Finite Length and Pure-Injective Modules over a Ring of Differential Operators

Gennadi Puninski

Moscow State Social University, Losinoostrovskaya 24, 107150 Moscow, Russia
E-mail: punins@orc.ru

Received March 30, 1999

Let k be an algebraically closed field of characteristic zero, $\mathcal{C}_n = k[[x_1, \ldots, x_n]]$ the ring of formal power series over k, and \mathcal{D}_n the ring of differential operators over \mathcal{C}_n. Suppose that ρ is a prime ideal of \mathcal{C}_n of height $n - 1$; i.e., $A = \mathcal{C}_n/\rho$ is a curve. We prove that every indecomposable finite length module over \mathcal{D}_n with support on ρ is uniserial with isomorphic or alternating composition factors. For the ring $\mathcal{D}(A)$ of differential operators over A we also classify indecomposable pure-injective modules and show that the Cantor–Bendixson rank of the Ziegler spectrum over $\mathcal{D}(A)$ is equal to 2.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic zero, let $k[[x_1, \ldots, x_n]] = \mathcal{C}_n$ be the ring of formal power series over k, and let $\mathcal{D}_n = \mathcal{C}_n[\partial/\partial x_1, \ldots, \partial/\partial x_n]$ be the ring of differential operators over \mathcal{C}_n.

The problem of classification of simple \mathcal{D}_n-modules has a long story. It was considered first by Manin [6] for the case of \mathcal{D}_1-modules with regular singularity and without \mathcal{C}_1-torsion. Here "regular singularity" means that the differential operator $Y = x \partial$ has an eigenvector. Further investigations dealt mostly with the case of simple modules with regular singularity. Exhaustive historical remarks can be found in [2].

Remarkable progress has been made by van den Essen and Levelt [3], who classified simple \mathcal{D}_1-modules including the case of irregular singularity.

In this paper we investigate and completely classify the finite length (equivalently holonomic) \mathcal{D}_1-modules. In particular we prove that every such module is uniserial and either homogeneous or with alternating
composition factors. By using the Morita duality we show that the same is true for D_n-modules supported on a curve.

Our description relies upon the classification of finite length modules over the ring $D(K)$ of differential operators over the Laurent series field $K = k(x)$ in Puninski [9], which in turn used very heavily the results of Zimmermann [13]. Notice that the crucial role in this classification is played by the trivial $D(K)$-module K. In fact, over $D(K)$, finite length modules are organized into infinitely many homogeneous tubes; hence every such module is uniserial homogeneous. The situation changes slightly when we pass to D_1—all tubes but one are preserved. But the trivial module produces a new tube with two simples on the mouth.

Bearing this picture in mind we produce a classification of indecomposable pure-injective modules over D_1 similarly to that over integers, separating them into “prüfer,” “adic,” and “rationals.” For instance, the Cantor–Bendixson rank of the Ziegler spectrum over D_1 is equal to 2 and there is no superdecomposable pure-injective module. Another similarity we show to the abelian groups is that the category of finite length modules over D_1 admits almost split sequences with at most two terms in the middle. We also prove that there exists a duality between categories of right and left finite length D_1-modules.

From the results of Stafford and Smith [12] we derive that similar conclusions are true for D_n-modules supported on a curve.

2. BASIC NOTIONS AND FACTS

All the notions from ring and module theory used in the paper are quite standard. For rings and modules of differential operators we follow [2]. For instance, for modules M, N over a commutative ring A, $D_A(M, N)$ will denote a collection of differential operators from M to N. Then $D(M) = D_A(M, M)$, $D(N) = D_A(N, N)$ are rings, and $D_A(M, N)$ is a $(D_A(N), D_A(M))$-bimodule.

For the basic notions in the model theory of modules the reader is referred to [7]. In particular a monomorphism of right modules $M \to N$ is called pure, if for every left module K, the induced morphism $M \otimes K \to N \otimes K$ is mono. A module is called pure-injective if it is injective with respect to pure monomorphisms. A positive–primitive formula (pp-formula) $φ(x)$ in one free variable for modules over a ring R is an existentially quantified formula $∃(y_1, \ldots, y_n)$ such that $(y_1, \ldots, y_n)A = x(b_1, \ldots, b_m)$, where A is an $n \times m$ matrix over R and $b_j \in R$. In particular, for $a, b \in R$ we obtain a divisibility formula $a|x$ and an annihilator formula $xb = 0$. Every pp-formula $φ(x)$ defines in a module M a pp-subgroup
\(\varphi(M) = \{ m \in M | M \models \varphi(m) \}. \) In particular, \((a|x)(M) = Ma \) and \((xb = 0)(M) = \{ m \in M | mb = 0 \} = \text{ann}_M(b) \).

We write \(\psi \rightarrow \varphi \) for pp-formulae \(\psi, \varphi \) if \(\psi(M) \subseteq \varphi(M) \) for every module \(M \). For such pp-formulae we say that \((\psi, \varphi) \) is a pair of pp-formulae. The Ziegler spectrum \(Zg_R \) over a ring \(R \) is a topological space whose underlying set consists of (isomorphism types of) indecomposable pure-injective \(R \)-modules. A basis of open sets for \(Zg_R \) is given by \((\psi, \varphi) = \{ M \in Zg_R | \psi(M) \subsetneq \varphi(M) \} \).

We will use freely some model theoretic dualities. One of these (see [7, Chap. 8]) defines an antismetomorphism between the lattices of left and right pp-formulae, such that \(\varphi \rightarrow \psi \) iff \(D\psi \rightarrow D\varphi \) for any pp-formulae \(\varphi, \psi \). Another (see Herzog [4]) acts on the level of theories of modules. For instance, over a right noetherian ring \(R \) the theory \(T \text{inj} \) of injective right \(R \)-modules is dual to the theory \(T \text{flat} \) of flat left \(R \)-modules. \(\text{PE}(\mathcal{M}) \) will denote the pure-injective envelope of a module \(M \) and \(\mathcal{E}(M) \) its injective envelope. For an element \(m \) of a module \(M \), \(pp_m(m) \) is the pp-type of \(m \), i.e., the set of all pp-formulae which are satisfied on \(M \). We say that a pair of pp-formulae \((\psi, \varphi) \) is minimal if \(\psi < \varphi \) and there is no pp-formula strongly between \(\psi \) and \(\varphi \).

