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Abstract

Recently N.E. Cho, O.S. Kwon and H.M. Srivastava [Nak Eun Cho, Oh Sang Kwon, H.M. Srivastava, Inclusion relationships
and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal.
Appl. 292 (2004) 470–483] have introduced the class Sλ

a,c(η;p;h) of multivalent analytic functions and have given a number of
results. This class has been defined by means of a special linear operator associated with the Gaussian hypergeometric function.
In this paper we have extended some of the previous results and have given other properties of this class. We have made use of
differential subordinations and properties of convolution in geometric function theory.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ap denote the class of functions of the form

f (z) = zp +
∞∑

k=1

ak+pzk+p
(
p ∈ N := {1,2,3, . . .}), (1)

which are analytic and p-valent in the open unit disc U = {z: |z| < 1} on the complex plane C. Let S∗, K denote
the subclasses of A1 consisting of starlike and convex functions, respectively. If f and g are analytic in U , we say
that f is subordinate to g in U , written f ≺ g, if there exists the Schwarz function ω, analytic in U with ω(0) = 0
and |ω(z)| < 1 in U such that f (z) = g(ω(z)) (z ∈ U). If g is univalent and g(0) = f (0), then f (U) ⊂ g(U) follows
f ≺ g.

For f (z) = ∑∞
k=0 akz

k and g(z) = ∑∞
k=0 bkz

k the Hadamard product (or convolution) is defined by (f ∗ g)(z) =∑∞
k=0 akbkz

k. For a ∈ R, c ∈ R \ Z−
0 , where Z−

0 := {. . . ,−2,−1,0} H. Saitoh introduced in [6] a linear operator

Lp(a, c) : Ap →Ap
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defined by

Lp(a, c)f (z) := φp(a, c; z) ∗ f (z) (z ∈ U ; f ∈Ap) (2)

where

φp(a, c; z) :=
∞∑

k=0

(a)k

(c)k
zk+p (z ∈ U), (3)

and (x)k is the Pochhammer symbol defined by

(x)k =
{

1 for k = 0,

x(x + 1) · · · (x + k − 1) for k ∈ N = {1,2,3, . . .}.
The operator Lp(a, c) is an extension of the Carlson–Shaffer operator (see [1]). In [2] Cho, Kwon and Srivastava
introduced the following family of linear operators Iλ

p(a, c) analogous to Lp(a, c):

Iλ
p(a, c) : Ap → Ap,

Iλ
p(a, c)f (z) := φ†

p(a, c; z) ∗ f (z)
(
a, c ∈ R \ Z−

0 , λ > −p, z ∈ U ; f ∈Ap

)
, (4)

where φ
†
p(a, c; z) is the function defined in terms of the Hadamard product (or convolution) by the following condition

φp(a, c; z) ∗ φ†
p(a, c; z) = zp

(1 − z)λ+p
, (5)

where φp is given by (3). Now we find the explicit form of the function φ
†
p(a, c; z). It is well known that for λ+p > 0

z

(1 − z)λ+p
=

∞∑
k=0

(λ + p)k

k! zk+1 (z ∈ U).

Thus

zp

(1 − z)λ+p
=

∞∑
k=0

(λ + p)k

k! zk+p. (6)

Putting (3) and (6) in (5) we get
∞∑

k=0

(a)k

(c)k
zk+p ∗ φ†

p(a, c; z) =
∞∑

k=0

(λ + p)k

k! zk+p.

