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Abstract

For aj , bj � 1, j = 1,2, . . . , d, we prove that the operator Kf (x) = ∫
R

d+
k(x, y)f (y) dy maps Lp(Rd+)

into itself for p = 1 + 1
r , where r = a1

b1
= · · · = ad

bd
, and k(x, y) = ϕ(x, y)eig(x,y), ϕ(x, y) satisfies (1.2)

(e.g. ϕ(x, y) = |x − y|iτ , τ real) and the phase g(x, y) = xa · yb. We study operators with more general
phases and for these operators we require that aj , bj > 1, j = 1,2, . . . , d, or al = bl � 1 for some l ∈
{1,2, . . . , d}.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Oscillatory integrals; Lp mappings

1. Introduction

We consider oscillatory integral operators with kernels defined for x, y ∈ R
d+ = [0,∞)×· · ·×

[0,∞), d-times, and the kernels take the form

k(x, y) = ϕ(x, y) exp
(
ig(x, y)

)
, (1.1)

g a real-valued phase function and where ϕ(x, y) for |x − y| > 0 satisfies∣∣∂α
x ∂β

y ϕ(x, y)
∣∣ � Cαβ |x − y|−|α|−|β|, ∀α,β ∈ N

d ,N = {0,1, . . .}. (1.2)
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A typical g(x, y) is xa · yb = x
a1
1 y

b1
1 + · · · + x

ad

d y
bd

d for aj , bj � 1, j = 1,2, . . . , d , and
a, b ∈ R

d . For s ∈ R we set s̄ = (s, s, . . . , s) ∈ R
d and write a � b if aj � bj for all j =

1,2, . . . , d. And so in this paper a, b � 1̄.

The operator we study is given by

Kf (x) =
∫

R
d+

k(x, y)f (y) dy, x ∈ R
d+. (1.3)

Define for μ0(t) ∈ C∞(R+),μ0(t) = 1 for 0 � t � 1, μ0(t) = 0 for t � 2, μ0(t) + μ1(t) = 1
and 0 � μ0(t),μ1(t) for all t � 0.

And we define the phase functions as follows

Φ∗
(
xa, yb

) = g(x, y) = xa · yb + μ1̄(x)μ1̄(y)Φ
(
xa, yb

)
, (1.4)

with μ1̄(x) = μ1(x1) · · ·μ1(xd) and where Φ(x,y) satisfies (2.1) below. Examples of Φ’s are

log(
∑d

j=1 xj + yj ) or (
∑d

j=1 xj + yj )
l , 0 � l � 1. We first suppose that a � b � 1̄ and then by

duality we settle the cases where b � a � 1̄. These results appear in Proposition 4.2, Corollar-
ies 4.3 and 4.4.

The referee points out that the mixed Hessian, namely det( ∂2

∂xi
∂yj

g(x, y)) for the phase

g(x, y) = xa · yb (Φ = 0) is simply a monomial in the variables xi, yj . However, in Propo-
sition 5.1 of [7] (in 2-d), we showed in case r = a1

b1
= a2

b2
, a, b � 1̄, g(x, y) = xa · yb and

|ϕ(x, y)| � C, then these operators map Lp into itself if and only if p = 1 + 1
r
. While in the

paper [6], with again the phase xa · yb , but this time no restriction on r , we ended up with
weighted estimates. And the proofs in [6] for the most part, were quite different than the ones
in [7] (or even here).

The size of the kernels here is essentially ϕ(x, y) = |x − y|iτ , τ -real. In order to have
any success in employing Hörmander type estimates (say in 2-d) then |ϕ(x, y)| � C

|x−y|2 and

|ϕ(x, y) − ϕ(x′, y)| and |ϕ(x, y) − ϕ(x, y′)| must satisfy Hörmander type conditions. See for
example Theorem 2.2 in [7].

