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1. INTRODUCTION 

In this paper we find the maximal subgroups of the simple group HN 
(also known as F and Fs +) of order 273, 030, 912, 000, 000 = 
214. 36. S6. 7.11 .19, and of its automorphism group HN :2. Much of this 
work was originally done by the first author several years ago (only partly 
recorded in [3]), but the methods of the second author have led to several 
simplifications. 

THEOREM 1. HN has 14 conjugacy classes of maximal subgroups: 

AI2 2.HS:2 U3(8):3 

2y8. (A, x A,):2 Pmx U3(5)).2 
26 * U,(2) 

5;+4:21+4.5.4 
(A6 x A61 * 43 23.22.26.(3 x L,(2)) 

52.5;+2.4A5 MI2 : 2 (2 classes) 
34:2- (A4 x A,).4 3y4:4- A, 

THEOREM 2. HN : 2 has 13 conjugacy classes of maximal subgroups: 

HN S 4. HS:2 

U&3):6 2’:‘. (A, x A9.2’ 5:4x U,(5):2 
5Lf4.4. 24.5.4 2:. U,(2):2 (& x S,) ’ 2* 
23.22.26.(S3 x L,(2)) 52.5:+2.4s, 34: 2(S, x S,).2 
3:+4:4s5 

Note. Our notation for groups, conjugacy classes, characters and so on 
follows the ATLAS [l]. 

The arguments we use refer explicitly to subgroups of HN, but apply 

equally to HN:2, showing that its maximal subgroups (except HN itself) 
contain those of HN to index 2. 
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2. PRELIMINARIES 

2.1. The Graph 

The original construction of the group HN is described in [3], using the 
work of Harada [2] in characterizing the group, and the computational 
work of Smith [S]. Many properties of the group HN are given in [2] and 
[3], though the notation there may differ from that used here, which 
follows [ 11. We sometimes quote such properties without explicit reference. 

There is a graph of valence 462 on 1 140 000 nodes on which HN acts. 
The nodes correspond to the subgroups Ai2, and are joined if and only if 
the corresponding Ar2’s intersect in A, x A,. The suborbit lengths are 1, 
462, 2520, 2520, 10 395, 16 632, 30 800, 69 300, 166 320, 166 320, 311 850, 
and 362 880. The corresponding 2-node stabilizers are A,,, f(S, wr2), M,,, 
M,,, 25S,, $(PGL,(S)wr2), $(S,wrA,), f(A,wr&), 2 x S,, 2 x S,, 25S4, and 
L2( 11). In HN:2 suborbits of equal length are fused. 

We specify the elements of a given A,, in terms of their action on the 12 
letters a, b, c, d, e, f, g, h, i, j, k, 1. 

2.2. How to Find Maximal Subgroups 

If M is a maximal subgroup of a simple group G, and K is a minimal 
normal subgroup of M, then K is a characteristically simple group (i.e., a 
direct product of isomorphic simple groups) and M= N,(K). The local 
case (when K is Abelian) is considered in Section 3, and the nonlocal case 
(when K is non-Abelian) is treated in Sections 4 and 5. 

Now for any triple (X, Y, 2) of conjugacy classes of G, we write 
((X, Y, 2) for the expression 

IGI c X(X).X(YhX(Z) 
IC(x)l IC(Y)l IW)l x(l) ’ 

where x E X, y E Y, z E Z, and the sum is taken over all irreducible charac- 
ters x of G. This is called the (symmetrized) structure constant, and it is a 
standard result that 

w y, Z) = c I c(x ly, z)l 9 
9 

where the sum is taken over all conjugacy classes of ordered triples (x, y, z) 
with x E X, y E Y, z E Z, and xyz = 1. Clearly if <(X, Y, Z) < 1 and H can be 
generated by elements XE X, y E Y, ZE Z with xyz = 1, then H must have 
nontrivial centralizer. The following obvious lemma will then deal with 
most cases: 

LEMMA. Zf H < G and C,(H) contains a nontrivial elementary Abelian 
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characteristic subgroup K (in particular, if C,(H) is a nontrivial soluble 
group) then N,(H) is contained in the local subgroup N,(K). 

Some minor alterations are required when G is not simple but G’ is. The 
reader is referred to [6] for a detailed discussion of this case. 