Therefore the function φ
†
p(a, c; z) has the following form

φ†
p(a, c; z) =

∞∑
k=0

(λ + p)k(c)k

k!(a)k
zk+p (z ∈ U). (7)

The authors of [2] have obtained the following properties of the operator Iλ
p(a, c):

I1
p(p + 1,1)f (z) = f (z) and I1

p(p,1)f (z) = zf ′(z)
p

, (8)

z
(
Iλ

p(a + 1, c)f (z)
)′ = aIλ

p(a, c)f (z) − (a − p)Iλ
p(a + 1, c)f (z), (9)

and

z
(
Iλ

p(a, c)f (z)
)′ = (λ + p)Iλ+1

p (a, c)f (z) − λIλ
p(a, c)f (z). (10)

Let N be the class of functions h with the normalization h(0) = 1, which are convex and univalent in U and satisfy the
condition Re[h(z)] > 0 for z ∈ U . In [2], by using the operator Iλ

p(a, c) for 0 � η < p, p ∈ N , h ∈ N , the following
subclasses of Ap have been defined:
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Sλ
a,c(η;p;h) =

{
f ∈Ap:

1

p − η

(
z(Iλ

p(a, c)f (z))′

Iλ
p(a, c)f (z)

− η

)
≺ h(z), z ∈ U

}
,

Sλ
a,c(η;p;A,B) := Sλ

a,c

(
η;p; 1 + Az

1 + Bz

)
(−1 � B < A � 1)

and by applying the properties (8)–(10) many of interesting results have been proved. In particular the several inclusion
properties of the classes Sλ

a,c(η;p;h) were investigated. In [2] the authors presented a long list of papers connected
with the operators (2) and (4) and classes of functions defined by means of those operators. Thus we refer the reader
to [2]. In this paper we continue and extend the consideration of the paper [2]. We recall here the fact that, Dziok and
Srivastava [3] have introduced and considered more general the Dziok–Srivastava operator

Hp(a1, a2, . . . , aq; c1, c2, . . . , cs; z) :Ap →Ap

such that

Iλ
p(a, c)f (z) = Hp(λ + p, c, a; z)f (z).

In [3] Dziok and Srivastava, by using the operator Hp , have introduced and deeply examined a class of p-valent
functions with negative coefficients. This class and the class Sλ

a,c(η;p;A,B) are equal for suitable chosen parameters.

2. Inclusion properties

The following lemmas will be used in our investigation.

Lemma 1. Let a, a1, a2 ∈ R \ Z−
0 , c, c1, c2 ∈ R \ Z−

0 . Then for z ∈ U

φ†
p(a, c1; z) = φ†

p(a, c2; z) ∗ φp(c1, c2; z) (11)

and

φ†
p(a2, c; z) = φ†

p(a1, c; z) ∗ φp(a1, a2; z). (12)

Proof. From (7) we have

φ†
p(a, c1; z) =

∞∑
k=0

(λ + p)k(c1)k

k!(a)k
zk+p =

∞∑
k=0

(λ + p)k(c2)k

k!(a)k

(c1)k

(c2)k
zk+p = φ†

p(a, c2; z) ∗ φp(c1, c2; z)

and the condition (11) is proved. The proof of (12) is similar to that of (11) and the details involved may be omitted.
The proof of Lemma 1 is thus completed. �
Lemma 2. (See [5, p. 54].) If f ∈K, g ∈ S∗, then for each analytic function h

(f ∗ hg)(U)

(f ∗ g)(U)
⊆ coh(U),

where coh(U) denotes the closed convex hull of h(U).

Lemma 3. (See [5].) Let 0 < α � β. If β � 2 or α + β � 3, then the function

φ1(α,β; z) =
∞∑

k=0

(α)k

(β)k
zk+1 (z ∈ U)

belongs to the class K of convex functions.

Remark 1. Lemma 3 is a special case of Theorems 2.12 or 2.13 contained in [5].

From (4) and (7) we directly obtain the following useful conclusion.
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Corollary 1. If f (z) = zp + ap+1z
p+1 + · · · , then the Cho–Kwon–Srivastava operator has the form

Iλ
p(a, c)f (z) =

∞∑
k=0

(λ + p)k(c)k

k!(a)k
ap+kz

p+k (z ∈ U)
(
a ∈ R \ Z−

0 , c ∈ R \ Z−
0 , λ > −p

)
.