Fact 2.1 [7, Corollary 9.3]. For every minimal pair of pp-formulae \((\psi, \varphi) \), there exists a unique indecomposable pure-injective module \(M \) such that \(\psi(M) \subsetneq \varphi(M) \).

A nonsplit short exact sequence of finitely generated modules \(0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0 \) is called an AR-sequence if (1) every morphism \(A \rightarrow M \) which is not a split monomorphism factors through \(f \) and (2) every morphism \(N \rightarrow C \) which is not a split epimorphism factors through \(g \). The basic properties of almost split sequences can be found in [1].

Recall that \(k \) is an algebraically closed field of characteristic zero, \(\mathcal{O} = k[[x]] \) is the ring of formal power series, and \(\mathcal{D} = \mathcal{O}[\partial] \) is the ring of differential operators acting from the right. It is well known (see [12]) that \(\mathcal{D} \) is a simple hereditary noetherian domain with Krull dimension 1.

The quotient ring of \(\mathcal{O} \) is the Laurent series field \(K = k((x)) \), and \(\mathcal{D}(K) \) denotes the ring of differential operators over \(K \). If \(Y \) is the differential operator \(x \partial \) and \(f = f(x) \in K \), then

\[
(f)(xY - Yx) = (fx^2)' - (fx)'x = f'x^2 + f \cdot 2x - f'x^2 - fx = (f)x;
\]

hence \(xY = Yx + x \) in \(\mathcal{D}(K) \) and similarly \(g(x)Y = Yg(x) + d(g) \), where \(d \) is the derivation of \(K \) given by \(x' = x \).

Thus \(\mathcal{D}(K) \) is the differential polynomial ring \(R = K[Y, d] \); hence \(R \) is a left and right principal ideal domain. So, every simple module over \(R \) is of the form \(R/bR \) for an irreducible polynomial \(b(Y) \in R \). In fact, by [3],
there is such a b of arbitrarily large degree, and it is possible to choose b
 of a very nice form. For $b = Y$ we obtain the trivial module $K = R/YR$,
 where an R-module structure on K is given by

$$g(x)Y = Yg(x) + dg = d(g) \quad \text{for } g(x) \in K.$$

The following is a rephrasing of the classification of simple \mathcal{D}-modules
from [3].

Fact 2.2. Let M be a simple module over R. Then either

1. M is isomorphic to the trivial R-module K, and then M is a
 uniserial \mathcal{D}-module with the composition series $0 \subset \mathcal{O} \subset K$,
or
2. M is not isomorphic to the trivial R-module K, and then M is a
 simple \mathcal{D}-module.

Moreover, if M is a simple \mathcal{D}-module, then $M \cong \mathcal{O}$, or $M \cong K/\mathcal{O}$,
or M admits the canonical structure of a nontrivial simple R-module.

Note that $\mathcal{D}/\partial \mathcal{D} \cong \mathcal{O}$ with respect to the map $1 \to 1$ and
$\mathcal{D}/x \mathcal{D} \cong K/\mathcal{O}$, where $1 \to 1/x$. Similarly, for $\alpha \notin \mathbb{Z}$,
the map $1 \to x^\alpha$ generates the isomorphism
$\mathcal{D}/(x \partial - \alpha - 1) \mathcal{D} \cong x^\alpha K$ and the latter is a simple \mathcal{D}-mod-
ule (see [3]). Moreover, for $\alpha, \beta \notin \mathbb{Z}$, $x^\alpha K \cong x^\beta K$ iff $\alpha - \beta \in \mathbb{Z}$.

Since $K = d(K) \oplus 1 \cdot k$, the classification of finite length R-modules
from Puninski [9] holds true. Let us recall it. For every irreducible $a \in R$,
$M_k(a)$ denotes the R-module with generators x_0, \ldots, x_k, and relations

$$\sum_{i=0}^{s} \frac{a^{s-i}}{(s-i)!} x_i = 0, \quad 0 \leq s \leq k,$$

where a' is the usual derivative by Y, and we put $a^{(0)} = a, 0! = 1$. For
instance $M_0(a) = R/aR$ is simple and $M_1(a)$ is the module $(x_0, x_1|_{x_0 a = 0},
 x_0 a' + x_1 a = 0)$.

Fact 2.3. (1) For any irreducible $a \in R$, $M_k(a)$ is a homogeneous
uniserial R-module of length $k + 1$ whose composition factors are isomor-
phic to R/aR;

2. every indecomposable finite length module over R is isomorphic to
 $M_k(a)$ for some k and an irreducible $a \in R$.

3. $\text{Hom}(M_k(a), M_k(b)) = \text{Ext}(M_k(a), M_k(b)) = 0$ if $R/aR \n \cong R/bR$;
 the k-dimension of $\text{Hom}(M_k(a), M_k(a))$ and $\text{Ext}(M_k(a), M_k(a))$
 is $\min(k, l) + 1$;
(4) there is an AR-sequence starting from $M_k(a)$,

$$0 \rightarrow M_k(a) \xrightarrow{f} M_{k-1}(a) \oplus M_{k+1}(a) \xrightarrow{g} M_k(a) \rightarrow 0,$$

where $f(x_i) = (x_{i-1} + x_i)/2$ for $x_i \in M_k(a)$, $g(x_i) = x_i$ for $x_i \in M_{k-1}(a)$, and $g(x_i) = -x_{i-1}$ for $x_i \in M_{k+1}(a)$ (we put $x_{-1} = 0$).

3. FINITE LENGTH MODULES

Lemma 3.1. Suppose that a simple R-module R/aR for $0 \neq a \in \mathcal{D}$ is nontrivial. Then $M_k(a)$ is a uniserial homogeneous \mathcal{D}-module of length $k + 1$.