3. LOCAL SUBGROUPS 

3.1. The 2-Local Subgroups 

There are just two classes of elements of order 2 in HN, with normalizers 
N(2A)z2-H,S:2 and N(2B)g2!++* . (A, xA,):2. The fusion map from 
these groups to HN can be seen from [2]. They both have subgroups of 
index 2, and in each case any four-group containing the centre lies in this 
subgroup if and only if it contains an even number of 2A-elements. It 
follows from this that any elementary Abelian 2-group Tin HN supports a 
bilinear form, with values in F,, whose value on a pair of elements of T is 1 
just when they generate a four-group with an odd number of 2A-elements. 
This is associated with a quadratic form whose values are 1 on 2A-elements 
and 0 on lA- and 2B-elements. Using this we can define a subgroup T of T 
to consist of all elements of T on which the bilinear form is trivial. Then 
clearly N(T) is contained in N(T), so that it is sufficient to consider the 
cases where T is one of the following: 

(a) a 2A-pure group, which must necessarily have rank at most 2. 

(b) a group on which the bilinear form is nondegenerate. This 
necessarily has even rank, which must be at least 4 as otherwise the 
situation reduces to case (a). 

(c) a 2Bpure group. 

We deal with these three cases in turn. There are just two classes of 2A- 
pure subgroups, with normalizers N(2A) E 2. HS:2 and N(2A2) z 
(A,xA,):2<A,,. If T is of type (b), it contains a 2A-pure four-group, and 
hence lies in the A,, containing the normalizer of this four-group. Note 
that involutions in A,* are of class 2B just when their cycle-shape is 24. In 
terms of our notation for A i2 our four-group will have shape ((ab)(cd), 
(ac)(bd)), and T will have one of the following forms: 

(1) ((ab)(c49 (ac)(bd), W( gh), (es)(fh), (ijWh (ik)W) >. 
In this case N(T) z 26. U,(2), because it must act transitively on 2A-pure 
four-groups. Here the nonsplitness follows from Section 4, where we show 
that U,(2) is not contained in HN. 

(2) (W)(cdh (ac)W), (ef)( gh), (eg)(fh) >- 

(3) ((ab)(cd), (ac)(bdh (ef)( gh), (eg)(fh)(ij)(W >. 
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In these two cases O,(C(T)) will be the above 26-group, so that N(T) will 
lie in the normalizer thereof. 

To deal with the case of 2B-pure groups, we need to know more about 
the structure of C(2B). We take a 4-dimensional vector space over 
F, = (0, 1, w, 0}, supporting a quadratic form of maximal Witt index. This 
form is fixed by a group O:(4) z A5 x A, acting on the space. We take the 
split extension of translation group 2* by this group, and further adjoin the 
field automorphism. Then C(2B) is a double cover of this group in which 
translation by a nonzero vector lifts to an element of class 2B, 2A, 4A or 
4A according as its norm is 0, 1, w, or ti, and in which diagonal 
involutions of the A5 x A, lift to involutions (of class 2B), but nondiagonal 
involutions lift to elements of order 4. 

We may then check, using the structure constant 5(2B, 2B, 2B), that 
there are just two classes of 2B-pure four-group in HN. The first type is 
generated by the centre and any other 2B-element of the extraspecial group 
21f8 in C(2B), while the second type is generated by the centre and a 
diagonal involution of A 5 x A 5. Two noncentral commuting 2B-elements in 
2l+* generate a four-group of the first type if and only if they correspond 
to a l-space over F,. 

Consideration of centralizer orders shows that given a four-group of the 
second type, there is a unique 2’ + ’ containing it, in which the generators 
correspond to vectors generating an isotropic 2-space. Any element 
extending this four-group to a larger 2B-pure group must also lie in this 
extraspecial group, as neither diagonal involutions of A, x A, nor field 
automorphisms can fix a pair of vectors generating an isotropic 2-space. So 
any 2B-pure group T extending our four-group lies in a unique 2l+ *, and 
hence N(T) lies in C(~B)E~\+*.(A,XA,):~. 

It therefore only remains to consider 2B-pure groups in which every 
four-group is of the first type. The first two generators of any such group 
we may take as the centre of a C(2B) and the translation by a given 
isotropic vector. As pairs of vectors generating an isotropic 2-space corres- 
pond to four-groups of the second type, we may only extend this by the 
translations by other vectors in the same l-space. The resulting group is in 
fact exemplified in Al2 by the 23-group fixing four letters and acting 
regularly on the other eight. The normalizer of this group is N(2B3) g 
23.22.26.(3 x L,(2)). Furthermore, as a four-group of the first type extends 
uniquely to such an 23-group, its normalizer is contained in the above 
group. 