Let α,β ∈ C, γ ∈ C \ Z−
0 . Then the function

2F1(α,β, γ ; z) =
∞∑

k=0

(α)k(β)k

k!(γ )k
zk (z ∈ U),

satisfies the hypergeometric differential equation

z(1 − z)w′′(z) + [
γ − (α + β + 1)z

]
w′(z) − αβw(z) = 0

and is called hypergeometric function. Thus we can rewrite Corollary 1 in the following form.

Corollary 2. If f (z) = zp + ap+1z
p+1 + · · · , then

Iλ
p(a, c)f (z) = [

zp · 2F1(λ + p, c, a; z)] ∗ f (z) (z ∈ U)
(
a ∈ R \ Z−

0 , c ∈ R \ Z−
0 , λ > −p

)
.

Theorem 1. Let 0 < a1 � a2, c ∈ R \ Z−
0 , h ∈N and

Re
[
h(z)

]
> 1 − 1

p − η
(z ∈ U). (13)

If a2 � 2 or a1 + a2 � 3, then

Sλ
a1,c

(η;p;h) ⊂ Sλ
a2,c

(η;p;h).

Proof. Let f ∈ Sλ
a1,c

(η;p;h). Then from the definition of the class Sλ
a,c(η;p;h) we have

1

p − η

(
z(Iλ

p(a1, c)f (z))′

Iλ
p(a1, c)f (z)

− η

)
= h

(
ω(z)

)
where h is convex univalent in U with Re h(z) > 0 and |ω(z)| < 1 in U with ω(0) = 0 = h(0) − 1. Therefore

z(Iλ
p(a1, c)f (z))′

Iλ
p(a1, c)f (z)

= (p − η)h
(
ω(z)

) + η, (14)

and

z[z1−p(Iλ
p(a1, c)f (z))]′

z1−pIλ
p(a1, c)f (z)

= (p − η)h
(
ω(z)

) + η − p + 1 ≺ 1 + z

1 − z
. (15)

Applying the definition of Iλ
p(a, c) and (12) and the properties of convolution we obtain

z(Iλ
p(a2, c)f (z))′

Iλ
p(a2, c)f (z)

= z(φ
†
p(a2, c; z) ∗ f (z))′

φ
†
p(a2, c; z) ∗ f (z)

= z(φ
†
p(a1, c; z) ∗ φp(a1, a2; z) ∗ f (z))′

φ
†
p(a1, c; z) ∗ φp(a1, a2; z) ∗ f (z)

= φp(a1, a2; z) ∗ z(φ
†
p(a1, c; z) ∗ f (z))′

φp(a1, a2; z) ∗ φ
†
p(a1, c; z) ∗ f (z)

= φp(a1, a2; z) ∗ z(Iλ
p(a1, c)f (z))′

φp(a1, a2; z) ∗ Iλ
p(a1, c)f (z)

.

Therefore by using (14) we obtain

1

p − η

(
z(Iλ

p(a2, c)f (z))′

Iλ
p(a2, c)f (z)

− η

)
= 1

p − η

(
φp(a1, a2; z) ∗ z(Iλ

p(a1, c)f (z))′

φp(a1, a2; z) ∗ Iλ
p(a1, c)f (z)

− η

)

= 1

p − η

(
φp(a1, a2; z) ∗ [(p − η)h(ω(z)) + η]Iλ

p(a1, c)f (z)

φ (a , a ; z) ∗ Iλ(a , c)f (z)
− η

)
. (16)
p 1 2 p 1
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It follows from Lemma 3 that z1−pφp(a1, a2; z) ∈ K and it follows from (15) that z1−pIλ
p(a1, c)f (z) ∈ S∗. Let us put

s(ω(z)) := (p − η)h(ω(z)) + η. Then applying Lemma 2 we get

{[z1−pφp(a1, a2; z)] ∗ s(ω)z1−pIλ
p(a1, c)f }(U)