Proof. Let us prove that $\text{Soc}_{\mathcal{D}}(M_k(a)) = M_0(a)$. Since by [9, Corollary 3.5] we have $M_k(a)/M_0(a) \cong M_{k-1}(a)$, the result will follow by induction. By [9, Lemma 4.9], $\text{Hom}_R(R/bR, M_k(a)) = 0$ for an irreducible $b \in R$ if $R/bR \not\cong R/aR$, and $\text{Hom}_R(R/aR, M_k(a)) = x_0 \cdot k$.

Since $M_k(a)$ is an R-module, $\text{Hom}_R(R/aR, M_k(a)) = x_0 \cdot k$. If a simple \mathcal{D}-module M is isomorphic to a nontrivial simple R-module R/bR, then similarly $\text{Hom}_R(M, M_k(a)) = 0$.

So it remains to prove that $\text{Hom}(\mathcal{D}, M_k(a)) = \text{Hom}(K/\mathcal{D}, M_k(a)) = 0$. If the former Hom is nonzero, then (since $\mathcal{D} \equiv \mathcal{D}/\partial \mathcal{D}$) there is $0 \neq m \in M_k(a)$ such that $m \partial = 0$. Since $M_0(a)$ is a K-module, there exists $n \in M_k(a)$ with $nx = m$. Then $nY = nx \partial = m \partial = 0$; hence $m = 0$, since R/aR is nontrivial (see Fact 2.3).

Similarly, letting the latter Hom be nonzero, we find $0 \neq m \in M_k(a)$ with $mx = 0$. But x is invertible in K; hence $m = 0$, a contradiction.

Lemma 3.2. Every finitely presented module over \mathcal{D} is a direct summand of a direct sum of modules $\mathcal{D}/a\mathcal{D}$, $a \in \mathcal{D}$. In particular, every indecomposable finite length module over \mathcal{D} is a direct summand of a module $\mathcal{D}/a\mathcal{D}$, $0 \neq a \in \mathcal{D}$.

Proof. Since \mathcal{D} is a hereditary simple noetherian domain, \mathcal{D} is a Dedekind prime ring. Now it suffices to apply [10, Corollaries 2.11, 2.14].

Let M_k be the R-module $M_k(Y)$. So M_k is generated by x_0, \ldots, x_k with relations $x_0Y = 0$, $x_0 + x_1Y = 0$, \ldots, $x_{k-1} + x_kY = 0$. Thus, M_k is generated by x_k with the relation $x_kY^{k+1} = 0$.

Lemma 3.3. M_k is a uniserial \mathcal{D}-module of length $2k + 2$ with the composition series $0 \subset x_0 \mathcal{D} \subset x_0 \mathcal{D} \subset \cdots \subset x_k \mathcal{D} \subset x_k \mathcal{D}$, whose composition factors alternate: $x_0 \mathcal{D}/x_0 \mathcal{D} \cong K/\mathcal{D}$ and $x_0 \mathcal{D}/x_0 \mathcal{D} \cong \mathcal{D}$.

Proof. We prove that $\text{Soc}(M_k) = x_0 \mathcal{D}$. Indeed, $\text{Hom}_R(R/aR, M_k) = 0$; hence $\text{Hom}_R(R/aR, M_k) = 0$ for every nontrivial simple R-module R/aR. If $\text{Hom}(K/\mathcal{D}, M_k) \neq 0$, then there is $0 \neq m \in M_k$ with $mx = 0$.

But M_k is a K-module; hence $m = 0$, a contradiction. Now every $f \in \text{Hom}(\mathcal{O}, M_k)$ is determined by $m = f(1) \in M_k$ such that $m \vartheta = 0$. Let us choose $n \in M_k$ with $nx = m$. Then the map $1 \to n$ defines an R-homomorphism g from $K = R/\mathcal{O}R$ to M_k which extends f. Therefore $n \in x_0 \cdot k$ by [9, Lemma 4.9]; hence $m = nx \in x_0 \cdot k$.

Let us prove that $\text{Soc}_\mathcal{O}(M_k) = x_0 \mathcal{O}/x_0x \mathcal{O}$. For a nontrivial simple module $R/aR, a \in \mathcal{O}$, every morphism $f: R/aR \to M_k/x_0x \mathcal{O} = \mathcal{O}/Y^kx \mathcal{O}$ is given by left multiplication by $r \in \mathcal{O}$; hence $ra = Y^kxs$ for $s \in \mathcal{O}$. By the result just proved, the composition of f with the projection $\mathcal{O}/Y^kx \mathcal{O} \to \mathcal{O}/Y^k \mathcal{O}$ should be zero; hence $r = Y^kt$ for $t \in \mathcal{O}$. Then $Y^kta = Y^kxs$ yields $ta = xs$. Thus, left multiplication by t defines a homomorphism $R/aR \to \mathcal{O}/x \mathcal{O}$ which is zero. So, $t = xt$ for $h \in \mathcal{O}$; hence $r = Y^kxh$ is zero in $\mathcal{O}/Y^k \mathcal{O}$ and f is zero.

Suppose that there is a homomorphism $g: \mathcal{O} \to \mathcal{O}/Y^kx \mathcal{O}$ given by left multiplication by r. Since $\mathcal{O} = \mathcal{O}/x \mathcal{O}, r \vartheta = Y^kxs$ for some $s \in \mathcal{O}$. When g is combined with the projection $\mathcal{O}/Y^kx \mathcal{O} \to \mathcal{O}/Y^k \mathcal{O}$, by the result proved above, $r = Y^{k-1}x \alpha + Y^kt$ for $\alpha \in k, t \in \mathcal{O}$. Then $(Y^{k-1}x \alpha + Y^kt) \vartheta = Y^kxs$ implies $(x \vartheta = Y^kt) \alpha + t \vartheta = xs$. If $\alpha \neq 0$, then $1 \in \mathcal{O} \vartheta + x \mathcal{O}$, which is not the case. Otherwise $\alpha = 0$ and $t \vartheta = xs$ defines a homomorphism $\mathcal{O}/x \mathcal{O} \to \mathcal{O}/x \mathcal{O}$ which should be zero. Thus $t = xt, h \in \mathcal{O}$, therefore $r = Y^kxh$ and g is zero.