3.2. The 3-Local Subgroups 

There are just two classes of elements of order 3 in HN, with normalizers 
N(3A)z(3xA9):2, contained in Ai2, and N(3B)~33:+~:4.A~. Since the 
latter group contains a Sylow 3-subgroup, it contains a conjugate of every 
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elementary Abelian 3-group, First, we consider the elementary Abelian sub- 
groups of 3:+4. These, whether or not they contain the centre, correspond 
to the isotropic l- and 2-dimensional subspaces (“points” and “lines,” 
respectively) of a 4-dimensional symplectic space over F, (the symplectic 
form being given by the commutator map on 3’++ “). These fall into the 
following orbits under the action of 4A 5 : 

Points Lines 

Type Number Incidence Number Type 

3A 20 

3B 20 

10 

20 

10 

3A,B, 

3B, 

In the above table, the “type” refers to the class distribution of the 
corresponding elementary Abelian subgroup of 3r++4 not containing the 
centre. In the table below, we give the normalizers of these groups in the 
left-hand column, and the normalizers of the groups obtained by adjoining 
the centre, in the right-hand column. An explanation follows the table. 

Type Normalizer ‘Ibe Normalizer 

3A (3xA,):2<A,, 3A3B, < N(3B) 
3B 3:+“:4A, 3B.a 32.(3 x 32).2S4 < N(34) (c) 

3-424 <N37 (c) -,A,& cN(3B) and 1%‘(3~) (a), (c) 

3Ad4 <N(3B) %A9 <N34) Cc) 
384 <N3B) @I 3B, 42 33.32.2S4 < N(3B) (a) 

Notes. (a) Since 7 does not divide the order of G&(3), and 13 does not 
divide the order of HN, it follows that the orbits on 3Belements in the 
groups of type (3B,A,B,) and (3B,B,,) cannot fuse, and thus their nor- 
malizers are contained in N(3B). 

(b) See below. 

(c) The 33-group of type (3B,A,B,) has centralizer of order 34, 
which can be seen from the structure of C(3A) to be elementary Abelian of 
type (3A,,B,,). Since this is the only conjugacy class of elementary Abelian 
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34 (see below), it follows that its normalizer is transitive on the 3A- 
elements it contains, and therefore has order 27 * 36. In fact the normalizer 
has the shape 34:2 9 (A, x A,).4 g 34:G04(3). 2, and there is a quadratic 
form on the 34-group which is preserved up to sign. Under this quadratic 
form the 3A-elements are nonisotropic, and the 3B-elements are isotropic. 
We can now see the normalizers.of some of the above elementary Abelian 
3-groups inside this group. Indeed, if X is a 3B-pure subgroup of this 
34-group, then it has order at most 9, and we have just one new case, 
N(3B2) z 3*.(3 x 3*).2S4 < N(34). Otherwise, X contains 3A-elements, and 
we may assume that either X is 3A-pure, or it is generated by 3B-elements. 
In either case the restriction q to X of the quadratic form on 34 is non- 
singular, since the radical is equal to the intersection of all the maximal 3B- 
pure subgroups. We may also assume that X has order at least 9, so the 
following cases arise: 

Dim(X) Type(X) Sign(q) N(X) 

2 3A,B, + < N(34) (see above) 
2 3A4 - (32:4x A,).2.2<(A6x A,).& 
3 3BJ,Ae < N(34) since the centralizer = 34 
4 ~AMBM + 34:2. (A4 x A4).4 

We must check that N(X) fixes q up to sign. This is obvious except when X 
has type 3A,, in which case each 3A-element x is orthogonal to a unique 
other 3A-element, which is the one in the A, in C(x) z 3 x A,. 

Now consider the case when our elementary Abelian 3-group is not in a 
group 3 ’ +4 We must first determine the conjugacy classes of 3-elements in 
31+42A,\3;f4. Now the centralizer in 3’+4 of any such 3-element is con- 
tained in a “line” L of type (3B, A, B6). Factoring S = 3’ +4:3 by this we 
obtain an elementary Abelian 33-group S (this is clear by looking in 
N(34)). The 9 complements to 31+4/33 E 3 * in S fall into orbits of sizes 1, 4, 
and 4 under the action of N(L) E 3 ’ + 4. 2 x 2 . S,). The orbit of size 1 gives . ( 
rise to the elementary Abelian 34-group described above. The complements 
in one of the orbits of size 4 lift only to elements of order 9. Those in the 
other orbit of size 4 act nontrivially on L, and hence give rise to a single 
class of self-centralizing elementary Abelian 33-groups, each of which inter- 
sects L in a “point” P of type (3B,). Furthermore, since we have already 
accounted for all the 3A-elements in N(3B), it follows that this 33-group is 
3B-pure. But now C(P) has the shape 32f3 z 32.(3 x 32) r 34:3, and our 33- 
group is obtained from P by adjoining a “diagonal” element of the quotient 
C(P)/P E 3 x 32. But if we adjoin to this also the left hand factor then we 
obtain a group 3 1+4 Hence our 33-group is conjugate to the “line” of type 
(3B, B12). The following statements follow immediately: 
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(i) there are just two classes of elementary Abelian 3-group of type 
(38,) 

(ii) they are both conjugate to subgroups of the “line” of type 
WI &,I 

(iii) one has normalizer 32.(3 x 32).2S, < N(34), as shown above 

(iv) the other has centralizer equal to the “line” of type (38, B,,), so 
has normalizer contained in N(3B). This is case (b) in the above table of 
subgroups of 3’ + 4. 

