignment Control L1

1633 b-sheet 1.578 3.902 (+147.28

1648 Random coil 4.009 2.268 (�43.43)

1656 a-helix 5.345 3.786 (�29.17)

1666 b-turn 3.218 3.166 (�1.62)

1673 b-turn 2.070 5.461 (+163.82

1684 b-turn 6.064 2.515 (�58.53)

Values in parentheses represent percent increase (+) or decrease (�) ove

L1 – Leaf samples of plant seeds soaked in 500 ppm Fe2O3 bulk suspensi

soaked in 4000 ppm Fe2O3 bulk suspension collected after 30 days of s

nanosuspension collected after 30 days of sowing, L4 – leaf samples of p

30 days of sowing.
the studied samples was obtained. The successive factors
account for the decreasing amounts of residual variance using
two factors (varimax rotation) for the samples: control, L1, L2,
elf-deconvoluted spectra in the spectral region 1600–1700 cm�1.

L2 L3 L4

) 3.361 (+112.99) 2.590 (+64.13) 3.152 (+99.75)

3.485 (�13.07) 6.663 (+66.20) 0.754 (�81.19)

5.830 (+9.07) 5.004 (�6.38) 4.845 (�9.35)

5.528 (+71.78) 8.119 (+152.30) 4.503 (+39.93)

) 3.765 (+81.88) 3.658 (+76.71) 2.541 (+22.75)

1.746 (�71.21) 3.375 (�44.34) 3.797 (�37.38)

r control values.

on collected after 30 days of sowing, L2 – leaf samples of plant seeds

owing, L3 – leaf samples of plant seeds soaked in 500 ppm Fe2O3

lant seeds soaked in 4000 ppm Fe2O3 nanosuspension collected after



Fig. 6 PC loadings plot for the spectral range 1600–1700 cm�1.
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L3 and L4 of leaf samples. The main factor (>0.6) for control,
L2 and L3 is noted as factor 1, while factor 2 contributes L1

and L4. Factor analysis or named PCA is a useful tool in the
examination of multivariate data (Fig. 5). The cumulative per-
centage of explained variance in secondary structure of protein
of all leaf samples is 83.888%. Factor 1 accounts for 51.870%

of the total data variance so the variation of secondary struc-
ture of protein was established by accounting the control, L2

and L3 samples. Factor 2 accounts for 32.018% which includes

L1 and L4 samples. Fig. 6 shows the PC loadings plot for the
spectral range 1600–1700 cm�1, which clearly shows that the
PC1 factor might establish the maximum variation of the sec-

ondary structure of protein in leaf samples compared with
other components.

Conclusions

The effect of pre-soaking peanut seeds in bulk and nano-Fe2O3

suspension is studied extensively. The synthesized Fe2O3

nanoparticle was phase confirmed with XRD results and the
average particle size was 21 nm. The SEM and AFM images
confirm the uniformity of nanophase throughout the sample.
The FT-IR results of peanut plant leaves collected after

30 days of growth period suggest that the Fe2O3 nanoparticle
has considerable effect when applied through presoaking tech-
nique. The carbohydrate and nucleic acids of amide A and B

protein of all samples have considerably increased, whereas
amide I and II protein of all samples was decreased slightly,
which was observed from the decrease in the calculated band

area. The secondary structure of protein varies to a greater
extent and the calculated results suggest that the b-sheet and
b-turn of secondary structure of protein increased in all sam-

ples compared with control. The leaf samples of peanut soaked
in Fe2O3 nanoparticle suspension with 500 ppm and 4000 ppm
concentration indicate the possible greater influence over the
secondary structure of protein compared with its bulk counter-

part. The PCA further suggests that the control, L2 and L3

samples explain the total variance of the secondary structure
of protein content in leaf samples of peanut plant. These

results suggest that there is considerable effect on peanut plant
leaves grown by the application of nano and bulk Fe2O3

suspension to seeds by pre-sowing, but at lower concentration,
the application of nanoparticle might have few positive effects

compared with that of higher concentration.
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