Now we consider a homomorphism $K/\mathcal{O} \to \mathcal{O}/Y^kx \mathcal{O}$ given by left multiplication by r; hence $nx = Y^kxs$ for $s \in \mathcal{O}$. Taking into consideration the projection $\mathcal{O}/Y^kx \mathcal{O} \to \mathcal{O}/Y^k \mathcal{O}$ by proved above $r = Y^kt$ for $t \in \mathcal{O}$. Then $Y^ktx = Y^kxs$ implies $tx = xs$; hence $t \in \text{End}(K/\mathcal{O}) = k$. So $r \in Y^k \cdot k$; therefore $\text{Soc}_\mathcal{O}(M_k) = x_0 \mathcal{O}/x_0x \mathcal{O}$.

Now the result follows by easy induction.

The following proposition describes the Ext-graph for simples over \mathcal{O}.

Proposition 3.4. Let $R/aR, a \in \mathcal{O}$, be a simple nontrivial R-module. Then $\text{Ext}_\mathcal{O}(R/aR, M) = \text{Ext}_\mathcal{O}(M, R/aR) = 0$ for every simple \mathcal{O}-module M with $M \ncong R/aR$, and $\text{Ext}_\mathcal{O}(R/aR, R/aR) = k$. Moreover $\text{Ext}(\mathcal{O}, \mathcal{O}) = \text{Ext}(K/\mathcal{O}, K/\mathcal{O}) = 0$ and $\text{Ext}(K/\mathcal{O}, \mathcal{O}), \text{Ext}(\mathcal{O}, K/\mathcal{O})$ are of k-dimension 1. So the Ext-graph for simples over \mathcal{O} is drawn in Fig. 1.

![FIGURE 1](image-url)
Proof. For a simple nontrivial R-module M one can apply [9, Lemma 4.5]. Since R/aR is a K-module, right multiplication by x acts as an isomorphism of k-space R/aR; hence $\text{Ext}(K/\mathcal{S}, R/aR) = \text{Ext}(\mathcal{D}/x\mathcal{D}, R/aR) = 0$. By [9, Lemma 4.5] again the action on R/aR by right multiplication by Y is an isomorphism of a k-space R/aR. Since $Y = x\partial$ and R/aR is a K-module, the same is true for the action on R/aR by right multiplication by ∂. Thus $\text{Ext}(\mathcal{S}, R/aR) = \text{Ext}(\mathcal{D}/\partial\mathcal{D}, R/aR) = 0$.

Now $\text{Ext}(R/aR, \mathcal{D}/x\mathcal{D}) = 0$ and $\text{Ext}(R/aR, \mathcal{D}/x\mathcal{D} = 0)$ are the same as $\text{Ext}(\mathcal{D}/x\mathcal{D}, R/Ra) = 0$ and $\text{Ext}(\mathcal{D}/\partial\mathcal{D}, R/Ra) = 0$, respectively, which follows by symmetry.

For the remainder, every element $m \in \mathcal{S}$ has a canonical form $m = \sum_{i=0}^{n} \alpha_i x^i$, $\alpha_i \in k$. Thus the action by right multiplication by ∂ on \mathcal{S} is onto; hence $\text{Ext}(\partial, \mathcal{S}) = 0$. The image of the action on \mathcal{S} by right multiplication by x is of k-codimension one (1 is not in this image); hence $\text{Ext}(K/\mathcal{S}, \mathcal{S}) \cong k$.

Similarly $\text{Ext}(K/\mathcal{S}, K/\mathcal{S}) = 0$ and $\text{Ext}(\partial, K/\mathcal{S})$ is of k-dimension one.

In the rest of the paper “word” means a finite word consisting of alternating letters x and ∂. For instance xx is not a word.

Lemma 3.5. Let w be a word. Then

1. $\text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/xw\mathcal{D}) \cong k$ and $\text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/xw\mathcal{D}) = 0$;
2. $\text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/xw\mathcal{D}) \cong k$ and $\text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/xw\mathcal{D}) = 0$ as soon as xw or xw is defined.

Proof. We prove only (1). Applying $\text{Hom}(\mathcal{D}/x\mathcal{D}, -)$ to the short exact sequence

$$0 \rightarrow \mathcal{D}/w\mathcal{D} \rightarrow \mathcal{D}/\partial w\mathcal{D} \rightarrow \mathcal{D}/\partial\mathcal{D} \rightarrow 0$$

we get the exact sequence

$$0 \rightarrow \text{Hom}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/w\mathcal{D}) \rightarrow \text{Hom}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/\partial w\mathcal{D}) \rightarrow \text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/w\mathcal{D}) \rightarrow \text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/\partial w\mathcal{D}) \rightarrow 0.$$

Since $w = xw'$, $\text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/w\mathcal{D}) = 0$ by the induction assumption. Thus $\text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/xw\mathcal{D}) \cong \text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/\partial w\mathcal{D})$, which is of k-dimension one by Proposition 3.4. Similarly we obtain the exact sequence

$$0 \rightarrow \text{Hom}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/w\mathcal{D}) \rightarrow \text{Hom}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/xw\mathcal{D}) \rightarrow \text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/w\mathcal{D}) \rightarrow \text{Ext}(\mathcal{D}/x\mathcal{D}, \mathcal{D}/xw\mathcal{D}) \rightarrow 0.$$
Since \(w = \partial w' \), one may assume that \(\text{Ext}(\mathcal{D}/x, \mathcal{D}/w) \cong k \). Clearly \(\text{Hom}(\mathcal{D}/x, \mathcal{D}/x) \cong k \) and \(\text{Ext}(\mathcal{D}/x, \mathcal{D}/x) = 0 \) by Proposition 3.4. Moreover \(\text{Hom}(\mathcal{D}/x, \mathcal{D}/w) \cong \text{Hom}(\mathcal{D}/x, \mathcal{D}/xw) \), since \(\mathcal{D}/xw \) is a uniserial module. So the results follow.