In this paper, we prove an Lp mapping problem for a class of oscillatory integrals. The Fourier
transform is included among this class of operators. Here we take r = a1

b1
= · · · = ad

bd
and p =

1 + 1
r
, and ϕ satisfies (1.2). And the case of the Fourier transform is when r = al = bl = 1,

l ∈ {1,2, . . . , d}. In Corollary 4.3, we show that these more general operators map Lp(Rd+) into
itself for p = 1 + 1

r
, r � 1 where r is defined above and either aj , bj > 1 for all j ∈ {1,2, . . . , d}

or al = bl � 1 for some l ∈ {1,2, . . . , d}. In Proposition 4.2 we obtain the (p,p) result for
p = 1 + 1

r
with g(x, y) = xa · yb and a, b � 1̄. This result appears in [3] for d = 1 and in [7] for

d = 2.
The authors [4] have settled the cases where a = b = 1̄. In [3] and [7] we obtained results for

ϕ’s satisfying weaker estimates than (1.2) in case a, b > 1̄ and for ϕ(x, y) = |x − y|iτ , τ ∈ R,
in case a or b = 1̄ in dimensions d = 1, d = 2, respectively. In [1] the Lp result for ϕ satisfying
(1.2) and Φ(x,y) ≡ 0 was settled in dimension d = 1 in case a or b = 1 (i.e. a, b � 1).

We note that for x ∈ R
d , x = (x1, x2, . . . , xd) and for the most part x′ = (x1, . . . , xd−1) ∈

R
d−1, and similarly for a, b. We employ the usual convention that xα = x

α1
1 · · ·xαd

d for α ∈ R
d .

We set h(x
1
b ) = h(x

1
b1 , . . . , x

1
bd ). Also if m,n ∈ R

d we write m · n = m1n1 + · · · + mdnd and
1 d
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m · n · b = ∑d
j=1 mjnjbj and so on. We sometimes use �ρ in place of ρ and we use 1̄ in case

ρ1 = · · · = ρd = 1.

We use positive constants, denoted by C, in the usual way, indexed if needed.

2. Preliminary estimates

We begin by requiring that Φ(x,y) is real-valued and for x, y � 1̄, that

∣∣∂α
x ∂β

y Φ(x, y)
∣∣ � Cαβ, ∀α,β ∈ N

d, and
d∑

j=1

(αj + βj ) � 1. (2.1)

We need that eiΦ(x,y) ∈ S0
0,0.

However, in this section the results are for operators where the phase g(x, y) = xa · yb and
one of the variables xj or yl has compact support.

Note if 0 � xj � 1 or 0 � yl � 1 for any j, l ∈ {1,2, . . . , d} then by (1.4) g(x, y) = xa · yb.

However, if 1 < x1, . . . , xd, y1, . . . , yd < 2 then μ1̄(x)μ1̄(y) can be positive and if Φ(x,y) 	= 0,

then according to (1.4) we get a more general phase function.
We are led to consider the following operators

K �ρ �ηf (x) = μ �ρ(x)

∫
R

d+

k(x, y)μ�η(y)f (y) dy (2.2)

and μ �ρ(x) = μρ1(x1) · · ·μρd
(xd) with ρ1, . . . , ρd ∈ {0,1}, similarly for μ�η(y).

Also notice that (1 − μ1̄(2y)μ1̄(2x)) vanishes if x, y � 1̄ and so for the operator
K �ρ �η((1 − μ1̄(2y)μ1̄(2x))f )(x) the phase reduces to g(x, y) = xa · yb.

We thus prove for the operators in (2.2) where g(x, y) = xa · yb and �ρ or �η contain a zero
coordinate with r = a1

b1
= · · · = ad

bd
so that{

(a) ‖K �ρ �ηf ‖p � C‖f ‖p, for p = 1 + 1
r
, r � 1, and

(b) ‖K �ρ �ηf ‖2 � C‖f ‖2, in case r = 1 (p = 2).
(2.3)

This extends to d-dimensions some of the 1- and 2-dimensional results from [3] and [7],
respectively.

We employ induction on the dimension. Take k(x′, y′) = ϕ(x′, y′)ei(xa ·yb−x
ad
d y

bd
d ) and assume{

r = a1
b1

= · · · = ad−1
bd−1

, a′, b′ � 1, ϕ(x′, y′) satisfies (1.2) then for p = 1 + 1
r

we suppose that
∫

R
d−1+

| ∫
R

d−1+
k(x′, y′)f (y′) dy′|p dx′ � C

∫
R

d−1+
|f (y′)|p dy′. (2.4)

Remark 2.1. In (2.4) a more general assumption is needed, i.e. x′ is any (d − 1)-dimensional
variable and r = ai

bi
= aj

bj
� 1 over the relevant i, j and k(x′, y′) is as in (2.4) with the more

general x′, y′. So we assume all of this and denote it as (2.4).