3.3. The 5-Local Subgroups 

There are 5 classes of 5-elements in HN, with normalizers: 

N(5A) E (D,, x U,(S)). 2, 

N(5B) E 5$+4:2y+4.5.4, 

Since N(5B) contains a Sylow 5-subgroup of HN, it contains a conjugate of 
every elementary Abelian 5-group. We consider first the elementary 
Abelian subgroups of the group 5, 1 +4. Just as in the 3-local case, these 
correspond to isotropic l- and 2-dimensional subspaces (“points” and 
“lines,” respectively) of a 4-dimensional symplectic space over F,. 
Calculations in S,(5) show that 2- 1 +4.5.4 has 8 orbits on non-trivial 
isotropic subspaces, as follows: 

Points Lines 

‘We Number Incidence Number Type 

SA 

5E 

SCD 

5B 

20 

40 

80 

16 

20 

80 

40 

16 
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We have already considered the normalizers of groups of order 5. A 
group of order 25 corresponding to a point has type (5B,?,), so has nor- 
malizer contained in N(5B) unless it has type (5B,). In the latter case, we 
shall show later that there is a unique class of S&pure 52-group with cen- 
tralizer of order 5’, so its normalizer is transitive on the S&elements it con- 
tains, and is therefore 52.51 +2 .4A,. (Note: the middle factor is an 
extraspecial group 5 \+ 2 rather than an elementary Abelian group 53, since 
otherwise there would be an elementary Abelian subgroup of order 54.) 

Consider next the elementary Abelian groups of order 25 corresponding 
to lines. In the first three cases, the centralizer contains a unique Sylow 5- 
subgroup, which is just the 53-group obtained by adjoining the centre of 
5’++4, so the normalizer is contained in the normalizer of the appropriate 
53-group. Now these have types 5B,A,,E,,, 5B,A,(CD),,&, and 
5B,B,,(CD),,E,,, respectively, and since 11 does not divide the order of 
G,!,,(5), it follows that in every case the normalizer is contained in N(5B). 
In the case of the 16-orbit of lines, the 52-group has type SB,(CD),, so its 
normalizer is contained in N(5B), while the corresponding 53-group has 
type 5&WD)25y so its normalizer is contained in N(5B2) E 52.51+2.4A,. 

Finally we must consider the case of an elementary Abelian 5-group X 
not in 5’ + 4. The existence of self-centralizing elements of order 25 implies 
that any;-element in 51+4.2’ +4.5.4\5’+4 centralizes a subgroup of order 
at most 25 in 5l+ 4. This is elementary Abelian, of pure S&type, so X is 
contained in C(5B2) E 52.51+2. Hence it can be conjugated into 5l +4 by a 
suitable element of N(5B2)g 52.51+2.4A,. (Note that we have shown in 
particular that if there is any 5B2-group (containing the centre) in 51+4: 5 
that is not in 5l +4, then it has centralizer of order 53, thus justifying the 
assertion made above that there is a unique class of 5B2-group with cen- 
tralizer of order 5’. We proved this before we used the structure of N(5B2), 
so the argument is not circular!) 

3.4. Other Local Subgroups 

The normalizers of the remaining elements of prime order are: 

N(~A)~((~:~xA,):~<A,,, 

N(llA)r2x 11:10<2~HS:2, 

N(19AB)g 19:9< U,(8):3. 

4. CANDIDATFSFOR NONLOCAL SUBGROUPS 

The following is a complete list of the non-Abelian simple groups whose 
order divides the order of HN: 
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A,, A,, A,> A,> 4, Alo> A,,, ,412 
b(7), b(S), L,(ll) L*(19) 
U,(5), ~3(8) (1,(3), L,(4), U.+(2), U,(3), L1,(2) 

T#), o:(2) 

Of these, all the groups in the left-hand column are in the known sub- 
groups A,,, u3(5), or u&3) ( see [3]), The groups in the right-hand 
column are not in HN: to prove this it suffices to prove it for the cases 
&(19), u,(3), b(4), u,(2), and J1. 