For a word \(w \) we put \(M(w) = \mathcal{D}/w \). For instance if \(w = \partial x \), then \(M(w) \) is the module \(\mathcal{D}/\partial x \) whose socle and top are isomorphic to \(\mathcal{D}/\partial \mathcal{D} \).

Theorem 3.6. Let \(M \) be an indecomposable finite length module over \(\mathcal{D} \). Then \(M \) is isomorphic either to \(M_\alpha(a) \) for a simple nontrivial \(R \)-module \(R/a \) or to \(M(w) \) for a word \(w \) from alternating letters \(x \) and \(\partial \).

Proof. Let \(\mathcal{A} \) be the class of finite length \(\mathcal{D} \)-modules all whose composition factors are isomorphic to either \(\mathcal{D}/x \) or \(\mathcal{D}/\partial \). Clearly this class is closed with respect to submodules, factor modules, and extensions. So every finite length module \(M \) over \(\mathcal{D} \) contains the largest submodule \(T(M) \) from \(\mathcal{A} \).

Step 1. Let \(N \) be a finite length module over \(\mathcal{D} \) such that \(T(N) = 0 \).

By induction on length we prove that \(N \) is a direct sum of \(R \)-modules \(M_\alpha(a) \) for nontrivial simple \(R \)-modules \(R/a \). For simple \(N \) the conclusion is evident. Suppose that \(N \) is not simple and choose a maximal submodule \(0 \neq K \subset N \). One may assume that \(K = M_\alpha(a) \oplus \cdots \oplus M_\beta(b) \) for nontrivial simple \(R \)-modules \(R/a, \ldots, R/b \). If the simple module \(N/K \) is isomorphic to \(M_\gamma(c) \) for some simple nontrivial \(R \)-module \(R/c \), then \(N \) admits a natural structure as an \(R \)-module; hence the desired result follows by [9, Proposition 5.2].

Otherwise \(N/K \cong \mathcal{D}/x \) or \(N/K \cong \mathcal{D}/\partial \). But by Proposition 3.4 using the heredity of \(\mathcal{D} \), we obtain \(\text{Ext}(\mathcal{D}/x, K) = 0 \) and \(\text{Ext}(\mathcal{D}/\partial, K) = 0 \). Therefore \(N = K \oplus N/K \); hence \(T(N) \neq 0 \), a contradiction.

Step 2. \(T(M) \) is a direct summand of every finite length module \(M \) over \(\mathcal{D} \).

Indeed by what we just proved \(K = M/T(M) \) is a module of the form \(M_\alpha(a) \oplus \cdots \oplus M_\beta(b) \) for nontrivial simple \(R \)-modules \(R/a, \ldots, R/b \). As above, using heredity, we obtain \(\text{Ext}(K, T(M)) = 0 \), which is the desired result.

Step 3. So it suffices to consider only the case of indecomposable \(M \) with \(M = T(M) \). We apply induction on the length of \(M \), where the case of simple \(M \) is clear. Let us consider a maximal submodule \(N \subset M \), where one may assume that \(N \) has the desired structure. Thus \(N = N_1 \oplus \cdots \oplus N_m \), where \(N_i = M(w_i) \). For \(m = 1 \) the result follows by Lemma 3.5. So \(m > 1 \) and by symmetry it suffices to consider the case \(M/N \equiv \mathcal{D}/x \).
Choose \(n \in M \setminus N \) with \(nx = (n_1, \ldots, n_m) \in N \). So \(M \) is generated by \(N \cup n \) with the relation \(nx = (n_1, \ldots, n_m) \).

If \(n_i = 0 \) for some \(i \), then \(M \) is decomposable and the result follows. Similarly if \(n_i \in N, x \), say \(n_i = kx \), then replacing \(n \) by \(n - k \), we obtain zero on the \(i \)th position, which yields the desired result. Otherwise \(n_i \notin N, x \) for every \(i \); hence, by Lemma 3.5, \(w_i = \partial w_i \). Since \(\text{Ext}(D/xD, N_i) \equiv k \) by the same lemma, \(\alpha_i = n_i - k_i x \) for some \(k_i \in N, i \neq 0 \neq \alpha_i \in k \). Replacing \(n \) by \(n' = n - k_1 - \cdots - k_m \), we get \(n' x = (\alpha_1, \ldots, \alpha_m) \). W.l.o.g. one may assume that the length of \(N_i \) is the largest, i.e., \(w_1 = w_i h_i \) for every \(i \geq 2 \). Then we choose a new basis \(\alpha_1 + \cdots + \alpha_m, \alpha_2, \ldots, \alpha_m \) for \(N \). Indeed clearly this set generates \(N \). Let \(k = (\alpha_1 + \cdots + \alpha_m)s = \alpha_2 s_2 + \cdots + \alpha_m s_m \) for \(s, s_i \in D \). Then \(\alpha_i s = 0 \) implies \(s \in w_1 D \); hence \(s \in w_i D \) for every \(i \geq 2 \). Therefore \(\alpha_i s = 0 \) for every \(i \geq 2 \); hence \(k = 0 \). So \(M \) is decomposable, a contradiction.

COROLLARY 3.7. The category of finite length modules over \(D \) is a direct sum of infinitely many uniserial categories of global dimension one.

Now the following can be easily proved using induction on the length similarly to [9, Corollary 4.15].

COROLLARY 3.8. Let \(M \) be a finite length \(D \)-module and \(\varphi \) a pp-formula. Then \(\varphi(M) \) is either finite dimensional or cofinite dimensional over \(k \).