We state the first result

Proposition 2.2. If (2.4) holds, g(x, y) = xa · yb, a, b � 1̄, ϕ(x, y) satisfies (1.2) and �ρ or �η
contain a zero coordinate, i.e. ρi or ηj = 0 for some i, j ∈ {1,2, . . . , d}, then (2.3) holds.
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Proposition 2.3. Let k(x, y) be as in Proposition 2.2, (2.4) holds, and suppose ϕ(x, y) does not
depend upon one of the variables x1, y1, . . . , xd, yd, and ϕ(x, y) satisfies (1.2), then (2.3) holds.

Proof. It is enough to consider the cases where ϕ(x, y) does not depend upon xd or yd . See
Remark 2.1.

In case ϕ(x, y) does not depend upon xd, by Theorem 3.1 of [3] (note we employ [1] in case
bd = 1) we get that

∞∫
0

∣∣∣∣∣
∞∫

0

eix
ad
d y

bd
d H(x′, yd) dyd

∣∣∣∣∣
p

dxd � C

∞∫
0

∣∣H(x′, yd)
∣∣p dyd,

where

H(x′, yd) =
∫

R
d−1+

ei(xa ·yb−x
ad
d y

bd
d )ϕ(x′, y)f (y) dy′.

Therefore we get that

∫
R

d−1+

( ∞∫
0

|Kf |p dxd

)
dx′ � C

∞∫
0

( ∫
R

d−1+

∣∣H(x′, yd)
∣∣p dx′

)
dyd � C

∫
R

d+

∣∣f (y)
∣∣p dy,

and the last inequality follows from the induction assumption (2.4) (note Remark 2.1).
Suppose ϕ(x, y) does not depend upon yd , then by the induction assumption (2.4) we get that

∫
R

d−1+

∣∣∣∣∣
∫

R
d−1+

ei(xa ·yb−x
ad
d y

bd
d )ϕ(x, y′)

( ∞∫
0

eix
ad
d y

bd
d f (y) dyd

)
dy′

∣∣∣∣∣
p

dx′

� C

∫
R

d−1+

∣∣∣∣∣
∞∫

0

eix
ad
d y

bd
d f (y) dyd

∣∣∣∣∣
p

dy′,

and the argument is now completed as above. �
Proposition 2.4. Suppose that ϕ(x, y) satisfies (1.2) and a, b � 1̄. Suppose

(i) the support of ϕ(x, y) is contained in the set {|x − y| � 1}, or
(ii) g(x, y) = xa · yb and in (1.1) we replace ϕ(x, y) by μ0(xl)ϕ(x, y) or by μ0(yj )ϕ(x, y) for

any l, j ∈ {1,2, . . . , d}.

If (2.4) holds, then (2.3) holds.

Proof. (i) Follows from Schur’s lemma.
Before we begin to show (ii) we consider the special case where

k(x, y) = eixa ·yb

μ0(xd)μ0(yd)ϕ(x, y).

By Hölder’s inequality applied to the inner integral we get that
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I (x′) =
∞∫

0

μ0(xd)p

∣∣∣∣∣
∞∫

0

eix
ad
d y

bd
d μ0(yd)H(x, yd) dyd

∣∣∣∣∣
p

dxd

� C

∞∫
0

μ0(xd)p

( ∞∫
0

μ0(yd)
∣∣H(x,yd)

∣∣p dyd

)
dxd,

H(x, yd) =
∫

R
d−1+

e(ixa ·yb−x
ad
d y

bd
d )ϕ(x, y)f (y) dy′.

As in Proposition 2.3 we employ the induction assumption (2.4) on the dimension with
‖I (x′)‖1 = ∫

R
d−1+

|I (x′)|dx′ (note Remark 2.1) to get

∥∥I (x′)
∥∥

1 � C

∞∫
0

μ0(xd)p

( ∞∫
0

μ0(yd)

( ∫
R

d−1+

∣∣H(x,yd)
∣∣p dx′

)
dyd

)
dxd � C‖f ‖p

p.