For U,(3), the 3-central 3-elements must be of class 3B, since they have 
centralizer 3’ +’ :4. Hence the 12-elements are of class 12C, and so the 
elements of U,(3)-class 4AB are of HN-class 4C. But 4C-elements have no 
square roots, so there is no class restriction to U,(3). 

There is no subgroup J,, since the latter group contains D,,, whereas 
HN does not. 

Now any L2( 19) contains 9A-elements, so 3B-elements, so (see Sect. 5.1) 
A,% of type (2B, 3B, 5E). Hence it can be generated by two such A,‘s inter- 
secting in A,. But an A, of type (2B, 3B, 5E) has normalizer Ss, and can 
be embedded in A,, with orbits 1 + 5 + 6 (2 classes) or 1 + 1 + 10 on the 12 
letters. In each case the full Ss is in A,,, and it follows that an A, of this 
type fixes just three nodes in the 1 140 OOO-node graph. Similarly, the A, 
fixes just five nodes, so any L2( 19) would have to fix a node, i.e. be con- 
tained in A,,. This contradiction proves that there is no L2( 19) in HN. 
This argument simplifies that used in [3]. 

Any L,(4) contains a group 24:A, in which all the involutions are con- 
jugate, so of class 2B. Such a group must be contained in 2”*. (A, x A,), 
and the 24-group corresponds to a totally isotropic 2-space over F,. Now 
there is a single orbit of A, x A, on such spaces, and the stabilizer is 
A, x A,. So on factoring out by the group 2l+ *, our group 24A, must map 
onto one of the factors of A, x A,. But the involutions in such an A, do 
not lift to involutions in 21f 8(A, x A,), so this is impossible. 

Now suppose there is a subgroup U,(2). If all the involutions are of class 
2B, then the same argument produces a contradiction. Otherwise, it follows 
from the 2-local analysis that there is a unique class of 24:A, in which the 
normal subgroup 24 contains 2A-elements and the A, acts on it as O;(2). 
Furthermore this may be embedded in A,,, fixing two letters and acting 
imprimitively on the rest. It contains a unique class of A,, whose nor- 
malizer in A,, is 2 x S,. Now U,(2) can be constructed by taking a group 
24:A, and extending a subgroup A, to Ss. But the normalizer of our AS in 
HN is (2*x A,):2 (see Sect. 5.1), so it extends to exactly two groups Ss, 
both of which may be seen in our A,,. So since A,, does not contain U,(2), 
there is no group U,(2) in HN. 
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5. THE INDIVIDUAL CASES 

5.1. A, andA,xA, 

The nonzero (2, 3, 5)-structure constants are 

5(2A, 3A, 5A) = l/2520, 5(2A, 3A, 5E) = l/10, 

5(2B, 3A, 5E) = l/4, 5(2B, 3B, 5E) = 1. 

Now C(5A) g 5 x U,(5) and C(3A) 13 x A,, and the largest intersection of 
these is A,. It follows that there is a unique class of A, of type 
(2A, 3A, 5A), and it has normalizer (A, x A,):2, contained in A,,. Now 
C(SE)r5x5 ‘+*:2*, so any other A, has centralizer a subgroup of 
5l+ * :2*. Also the only 5-elements which centralize an A, have class 5A, 
and normalizer (D,, x U,(5)). 2. This contains two classes of A,, one con- 
taining SA-elements, the other with normalizer D,, x S,, contained in 
(D,, x U,(5)). 2. Hence the latter is the unique class. of A,% of type 
(2A, 3A, 5E). 

Thus the centralizer of any other A, is a subgroup of Syl,(C(SE)), which 
is a four-group of type (2A, 2B, 2B). So there is a unique class of A, of type 
(2B, 3A, 5E), and it has normalizer (2* x A,):2, contained in 2. HS:2. 
Finally, an A, of type (2B, 3B, 5E) can have centralizer of order at most 2 
(type 2B) since 3B-elements do not centralize 2A-elements. Now the only 
involutions in 2’ + * . (A, x As) : 2 are either in 2l+ * or in the outer half, or 
correspond to diagonal involutions of A, x A,. But as the diagonal 3- 
elements therein are of class 3A, there is no A, of type (2B, 3B, 5E) in 
C(2B). Hence there is a unique class of such AS in HN, and its normalizer 

. . 
is S,, contained m A,,. 

There are two classes of A, x A,, and their normalizers are (S, x S,) :2, 
contained in A,*, and (A, x A,):4, contained in (A6 x A,).D,. 

5.2. A, to Al2 

In any of these groups, the 5-point A, centralizes a 3-element, so must be 
of type (2A, 3A, 5A). The group A,, and indeed its full normalizer, can be 
obtained by extending the normalizer of a four-group. But the entire 
normalizers of the AS and the four-group are contained in A12, so the 
normalizer of any such A, is contained in A,*. 