PROPOSITION 3.9. The category of finite length modules over \(D \) admits almost split sequences. Precisely, let \(M \) be an indecomposable finite length module over \(D \). Then either \(\text{Soc}(M) \) is a nontrivial \(R \)-module and \(M \) is included in the AR-sequence (4) from Fact 2.3, or \(M = M(w) \) for \(w = w'b \), which is included in the AR-sequence

\[
0 \to M(w) \xrightarrow{f} M(w') \oplus M(aw) \xrightarrow{g} M(aw') \to 0,
\]

where \(f(m) = (\pi(m), am) \) and \(g(m, n) = (am - \pi(n)) \). For instance,

\[
0 \to D/\partial xD \xrightarrow{f} D/\partial D \oplus D/\partial xD \xrightarrow{g} D/\partial xD \to 0
\]

and

\[
0 \to D/\partial xD \xrightarrow{f} D/\partial xD \xrightarrow{g} D/\partial \to 0
\]

are AR-sequences.

Proof. Let \(M \) be an indecomposable finite length \(D \)-module.

If \(\text{Soc}(M) \) is a nontrivial simple \(R \)-module, then the conclusion follows from [9, Proposition 3.8]. Otherwise \(M = M(w) \) and let \(h: M \to N \) be a nonsplit morphism, where we may assume that \(N \) is indecomposable;
hence $N = M(w_1)$ for some word w_1. If h is not mono then h clearly factors through the projection $\pi: M(w) \to M(w')$, hence through f. So we may assume that h is mono, hence $h(1) = n \neq 0$. Let the first letter of w be ∂. If $n \in Nx$, then choose $m \in N$ such that $mx = n$ and put $u(1) = m$. Clearly, u defines a homomorphism from $M(xw)$ to N and h factors through the embedding $M(w) \to M(aw)$.

Otherwise $n \notin Nx$, hence $w_1 = \partial w_1'$. We prove that $n \in \text{ann}_0(w') + Nx$, which is clearly enough. For $K = \mathcal{D}/w_1' \mathcal{D} \subset \mathcal{D}/w_1 \mathcal{D}$, by Lemma 3.5 we have $K = Kx$. Since $nw = 0$, $nw = 0$ in the factor $N/K = \mathcal{D}/\partial \mathcal{D}$. Considering the canonical form $(\Sigma \alpha_i x^i)$ for elements of $\mathcal{D}/\partial \mathcal{D} = \mathcal{E}$, we get $n = \alpha_0$ in N/K. Since $1 \cdot w' = 0$ in N/K, the result follows.

Proposition 3.10. There exists a duality between categories of right and left finite length modules over \mathcal{D}.

Proof. Since (see [13]) there exists a duality between categories of finite length modules over $\mathcal{D}(K)$, it suffices to consider the case of modules $M(w)$ for w being a word consisting of letters x and ∂.

If $w = cw'$, then put $DM(w) = \mathcal{D}/\partial w'.b$. For instance, $D(\mathcal{D}/x \partial \mathcal{D}) = \mathcal{D}/\partial bx$. Note that this definition corresponds to Auslander’s formula: the right-hand term of the AR-sequence with source M should be $D(\text{Tr} M)$.

Let $i(w)$ denote the monomorphism $M(w) \to M(aw)$ given by left multiplication by a and let $p(w)$ be an epimorphism $M(w) \to M(w')$, where $w = w'.b$. Similarly to [11, pp. 117–118] one can prove that the category of morphisms between $M(w)$'s is k-linear; i.e., every morphism is written uniquely as a linear combination of products of some $p(w)$'s followed by $i(w)$’s. Now the duality can be defined so that the image of $p(w)$ is a left monomorphism $i(w')$ for a suitable word w' and similarly for $i(w)$.

4. Pure-Injective Modules

In this section we classify indecomposable pure-injective modules over a ring $\mathcal{D} = \mathcal{E}[\partial]$ of differential operators over \mathcal{E}.

For a simple R-module R/aR, $M_1(a)$ will denote the direct limit of the chain $M_1(a) \subset M_1(a) \subset \cdots$. From [9, Lemma 5.5], $M_1(a)$ is an injective uniserial R-module. We define $M_\infty(x)$ as the union of the chain $\mathcal{D}/x \mathcal{D} \subset \mathcal{D}/\partial x \mathcal{D} \subset \cdots$, and $M_\infty(\partial)$ similarly.

Lemma 4.1. $M_\infty(t)$ is a uniserial injective \mathcal{D}-module.

Proof. Let us consider the case $M_\infty(a)$. Since $M_\infty(a)$ is injective as an R-module the same is true over \mathcal{D}. If R/aR is nontrivial, then $M_\infty(a)$ is
uniserial homogeneous by Lemma 3.1. Otherwise \(M_t(\partial) \cong M_t(Y) \), which is homogeneous with alternating factors over \(\mathcal{D} \) by Lemma 3.3.

Clearly \(M_t(\partial) = M_t(Y) \); hence the result follows. Moreover \(M_t(x) \cong M_t(\partial)/x_0\mathcal{D} \), where \(x_0\mathcal{D} = \text{Soc}(M_t(\partial)) \).

Theorem 4.2. Let \(M \) be an indecomposable pure-injective module over \(\mathcal{D} = \mathcal{D}[\partial] \). Then exactly one of the following holds:

1. \(M \cong \text{PE}(N) \) for an indecomposable finite length module \(N \) over \(\mathcal{D} \);
2. \(M \cong \text{E}(N) \) for a simple module \(N \) over \(\mathcal{D} \); hence \(M \) is an indecomposable direct summand of \(\text{PE}(\mathcal{D}_0) \); hence \(M \) is a flat (= torsion-free) \(\mathcal{D} \)-module;
3. \(M \) is an indecomposable direct summand of \(\text{PE}(\mathcal{D}_0) \); hence \(M \) is a flat (= torsion-free) \(\mathcal{D} \)-module;
4. \(M \cong \text{E}(\mathcal{D}_0) \).