Now we are in a position to complete (ii). Thus it suffices to consider the case where k(x, y) =
eixa ·yb

μ0(xd)ϕ(x, y). Write

k(x, y) = eixa ·yb

ϕ(x, y)

[
μ0(xd)μ0

(
yd

4

)
+ μ0(xd)μ1

(
yd

4

)]
= k1(x, y) + k2(x, y).

Let Kj denote the corresponding operators for j = 1,2.

From the beginning of the argument we get that

‖K1f ‖p � C
∥∥I (x′)

∥∥ 1
p

1 � C‖f ‖p.

For the operator K2, we note by Taylor’s formula expanded about xd (0 � xd � 2) that

ϕ(x, y) =
s∑

j=0

∂
j
xd

ϕ(x′,0, y)
x

j
d

j ! + R(x, y),

where s is the smallest positive integer greater than (2d − 3, d − 2,1), d the dimension. Thus we
get that

∣∣R(x, y)
∣∣ � C

((ξ − yd)2 + |x′ − y′|2) s+1
2

for some ξ between 0 and xd , since ϕ(x, y) satisfies (1.2). The operator K2 is the sum of s + 1
terms that satisfies the conditions of Proposition 2.3, while∣∣∣∣∣k2(x, y) − eixa ·yb

μ0(xd)μ1

(
yd

4

) s∑
j=0

∂
j
xd

ϕ(x′,0, y)
x

j
d

j !

∣∣∣∣∣ � C
μ0(xd)μ1(

yd

4 )

(1 + y2
d + |x′ − y′|2) s+1

2

,

and this error term satisfies the conditions of Schur’s lemma, and now the proof is complete. �
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Remark 2.5. Thus Proposition 2.4(ii) implies Proposition 2.2, and in case r = a1
b1

= · · · = ad

bd
= 1

that (2.3)(a) reduces to (2.3)(b).

We are left with showing (2.3) for all the operators K �ρ �η in which we include the more general
phase function. For these operators, because of (1.4) and (2.1), this phase function g(x, y) is
more general than in [3] and [7].

3. An L2-estimate

Take 0 � γ0, γ1, γ0(x) + γ1(x) = 1, γ0 ∈ C∞(Rd), γ0(x) = 1 if |x| � 1 and γ0(x) = 0 if
|x| � 2. We consider a cutoff version of the kernel for the operator K1̄1̄ as defined in (2.2),

Sf (x) = μ1̄(x)

∫
R

d+

μ1̄(y)γ1(x − y)k(x, y)f (y) dy.

Also we consider the operators μ1̄(2x)K �ρ �η(μ1̄(2y)f ) (and denote their cutoff versions as
S �ρ �η) which were excluded in Section 2.

By Proposition 2.4(i) it follows that the operator
∫

R
d+ γ0(x − y)k(x, y)f (y) dy maps Lp(Rd+)

into itself for all 1 � p � ∞. Thus the mapping properties of the operators here are not altered
by inserting the cutoff function γ1 into each of the corresponding kernels.

We complete the proof of (2.3)(b), i.e. the case r = 1, and show

Theorem 3.1. Let a, b � 1̄, ϕ(x, y) satisfies (1.2) and Φ(x,y) satisfies (2.1), then for p = 2 we
get that{

(a) ‖K1̄1̄f ‖2 � C‖f ‖2, and

(b) ‖μ1̄(2x)K �ρ �η(μ1̄(2y)f )‖2 � C‖f ‖2.
(3.1)

In place of proving an L2-estimate for these operators, it is enough to show an L2-estimate
for related operators.

Define these operators as follows

Lf (x) = μ1̄

(
x

1
a
) ∫
R

d+

eiΦ∗(x,y)μ1̄

(
y

1
b
)
γ1

(
x

1
a − y

1
b
)
ϕ
(
x

1
a , y

1
b
)
f (y)dy

for S. And for the operators S �ρ �η set

L∗f (x) = μ1̄

(
2x

1
a
)
μ �ρ

(
x

1
a
) ∫
R

d+

eiΦ∗(x,y)μ1̄

(
2y

1
b
)
μ�η

(
y

1
b
)
γ1

(
x

1
a − y

1
b
)
ϕ
(
x

1
a , y

1
b
)
f (y)dy,

where Φ∗(x, y) is defined in (1.4).
We begin with the proposition on p. 282 of [8], which originally appeared in [2].