5.3. A, and A6 x A6 

If A, contains an A, of type (2A, 3A, 5A), then by the same argument it 
is contained in A,,. But there is a unique class of such A, in A12, and its 
normalizer in HN is (A6 x A6). 2*, a subgroup of index 2 in N(A, x Ah) 2 
(A,x&).Ds. 
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Any other A6 contains SE-elements, and using the fact that the 4- 
elements square to the involutions, the only relevant nonzero (2,4, 5)- 
structure constants are: 

<(2A, 4B, 5E) = 415, 5(2B, 4A, 5E) = 19/4, 5(2B, 4C, 5E) = 6. 

Thus we need only consider A,‘s containing 2B-elements. If the A, contains 
any 3B-elements, we use the fact that it is generated by two A,‘s inter- 
secting in an A,. Now as we have seen in Section 4 above, these A,‘s fix 
three nodes each, whereas the A, fixes live nodes. Thus any such A, fixes at 
least one node, i.e., it is in A,,. Its orbits on the 12 letters are either 
1 + 1 + 10 or 6 + 6, and in either case its normalizer is A,. 22, and is con- 
tained in Al2 or (A6 x Ah). D,. 

Since 5(2B, 3A, 4C) =O, the only case left is (2B, 3A, 3A, 4A, 5E). We 
construct such an A, by taking an A, and extending a subgroup A, to Sq. 
Now there is a unique class of A, of type (2B, 3A, 5E), represented by the 
A, with orbits 5 + 5 + 1 + 1 in A,,, in which the orbits of an A, are 
4 + 4 + 1 + 1 + 1 + 1. Such an A, extends to four S,‘s within A,,, one with 
orbits 8 + 1+ 1 + 1 + 1 and three with orbits 4 + 4 + 2 + 2. But the 2-local 
analysis shows that all A,% of type (2B, 3A) are conjugate, and the struc- 
ture constants ((28, 3A, 3A) = l/96 and 5(2B, 3A, 4A) = l/24 show that 
such an A, extends to exactly four S,‘s of type (28, 3A, 4A). It now follows 
that any A, of this type is in A,,. Furthermore its orbit structure must be 
6 + 6, and the involution that interchanges the two orbits is the unique 2A- 
element that centralizes the A,. (Indeed, we saw above that there is a uni- 
que 2A-element centralizing a subgroup A,.) Thus the normalizer of such 
an A, lies in N(2A)g2.HS:2. 

There is a unique class of A, x A,, it is contained in A r2, and has nor- 
malizer (A, x A6). D,. The action of the D, is as follows: the central 
element extends each A, to Se, another element extends one A, to PGL,(B) 
and the other to Mro, and a further element interchanges the two A,‘?+. 

5.4. A, 

If A, contains an A, of type (2A, 3A, 5A), then by the same argument as 
used above for A, to A,, , its normalizer is contained in A,*. Any other A, 
containing 2A-elements can be constructed by taking an S, of type 
(2A, 3A, 5E) and extending S4 to (A4 x 3):2. Now there are two classes of 
A4 of type (2A, 3A), with normalizers (A,x A,):2 and (A,x 3):2x A,, 
respectively, both contained in A,,. The former extends only to A,‘s of type 
(2A, 3A, 5A), as the entire 3A-normalizer is contained in A12. Hence our Ss 
contains the latter class of A,. Now the only 2A-elements in this A,- 
normalizer are either in the (A4 x 3) :2 or in the As, and so there is a uni- 
que way of making the required extension. Hence there is a unique class of 
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A, of type (2A, 5E), and it has normalizer D,,x A,, contained in 
Pm x U,(5)). 2. 

Remark. A similar argument shows that there is a unique class of A, of 
type (24 5E), with normalizer D,,x Mlo, also contained in 
CD10 x U,(5)). 2. 

5.5. h,(7) and L2(8) 

The nonzero (2, 3, 7)-structure constants are 

[(2A, 3A, 7A) = 2115, 5(2B, 3A, 7A) = l/12, [(2B, 3B, 7A) = 1913. 

Hence we need only consider L,(7)% of type (2B, 3B, 4A/C, 7A) and 
L,(8)? of type (2B, 3B, 7A, 9A). 