Moreover, the isolated points in the Ziegler spectrum \(Z_{\mathcal{D}_0} \) are exactly the modules (1). The points of CB-rank 1 are exactly the modules (2) and (3). Finally, the unique point of CB-rank 2 is \(\text{E}(\mathcal{D}_0) \). Thus, the Cantor–Bendixson rank of the Ziegler spectrum over \(\mathcal{D} \) is 2.

Proof. Let \(M \) be an indecomposable pure-injective module over \(\mathcal{D} \) and assume that \(M \) is not torsion-free. Then \(\text{Soc}(M) \) is nonzero and hence contains either a simple nontrivial \(R \)-module \(R/aR \) or one of the modules \(\mathcal{D}/\partial \mathcal{D}, \mathcal{D}/a\mathcal{D} \). Choose \(0 \neq m \in M \) such that \(mt = 0 \), where \(t = a \) or \(t = x \), \(t = \partial \), respectively. Let \(p = \text{pp}_M(m) \) be the pp-type of \(m \) in \(M \).

From the description of the almost split sequences over \(\mathcal{D} \), there exists the descending chain of pp-formulae \(\varphi_0 = \langle xt = 0 \rangle > \varphi_1 > \cdots \) such that \((\varphi_{t+1}, \varphi_t) \) is a minimal pair over \(\mathcal{D} \). Indeed for the case \(t = a \) the precise form of \(\varphi_t \) was given in [9, Sect. 5]. For \(t = x \) we define \(\varphi_0(z) = xz = 0 \), \(\varphi_t(z) = x\partial z \wedge zx = 0 \), and so on. The definition for \(t = \partial \) is similar.

Therefore, if \(\varphi_k \in p \) and \(\varphi_{k+1} \notin p \), then \(M \) is isolated by a minimal pair. Since \(M_t(\partial) \) is indecomposable, it has a local endomorphism ring; hence \(\text{PE}(M_t(\partial)) \) is an indecomposable module by [7, Sect. 11.3]. Since \(M_t(\partial) \) realizes this pair, \(M \cong \text{PE}(M_t(\partial)) \) by Fact 2.1.

Otherwise, \(\varphi_k \in p \) for every \(k \); hence there is an embedding \(f_k: M_k(t) \to M \) such that \(f_k(x_0) = m \), thus an embedding \(f: M_t(\partial) \to M \). Since \(M_t(\partial) \) is injective by Lemma 4.1, and \(M \) is indecomposable, \(M \cong M_t(\partial) \).

Suppose that \(M \) is torsion-free; in particular, \(\mathcal{D}_2 \subseteq M \). If \(M \) is injective, then \(M \cong \text{E}(\mathcal{D}_2) \). Otherwise clearly there exist \(t \) which is \(a, x, \) or \(\partial \) and \(m \in M \), such that \(m \in M \setminus Mt \). By symmetry, the pair of left pp-formulae \((z = 0; tz = 0) \) is minimal in the theory \(T_{\text{inj}} \) of injective left modules. By duality the pair of right pp-formulae \((t|z; z = z) \) is minimal in the theory
T_{flat} of flat right modules. Since M and \mathcal{D} are both flat and realize this pair, M is isomorphic to a direct summand of $\text{PE}(\mathcal{D})$.

The counting of the Cantor–Bendixson rank is similar to [9]. Indeed, all points $\text{PE}(N)$ for the indecomposable finite length module N are isolated in $Z_{\mathcal{D}}$. Since every simple module over \mathcal{D} is not injective, every isolated point in $Z_{\mathcal{D}}$ is of this form by [8, Lemma 3.6].

Clearly the pair $(z = 0; zt = 0)$ isolates $M_t(t)$ in $Z_{\mathcal{D}}$ on the level one. Then indecomposable direct summands of $\text{PE}(\mathcal{D})$ are of Cantor–Bendixson rank one by duality. It remains to prove that E is torsion submodule of PE. Since every simple module over k is isomorphic to a direct summand of PE. Moreover N is not injective, every isolated point in $Z_{\mathcal{D}}$ is of this form by [8, Lemma 3.6].

Corollary 4.3. Every pure-injective module over \mathcal{D} is a pure-injective envelope of a direct sum of indecomposable pure-injective modules. So there exists no superdecomposable pure-injective module over \mathcal{D}.

Proof. In the proof of Theorem 4.2 we have been able to find an indecomposable direct summand in any pure-injective module over \mathcal{D}.

Lemma 4.4. Let N be an indecomposable finite length module over \mathcal{D} and let module $\mathcal{D}/a\mathcal{D}$ be simple. Then $\text{Hom}_\mathcal{D}(\mathcal{D}/a\mathcal{D}, N) = \text{Hom}_\mathcal{D}(\mathcal{D}/a\mathcal{D}, \text{PE}(N))$, which is either zero- or one-dimensional over k.

Proof. If $\mathcal{D}/a\mathcal{D} \neq \text{Soc}_\mathcal{D}(N)$ then $\text{Hom}(\mathcal{D}/a\mathcal{D}, N) = 0$ since N is uniserial. Hence $\text{Hom}(\mathcal{D}/a\mathcal{D}, \text{PE}(N)) = 0$ since modules N and $\text{PE}(N)$ are elementarily equivalent.

Otherwise by Fact 2.3 and Lemma 3.5, $\text{Hom}_\mathcal{D}(\mathcal{D}/a\mathcal{D}, N)$ is one-dimensional over k. The following arguments are due to Nick Granger. Suppose that there exists $m \in \text{PE}(N) \setminus N$ such that $ma = 0$. Since N is pp-essential in $\text{PE}(N)$, there are $n \in N$ and a pp-formula $\varphi(x, y)$ such that $\text{PE}(N) \models \varphi(m, n) \land \neg \varphi(m, 0)$. Since N is an elementary substructure of $\text{PE}(N)$, there is $m' \in N$ such that $N \models \varphi(m', n) \land \neg \varphi(m', 0)$. Then $\varphi(N, 0)$ is a proper nonzero k-subspace of $\text{ann}_N(a)$, a contradiction.