{[z1−pφp(a1, a2; z)] ∗ z1−pIλ
p(a1, c)f }(U)

⊆ co s
(
ω(U)

)
because s is convex univalent function. Therefore we conclude that

1

p − η

( {φp(a1, a2; z) ∗ s(ω)Iλ
p(a1, c)f }(U)

{φp(a1, a2; z) ∗ Iλ
p(a1, c)f }(U)

− η

)
⊆ h(U),

and hence that (16) is subordinate to the convex univalent function h, and finally that f ∈ Sλ
a2,c

(η;p;h). The proof of
Theorem 1 is completed. �

Theorem 1 is a generalization of the result [2] of the form: If a � p and λ > 0, then Sλ
a,c(η;p;h) ⊂ Sλ

a+1,c(η;p;h)

(h ∈ N ).

Theorem 2. Let a ∈ R, 0 < c1 � c2, h ∈N and let h satisfies (13). If c2 � 2 or c1 + c2 � 3, then

Sλ
a,c2

(η;p;h) ⊂ Sλ
a,c1

(η;p;h).

Proof. Let f ∈ Sλ
a,c2

(η;p;h). In the same way as we have obtained (15) we get

z[z1−p(Iλ
p(a, c2)f (z))]′

z1−pIλ
p(a, c2)f (z)

= (p − η)h
(
ω(z)

) + η − p + 1 ≺ 1 + z

1 − z
. (17)

Using (11) and the same arguments as in the proof of Theorem 1 we obtain

z(Iλ
p(a, c1)f (z))′

Iλ
p(a, c1)f (z)

= z(φ
†
p(a, c1; z) ∗ f (z))′

φ
†
p(a, c1; z) ∗ f (z)

= z(φ
†
p(a, c2; z) ∗ φp(c1, c2; z) ∗ f (z))′

φ
†
p(a, c2; z) ∗ φp(c1, c2; z) ∗ f (z)

= φp(c1, c2; z) ∗ z(φ
†
p(a, c2; z) ∗ f (z))′

φp(c1, c2; z) ∗ φ
†
p(a, c2; z) ∗ f (z)

= φp(c1, c2; z) ∗ z(Iλ
p(a, c2)f (z))′

φp(c1, c2; z) ∗ Iλ
p(a, c2)f (z)

.

Therefore we get

1

p − η

(
z(Iλ

p(a, c1)f (z))′

Iλ
p(a, c1)f (z)

− η

)
= 1

p − η

(
φp(c1, c2; z) ∗ z(Iλ

p(a, c2)f (z))′

φp(c1, c2; z) ∗ Iλ
p(a, c2)f (z)

− η

)

= 1

p − η

(
φp(c1, c2; z) ∗ [(p − η)h(ω(z)) + η]Iλ

p(a, c2)f (z)

φp(c1, c2; z) ∗ Iλ
p(a, c2)f (z)

− η

)
. (18)

By Lemma 3 we have z1−pφp(c1, c2; z) ∈ K and by (17) we have z1−pIλ
p(a, c2)f (z) ∈ S∗. Hence, by virtue of

Lemma 2, we conclude that (18) is subordinate to h and consequently f ∈ Sλ
a,c1

(η;p;h). We thus complete the proof
of Theorem 2. �
Remark 2. In [2] there are no results concerning inclusion relationships between the classes Sλ

a,c(η;p;h) with respect
to the parameter c. The above theorem is thus the essential supplement of the results of [2].

Corollary 3. Let 0 < a1 � a2 and a2 � min{2,3 − a1} and let 0 < c1 � c2 and c2 � min{2,3 − c1}. Then for 1−A
1−B

>

1 − 1
p−η

we have

Sλ
a1,c2

(η;p;A,B) ⊂ Sλ
a1,c1

(η;p;A,B) ⊂ Sλ
a2,c1

(η;p;A,B).