Theorem A. If Pf (x) = ∫
Rd λ(x, y)eix·yf (y) dy and λ(x, y) ∈ S0

0,0, then ‖Pf ‖2 � C‖f ‖2.
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Theorem 3.2. Let Φ(x,y) be real-valued and satisfy (2.1). If ϕ(x, y) satisfies (1.2), then for
a, b � 1̄ we get that{

(a) ‖Lf ‖2 � C‖μ1̄(y
1
b )f ‖2, and

(b) ‖L∗f ‖2 � C‖μ1̄(2y
1
b )f ‖2.

(3.2)

Proof. Take Φ∗∗(x, y) = μ1̄(x
1
a )μ1̄(y

1
b )Φ(x, y) and so

μ1̄

(
2x

1
a
)
μ1̄

(
2y

1
b
)
μ �ρ

(
x

1
a
)
μ�η

(
y

1
b
)
γ1

(
x

1
a − y

1
b
)
eiΦ∗∗(x,y)ϕ

(
x

1
a , y

1
b
) ∈ S0

0,0

since Φ(x,y) satisfies (2.1) and a, b � 1̄. The result (3.2) follows from Theorem A. �
We are in a position to prove Theorem 3.1 and some further estimates.

Proof of Theorem 3.1. Using the notation of (2.1) in [5], we set

Smnh(x) =
∫

R
d+

kmn

(
x

1
a , y

1
b
)
h(y)dy, and Kmnf (x) =

∫
R

d+

kmn(x, y)f (y) dy,

where kmn(x, y) = ψm(x)ψn(y)eig(x,y)ϕ(x, y)γ1(x − y) with ψn(x) = ψn1(x1) · · ·ψnd
(xd),

ψnl
(xl)=ψ(2−nl xl), l = 1,2, . . . , d , 0 � ψ ∈ C∞(R), suppψ(t) ⊂ [ 1

4 ,2] so that
∑∞

l=0 ψl(t) = 1
for t � 1

2 .

Thus, Sf (x) = ∑
m,n Kmnf (x). Note a similar decomposition can be given for each of the

operators S �ρ �η. Also note that the latter operators come into play only if Φ(x,y) 	= 0.

It follows from (3.2)(a) that with dv = x
1
a
−1̄ dx and du = y 1̄− 1

b dy⎧⎨
⎩

(a)
∫

R
d+ |Lh|2 dv � ‖Lh‖2

2 � C
∫

R
d+ χ(y � 1̄)|h(y)|2 dy � C

∫
R

d+ |h(y)|2 dy, and

(b)
∫

R
d+ |Smnh|2 dx � C

∫
R

d+ ψn(y
1
b )|h(y)|2 dy.

(3.3)

If we set h(y) = f (y
1
b )y

1
b
−1̄ we get (3.1)(a) from (3.3)(a) after changing variables (u = y

1
b and

v = x
1
a ).

While from (3.3)(b) because of ψm(x
1
a ) on the left side and ψn(y

1
b ) on the right side we get

that

2m·(a−1̄)

∫
R

d+

x
1
a
−1̄

∣∣Smnh(x)
∣∣2

dx � C2n·(1̄−b)

∫
R

d+

y 1̄− 1
b

∣∣h(y)
∣∣2

dy

and so we get with h(y) = f (y
1
b )y

1
b
−1̄ after changing variables that

‖Kmnf ‖2
2 � C2−(m·(a−1̄)+n·(b−1̄))‖f ‖2

2. (3.4)

Next set vb = xa and this time we get with ψm(v
b
a ) on the left side and dx = v

b
a
−1̄ dv that∫

R
d

∣∣∣∣
∫

R
d

kmn

(
v

b
a , y

)
f (y)dy

∣∣∣∣
2

v
b
a
−1̄ dv � C2−(m·(a−1̄)+n·(b−1̄))‖f ‖2

2

+ +
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or, with Umnf (x) = ∫
R

d+ kmn(x
b
a , y)f (y) dy (as in (2.11) of [5]) we get that

‖Umnf ‖2 � C2− 1
2 [m·a·(1̄− 1

b
)+n·(b−1̄)]‖f ‖2. (3.5)