Remark 4.5. Let N be an indecomposable finite length module over \mathcal{D}. Then $N \subset \text{PE}(N)$ and $\text{PE}(N)/N \cong E(\mathcal{D})^{(a)}$ for some a. Moreover N is a fully invariant submodule of $\text{PE}(N)$ and $\text{End}(N) = \text{End}(\text{PE}(N))$.

Proof. Similarly to [13, after Theorem 7] one can prove that $N \subset \text{PE}(N)$; i.e., N is not pure-injective. Let us prove that N coincides with the torsion submodule of $\text{PE}(N)$. Otherwise $mt = n \in N$ for some $m \in \text{PE}(N) \setminus N, t \in \mathcal{D}$, where either t is irreducible in R or $t = x, t \in \mathcal{D}$. Since
N is an elementary substructure of PE(N), there exists \(m' \in N \) such that \(m' = n \). By Lemma 4.4, \(m - m' \in N \); hence \(m \in N \), a contradiction.

We prove that \(K = PE(N)/N \) is an injective module (cf. [13, Corollary 19]). It suffices to prove that \(Kr = K \), where the module \(D/tD \) is simple. If \(\text{soc}(N) \neq D/tD \), then \(Nt = N \) by Fact 2.3 and Lemma 3.5. Hence \(PE(N)t = PE(N) \) since \(N \) and \(PE(N) \) are elementarily equivalent. Otherwise by the same reference \(N/Nt \) is of \(k \)-dimension one and we choose \(n \in N \setminus Nt \).

Then \(ns = 0 \) for some \(0 \neq s \in \mathcal{D} \); hence \(N = Nt + \text{ann}_N(s) \), and therefore the same decomposition takes place for \(PE(N) \). Since \(N \) is the torsion part of \(PE(N) \), the result follows. Thus \(K \) is an injective torsion-free module.

Every morphism \(f \in \text{End}(PE(N)) \) preserves its torsion part; hence \(N \) is a fully invariant submodule and \(f \) induces a homomorphism from \(\text{End}(PE(N)) \) to \(\text{End}(N) \). If this map is not an embedding then there is \(0 \neq f \in \text{End}(PE(N)) \) such that \(f|_N = 0 \). Therefore \(f \) induces a nonzero homomorphism from \(K \) which is injective to \(PE(N) \) and the image of which is a direct summand, a contradiction.

Note that in [9] the ring \(\text{End}(N) \) was described explicitly, which in particular yields the following corollary.

Corollary 4.6. Let \(N \) be an indecomposable module over \(\mathcal{D} \) of length \(n \). Then \(S = \text{End}(PE(N)) \) is an artinian commutative valuation ring of length \(n \) such that \(S/\text{Jac}(S) = k \).

5. GENERALIZATIONS

Let \(\mathcal{O}_n \) be the ring of formal power series over \(k \) and let \(\mathcal{D}_n = \mathcal{O}_n[x_1, \ldots, x_n] \) be the ring of differential operators over \(\mathcal{O}_n \). Let us consider a prime ideal \(\rho \) of \(\mathcal{O}_n \) of height \(n - 1 \) and the corresponding curve \(A = \mathcal{O}_n/\rho \). The following fact is contained in [2].

Fact 5.1. The following categories of modules are Morita equivalent:

1. the category of \(\mathcal{D}_n \)-modules supported on \(\rho \) (module \(M \) over \(\mathcal{D}_n \) is called supported on \(\rho \) if \(\text{Supp}(M) \subseteq V(\rho) \));
2. the category of \(\mathcal{D}(A) \)-modules;
3. the category of \(\mathcal{D} \)-modules.

From the above we immediately obtain the following.

Corollary 5.2. Every indecomposable finite length \(\mathcal{D}_n \)-module supported on a curve is uniserial and either homogeneous or with alternating composition factors. Moreover this category admits almost split sequences with at most two terms in the middle.
PROPOSITION 5.3. Let $A = \mathcal{O}/\rho$ be a curve and let M be an indecomposable pure-injective module over $\mathcal{D}(A)$. Then exactly one of the following holds true:

1. M is isolated in $Z_{\mathcal{D}(A)}$; equivalently $M \cong \text{PE}(N)$ for an indecomposable finite length A-module N (hence N is uniserial);

2. M is of Cantor–Bendixson rank 1 in $Z_{\mathcal{D}(A)}$; equivalently either $M \cong E(S)$ for a simple A-module S or M is an indecomposable direct summand of a module $\text{PE}(\mathcal{D}(A, \mathcal{O}))$ (hence M is flat);

3. M is of Cantor–Bendixson rank 2 in $Z_{\mathcal{D}(A)}$, which is equivalent to $M \cong E(\mathcal{D}(A, \mathcal{O}))$.

In particular the Cantor–Bendixson rank of $Z_{\mathcal{D}(A)}$ is equal to 2; hence there exists no superdecomposable pure-injective module over $\mathcal{D}(A)$.

Proof. We may assume that $x_i \notin \rho$; hence $A \subseteq \mathcal{O} = \mathcal{O}_1$. In view of [2] the categories of right \mathcal{D}-modules and right $\mathcal{D}(A)$-modules are equivalent where the functor $F: \mathcal{D}\text{-Mod} \to \mathcal{D}(A)\text{-Mod}$ is given by $M \mapsto M \otimes_{\mathcal{O}} \mathcal{D}(A, \mathcal{O})$. Since the image of \mathcal{D} is $\mathcal{D}(A, \mathcal{O})$, the result follows from Theorem 4.2.

ACKNOWLEDGMENT

I thank the referee for detecting an error in the proof of Remark 4.5 in an earlier version of this paper.

REFERENCES

3. A. van den Essen and A. Levelt, An explicit description of all simple $K[\llbracket X \rrbracket \llbracket \mathcal{O} \rrbracket \llbracket \mathcal{O} \rrbracket$-modules, in Contemporary Mathematics, Vol. 130, pp. 121–131, Amer. Math. Soc., Providence, 1992.