Proof. Take h(z) = 1+Az
1+Bz

, −1 � B < A � 1. Then we have h ∈ N and Re[h(z)] > 1 − 1
p−η

, z ∈ U . Thus applying
Theorems 1 and 2 we obtain the desired result. �
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3. Coefficients estimates

Theorem 3. Let f (z) = zp + ap+1z
p+1 + ap+2z

p+2 + · · · . If f ∈ Sλ
a,c(η;p;h) and the function h satisfy (13), then

|ap+k| � (k + 1)!(a)k

(λ + p)k(c)k
, k = 0,1,2, . . . .

Proof. If we put a1 = a in the formula (15), then we have

z1−pIλ
p(a, c)f (z) ∈ S∗

because f ∈ Sλ
a,c(η;p;h) and Re[h(z)] > 1 − 1

p−η
. Therefore by Corollary 1

∞∑
k=0

(λ + p)k(c)k

k!(a)k
ap+kz

k+1 ∈ S∗,

and by using the estimation of (k + 1)th coefficient of starlike function we obtain∣∣∣∣ (λ + p)k(c)k

k!(a)k
ap+k

∣∣∣∣ � k + 1, k = 0,1, . . . ,

which ends the proof. �
Remark 3. If h(z) = 1

p−η
[ 2z

1−z
+p−η], then the above estimates of coefficients become sharp. The extremal function

is

f0(z) =
∞∑

k=0

(k + 1)!(a)k

(λ + p)k(c)k
zk+p.

Then we have

1

p − η

[
z(Iλ

p(a, c)f0(z))
′

Iλ
p(a, c)f0(z)

− η

]
= 1

p − η

[
z[∑∞

k=0(k + 1)zp+k]′∑∞
k=0(k + 1)zp+k

− η

]
= 1

p − η

[
2z

1 − z
+ p − η

]
.

4. Structural formula

Theorem 4. A function f belongs to the class Sλ
a,c(η;p;h) if and only if there exists a Schwarz function ω(z) such

that

f (z) =
[ ∞∑

k=0

k!(a)k

(λ + p)k(c)k
zk+p

]
∗

[
zp exp

z∫
0

(p − η)[h(ω(t)) − 1]
t

dt

]
.

Proof. Let f ∈ Sλ
a,c(η;p;h). Then from the definition of the class Sλ

a,c(η;p;h) we have

1

p − η

(
z(Iλ

p(a, c)f (z))′

Iλ
p(a, c)f (z)

− η

)
= h

(
ω(z)

)
,

where h ∈N and |ω(z)| < 1 in U with ω(0) = 0 = h(0) − 1. Therefore

(Iλ
p(a, c)f (z))′

Iλ
p(a, c)f (z)

− p

z
= (p − η)h(ω(z)) − (p − η)

z
.

Thus

log
Iλ

p(a, c)f (z)

zp
=

z∫
(p − η)[h(ω(t)) − 1]

t
dt.
0
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Therefore from (4) and (7) we obtain

f (z) ∗
∞∑

k=0

(λ + p)k(c)k

k!(a)k
zp+k = zp exp

z∫
0

(p − η)[h(ω(t)) − 1]
t

dt

and our assertion follows immediately. �
Corollary 4. A function f belongs to the class Sλ

a,c(η;p;A,B) if and only if there exists a Schwarz function ω(z)

such that

f (z) =
[ ∞∑

k=0

k!(a)k

(λ + p)k(c)k
zk+p

]
∗

[
zp exp

z∫
0

(p − η)(A − B)ω(t)

t (1 + Bω(t))
dt

]
.

Remark 4. If we apply the previous theorem to the functions

h(z) = 1 + [2(p − η)−1 − 1]z
1 − z

, ω(z) = z,

then from the structural formula we obtain the function f0 (compare this with Remark 3).