Thus in case that bj > 1 for all j = 1,2, . . . , d we get that (3.5) sums. Note a similar estimate
holds for the operators Umn associated to S �ρ �η. �
4. Lp-estimates

In this section, we complete the proof of (2.3)(a), i.e. we obtain the (p,p) estimates of the
operator K in (1.3) for p = 1 + 1

r
in d-dimensions. We get the full result, i.e. with the phase

Φ(x,y) satisfying (2.1) if either aj and bj > 1 for all j ∈ {1,2, . . . , d}, or al = bl � 1 for some
l ∈ {1,2, . . . , d}. While for all a, b � 1̄, we get the (p,p) result for the operator K if Φ(x,y) ≡ 0.

This extends the 1-dimensional result in [3] to a class of operators with more general phase
functions.

Theorem 4.1. Let K �ρ �η be as in (2.2), r = a1
b1

= · · · = ad

bd
� 1 and g(x, y) as in (1.4). Let ϕ(x, y)

satisfy (1.2), a, b � 1̄, and p = 1 + 1
r
.⎧⎪⎪⎨

⎪⎪⎩
(a) If Φ(x,y) ≡ 0, then (i) ‖K1̄1̄f ‖p � C‖f ‖p.

(b) If instead Φ(x,y) 	= 0 and Φ(x,y) satisfies (2.1), and if aj and bj > 1,

∀j ∈ {1,2, . . . , d} or al = bl � 1 for some l ∈ {1,2, . . . , d}. Then,

(ii) ‖μ1̄(2x)K �ρ �η(μ1̄(2y)f )‖p � C‖f ‖p.

(4.1)

Proof. In case that al = bl � 1 for some l ∈ {1,2, . . . , d} then p = 2 and the result (b) (as well
as (a)) follows from (3.1).

Next to estimate the remaining cases, we begin with the result (a). This proof follows along
the lines of Theorem 1.1 of [5], which was done in 2-dimensions. Using the notation from [5],
we notice as in Lemmas 2.1 and 2.2 of [5], applied respectively to the operators Smn,Umn we get
if ajbj > 1 for all j ∈ {1,2, . . . , d} that{

(a) ‖Smnf ‖2 � Cdmn‖f ‖2, and

(b) ‖Umnf ‖2 � Cdmn‖f ‖2,
(4.2)

where for some constant δ > 0 (dependent only on the choice of k(x, y)), dmn = 2−δ((n+m)·1̄),
nj ,mj � 1 for j ∈ {1,2, . . . , d}.

To finish off this argument, it suffices to show (2.16) of [5], this applies to both cases (a) and
(b) (of the theorem), i.e.

ν
({

x:
∣∣Jmnf (x)

∣∣ > λ
})

� C

λ
‖f ‖1, (4.3)

Jmnf (x) = x1 · · ·xdUmnf (x) and for the measure ν(x) we take dν(x) = dx1···dxd

x2
1 ···x2

d

. We observe as

we did in (2.16) of [5], that Jmnf is supported in Im1 ×· · ·× Imd
where Iml

= [( 2ml

4 )r , (2 ·2ml )r ],
r = a1

b1
= · · · = ad

bd
.

To show (4.3) we note that λ < x1 · · ·xd |Umnf (x)| � Cψm(x
b
a )‖f ‖1x1 · · ·xd, and without

any loss we can suppose that ‖f ‖1 > 0. Thus, xd > λ
‖f ‖1(x1···xd−1)

and xd ∈ Imd
. Therefore

λ � (2 · 2md )r , otherwise ν(Eλ) = 0 with Eλ = {x: |Jmnf (x)| > λ}.
‖f ‖1(x1···xd−1)
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Hence we get that⎧⎪⎨
⎪⎩

(a)
∫ (2·2md )r

λ
‖f ‖1(x1 ···xd−1)

1
x2
d

dxd � C‖f ‖1(x1···xd−1)

λ
, if λ

‖f ‖1(x1···xd−1)
∈ Imd

, and

(b)
∫
Imd

1
x2
d

dxd � C
(2md )r

, if λ
‖f ‖1(x1···xd−1)

< ( 2md

4 )r .
(4.4)

Therefore we get that

ν(Eλ) �
∫

Im1

( ∫
Im2

· · ·
( (2·2md )r∫

λ
‖f ‖1(x1 ···xd−1)

1

x2
d

dxd

)
· · · dx2

x2
2

)
dx1

x2
1

+
∫

Im1

(
· · ·

( (2·2md−1 )r∫
λ( 4

2md
)r

‖f ‖1(x1···xd−2)

( ∫
Imd

dxd

x2
d

)
dxd−1

x2
d−1

)
· · ·

)
dx1

x2
1

= I + II.