To deal with L,(8) we consider the subgroup 23:7. All involutions and 
four-groups are conjugate here, so that as 2B-pure groups the latter must 
all be of one type (see Sect. 3.1). This cannot be the second type, as the 
normalizer of any 2B-pure group containing such a subgroup lies in C(2B) 
and hence has no element of order 7. So, by the results of our 2-local 
analysis, we may represent the 23 in A,, as fixing four letters and acting 
regularly on the rest. We note, by comparing centralizers, that this group 
fixes 64 nodes of our graph, so that 23:7 fixes at least one. It must therefore 
fix the unique node fixed by an element of order 7, which is also fixed by 
any element normalizing it. Hence this node is fixed by any group 
generated in this way by 23 : 7 and Di4, in particular by any L,(8). 
Therefore L*(8) and its normalizer are contained in Al*. This normalizer is 
in fact 3 x L*(8) : 3. 

Some detailed knowledge of the group HN, as given in [S], is required 
to deal with L,(7). We use the following general property of permutation 
groups. If a group G acts transitively on a set S, then the number of 
elements of a conjugacy class of G taking a point of S into a given suborbit 
Oj relative to that point is given as follows. If the permutation character is 
x1+x2+ * * * + x,, and the eigenvalue of xi on the suborbit Oj is aii, then 
the number of elements conjugate to g that take a given point into the 
corresponding O,-suborbit is C;= i a,~~( g). For each class of HN, and each 
suborbit of the 114OOOO-node graph, these sums are given in Table 3 of 
c31. 

Now if we have a group L,(7) of type (2B, 3B, 7A), then each of the 
eight subgroups of order 21 fixes a unique node. We ask which of the sub- 
orbits corresponding to one of these nodes the other seven lie in. But there 
is an element of class 3B stabilizing any pair of these eight nodes, so that 
the corresponding suborbit stabilizer must include a 3B-element. This 
means that its orbit length must be 1, 462, 30 800, 69 300, or 2520 (there 
are two orbits with this last length). But it cannot be 1, as the entire L,(7) 
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would lie in an A,,; however, A,, contains no such subgroup with 3- 
elements of class 3B (i.e. cycle shape 3313). Now in our putative L,(7), 
there are 2B- and 3B-elements taking one of the 8 nodes to any other. 
Hence the orbit length cannot be 462 or 2520, since no 3B-element takes 
the fixed node into one of these orbits, and similarly it cannot be 69300, 
since no 2B-element takes the fixed node into this orbit (see Table 3 of 
[3]). So the 30800-suborbit is the only possibility. The stabilizer in HN:2 
of the corresponding suborbit is S, wr A,, in which just the even per- 
mutations are in HN. Nodes in this suborbit may be described by a decom- 
position of the 12 letters permuted by our A i2 into four triples. (Strictly 
speaking, there are two nodes corresponding to a given decomposition, 
which are interchanged by odd permutations of the triples.) 

If, with the usual notation for the 12 letters, we take the intersection of 
our putative L,(7) and the A i2 to be ((abcdefg), (bce)(d&(hij)), then one 
of the other seven nodes permuted by the L,(7) will be fixed by 
(bce)(dgf)(hij). Th e corresponding decomposition into triples may then be 
taken, without loss of generality, to be one of {bee, dgf, akl, hij}, 
{ bgh, cf, dej, akl} or { bdh, cgi, ef, akl}. 

In the first of these cases, the subgroup of HN fixing all eight nodes 
would be non-trivial (it is actually generated by (hij)), so that our L,(7) 
would have to lie in its normalizer. But this normalizer is contained in our 
A,,, and we have already seen that this contains no L,(7) with 3-elements 
of class 3B. 

To deal with the other cases, it is sufficient to show that the eight nodes 
do not lie in the 30 800-suborbits corresponding to one another. If they 
did, then the inner product of the corresponding vectors in the 133-dimen- 
sional representation would be 3 (on the scale, used in [3], where the vec- 
tors have norm 21). We can show by computation that this does not hap- 
pen. Alternatively, we calculate using [3] that the six vectors fixed by 
( (abc), (def), ( ghi), (jkl) ) (or the corresponding group for any other 
splitting of the 12 letters into triples) sum to zero in the 133-space, as the 
norm of their sum is zero. We note that one of these six vectors lies in the 
1-suborbit, three in the 462-suborbit, and two in the 30 800-suborbit. If we 
try to determine the inner product table between the vectors fixed by 
((bgh), (cf), (dej), (akl)) and those fixed by ((cab), (dgi), (ef), (bkl)) we 
quickly reach a contradiction. The same arguments hold in the third case, 
and we therefore conclude that HN contains no L,(7) of type (2B, 3B, 7A). 