Lemma 4. Let H be starlike in U , with H(0) = 0 and a 
= 0. If P(z) = a + anz
n + · · · is analytic in U and satisfies

zP ′(z)
P (z)

≺ H(z) (z ∈ U),

then

P(z) ≺ q(z) = a exp

[
n−1

z∫
0

H(t)t−1 dt

]
(z ∈ U),

and q is the best dominant in the sense that if P(z) ≺ q1(z), then q(z) ≺ q1(z).

Miller and Mocanu proved Lemma 4 in [4, p. 76] taking advantage of a more general result due to Suffridge [7].

Theorem 5. If f ∈ Sλ
a,c(η;p;h), then

Iλ
p(a, c)f (z)

zp
≺ exp

z∫
0

(p − η)(h(t) − 1)

t
dt (z ∈ U).

Proof. Let P(z) = z−pIλ
p(a, c)f (z) = 1 + a1z + · · · . Then from the definition of the class Sλ

a,c(η;p;h) we obtain

zP ′(z)
P (z)

≺ H(z) = (p − η)
(
h(z) − 1

)
(z ∈ U).

The function H(z) = (p − η)(h(z) − 1) is starlike because h(z) is convex univalent function. Applying Lemma 4 we
conclude that

P(z) ≺ exp

z∫
0

H(t)

t
dt. �

Corollary 5. If f ∈ Sλ
a,c(η;p;h) and f (z) = zp + ap+1z

p+1 + · · · , then

∞∑
k=0

(λ + p)k(c)k

k!(a)k
ap+kz

k ≺ exp

z∫
0

(p − η)(h(t) − 1)

t
dt (z ∈ U).
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Proof. It follows immediately from Corollary 1 and Theorem 5. �
Corollary 6. If f ∈ Sλ

a,c(η;p;A,B) and f (z) = zp + ap+1z
p+1 + · · · , then

Iλ
p(a, c)f (z)

zp
≺ (1 + Bz)

(A−B)(p−η)
B (z ∈ U).

5. Convolutions with convex functions

Theorem 6. Let λ � 0, a � p, φ ∈ K, h ∈N and let h satisfies (13). Then

f ∈ Sλ
a,c(η;p;h) ⇒ [

zp−1φ
] ∗ f ∈ Sλ

a,c(η;p;h).

Proof. Let f ∈ Sλ
a,c(η;p;h) and let φ ∈ K. By applying the properties of the convolution and (14) we have

z(Iλ
p(a, c)((zp−1φ) ∗ f )(z))′

Iλ
p(a, c)((zp−1φ) ∗ f )(z)

= z(φ
†
p(a, c; z) ∗ (zp−1φ(z)) ∗ f (z))′

φ
†
p(a, c; z) ∗ (zp−1φ(z)) ∗ f (z)

= (zp−1φ(z)) ∗ z(φ
†
p(a, c; z) ∗ f (z))′

(zp−1φ(z)) ∗ φ
†
p(a, c; z) ∗ f (z)

= (zp−1φ(z)) ∗ z(Iλ
p(a, c)f (z))′

(zp−1φ(z)) ∗ zIλ
p(a, c)f (z)

= (zp−1φ(z)) ∗ z[(p − η)h(ω(z)) + η]Iλ
p(a, c)f (z)

(zp−1φ(z)) ∗ zIλ
p(a, c)f (z)

. (19)

Let us put

F(z) := 1

p − η

(
z(Iλ

p(a, c)((zp−1φ) ∗ f )(z))′

Iλ
p(a, c)((zp−1φ) ∗ f )(z)

− η

)
.

Then, by using (19), we obtain

F(z) = 1

p − η

(
φ(z) ∗ [(p − η)h(ω(z)) + η]z1−pIλ

p(a, c)f (z)

φ(z) ∗ z1−pIλ
p(a, c)f (z)

− η

)
.

From (15) it follows that z1−pIλ
p(a, c)f (z) ∈ S∗, hence, by applying the arguments similar to those used in the proof

of Theorem 1, we conclude that F ≺ h and φ ∗ f ∈ Sλ
a,c(η;p;h). This completes the proof. �
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