5.6. L2( 11) and M,, 

Since 5(2A, 3A, 11A) = l/2 it follows that there is a unique class of 
L2( 11) of type (2A, 3A), with normalizer 2 x L2( 11) :2, contained in 
2. HS:2. Any other L,(ll) contains an A, of type (2B, 3A/B, 5E), so has 
type (28,3A, 5E, 6B, 11A) or (2B, 3B, SE, 6C, 11A). In the former case the 
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subgroup A, contains 23-pure four-groups of the first type (see Sect. 3.1) 
while the subgroup D,, contains 2B-pure four-groups of the second type, 
and so there is no such L,(ll). In the latter case, the group may be 
generated by two A,‘s intersecting in an A,, and by the argument used 
above for A, and L2( 19), it follows that such an L,(ll) is contained in A,,. 
Hence there is a unique conjugacy class in HN :2, with normalizer 
L2( 11) : 2, contained in Ml2 : 2 < HN. 

Now M,, can be constructed from L2( 11) by extending A, to S,. (But 
note that Ml2 :2 can also be constructed in this way, using the L2( 11) 
which is maximal in Ml*.) If we start with the L,(ll) of type 
(2A, 3A, 5E, 6A, llA), then the corresponding A, has normalizer D,, x S,, 
so there are 6 ways of extending A, to S,. Two of these are centralized by 
the involution centralizing L2( 1 l), so the normalizer of the group so 
generated is contained in 2. HS: 2. The other four fall into two orbits of 
size 2 under the centralizing involution, and give rise to the two classes of 
M,,:2. 

If we start with the L,( 11) of type (2B, 3B, 5E, 6C, 1 lA), then the A5 has 
normalizer S,. Thus there is a unique class of M,, of this type, and it is 
self-normalizing and contained in A, *. 

5.7. M,, 

The elements of order 5 in M,, are of HN-class 5E, since they normalize 
elements of order 11. Then the lo-elements are rational and square to 
these, so are of class lOF, and so the elements of M,,-class 2A are of HN- 
class 2A. Hence, any M,, contains an A, of type (2A, 3A, SE), and can be 
constructed from this A, by extending A4 to A, x S3. Now we have seen 
above (see section 5.4) that the normalizer of this A, in HN is 
(A4 x 3):2 x A,. Thus there are 10 ways of making the required extension, 
and these fall into two orbits of size 5 under the D,, centralizing our AS. 
Hence there are just two classes of Mlz, and in each case the normalizer is 
Miz:2, since extending A, to Ss normalizes both groups. 

Remark. The 133-dimensional character restricts to AM,~ as 
lau + 16ab + 45a + 54a, and so any M,, has type (2A, 28, 3B, 3A, 4A, 4A, 
5E, 6A, 6C, SB, 8B, lo&‘, 1lA). Then the two classes of A#,,:2 account fully 
for the structure constant 5&2A, 33, 11A) = 2, thus furnishing an alter- 
native proof that there is no other N,*. 

5.8. U,(5) 

The ~33-dimensional character restricts to U,(5) as 21a + 28bbcc, so any 
U3(5) has type (2A, 3A, 48, SB, 5A, SE, 5E, 6A, 7A, 8A, lOA). Hence any 
U,(S) can be constructed by taking an AS of type (2A, 3A, 5E) and 
extending a subgroup 2’ to an A, of type (2A, 3A, 5A). Now the 22-group 
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extends to just 8 groups A, of type (2A, 3A, 5A) (since its normalizer is 
contained in A,*). But the centralizer of our first A, has order 10, so every 
U,(5) has nontrivial centralizer. As U,(5) is contained uniquely in 2. HS:2, 
it follows that there is a unique class of U,(5) in HN, and it has normalizer 
(DIOX U,(5)).2=N(5A). 

5.9. U,(8) 

The group U,(8) may be constructed by taking a group 3 x L,(8), and 
extending the subgroup 3 x 23 : 7 to 2 3 +6:21. Now there is a unique class of 
3 x L,(8), and they have normalizer 3 x L,(8):3. Furthermore, the nor- 
malizer of the relevant 23-group in HN is 23.22.26.(3x L,(2)), in which 
there is a unique way of making the required extension. Hence there is a 
unique class of U,(8) in HN, with normalizer U,(8) :3. 

Remark. The existence of U3(8):3 in HN was originally proved in [3] 
by a related construction. An alternative proof, using the existence of the 
Fischer-Griess Monster and a result of Thompson, can be obtained by the 
method used in [4]. 

6. CONCLUSION 

Collecting together the results of Sections 3, 4, and 5, we see that any 
proper subgroup of HN (resp. HN : 2) is contained in one of the groups 
listed in Theorem 1 (resp. Theorem 2). Conversely, it is easy to see that 
none of these groups is contained in any other, thus concluding the proof 
of the theorems. 
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