Integrating out the d th iterate, using (4.4)(a), we get

I � C‖f ‖1

λ

∫
Im1

( ∫
Im2

· · ·
( ∫

Imd−1

x1 · · ·xd−1
dxd−1

x2
d−1

)
· · · dx2

x2
2

)
dx1

x2
1

� C‖f ‖1

λ
.

Next integrating out the d th and (d − 1)st iterate, using (4.4)(b), we get

II � C‖f ‖1

λ

(
2md

)r
(

1

2md

)r ∫
Im1

(
· · ·

( ∫
Imd−2

x1 · · ·xd−2
dxd−2

x2
d−2

)
· · ·

)
dx1

x2
1

� C‖f ‖1

λ
.

This completes our proof of (4.3).
By (4.2)(b) we get that

‖Jmnf ‖2
2,ν =

∫
R

d+

|Umnf |2 dx � Cd2
mn‖f ‖2

2, (4.5)

using (4.3) and (4.5) we get our result (a) by interpolation (just as we did for Theorem 1.1 in [5]).

To obtain the estimate for (b), we use (3.5), but this time dmn = 2− 1
2 [m·a·(1̄− 1

b
)+n·(b−1̄)] in

(4.2)(b). Thus these Umn estimates in (3.5) apply to the operators S �ρ �η and S as defined in Sec-
tion 3. The result follows by interpolation, but here we need that a � b > 1̄ in order for the
estimates to sum. This completes the proof. �

Now to complete the induction argument using (2.4) and Remark 2.1.

Proposition 4.2. Let r = a1
b1

= · · · = ad

bd
� 1 and a, b � 1̄. If ϕ(x, y) satisfies (1.2) with the phase

g(x, y) = xa · yb then for K in (1.3) we get that

‖Kf ‖p � C‖f ‖p, for p = 1 + 1

r
.

Proof. To begin the induction argument, we note the result is valid in dimension d = 1 for
a, b > 1 by [3] and in case a > 1 and b � 1 by [1]. In case a = b = 1̄ (then p = 2), the result
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is true in all dimensions by [4]. In d-dimensions with �ρ = (ρ1, . . . , ρd) (or �η) and ρj ∈ {0,1},
∀j ∈ {1, . . . , d}, we get that

Kf (x) =
∑
�ρ,�η

K �ρ �ηf (x). (4.6)

By Theorem 4.1(a) we obtain the p-estimate for the term K1̄1̄ in (4.6) in d-dimensions. By
Proposition 2.2 along with the induction assumption (2.4), we obtain the p-estimate for all the
remaining terms in the sum (4.6) (note Remark 2.1, and Φ(x,y) ≡ 0). This completes the induc-
tion proof. �
Corollary 4.3. Let r = a1

b1
= · · · = ad

bd
� 1 and either a, b > 1̄ or al = bl � 1 for some l ∈ {1,2,

. . . , d}. If ϕ(x, y) satisfies (1.2) and Φ(x,y) satisfies (2.1), then for K in (1.3) we get that

‖Kf ‖p � C‖f ‖p, for p = 1 + 1

r
.

Proof. Incorporating the sum (4.6) for Kf we use Theorem 4.1(b) to estimate all the terms
μ1̄(2x)K �ρ �η(μ1̄(2y)f ), then we are left with the terms K �ρ �η((1 − μ1̄(2x)μ1̄(2y))f ). If x � 1̄

and y � 1̄, then 1 − μ1̄(2x)μ1̄(2y) = 0 and this operator vanishes. Thus it implies that �ρ or �η
contain a zero coordinate. Then by (1.4) this implies that g(x, y) = xa · yb for these operators.
For these latter terms Proposition 4.2 applies and gets their p-estimates. Thus we have obtained
the p-estimates for all the terms in (4.6), and this gets the result. �

By duality we get from Corollary 4.3,

Corollary 4.4. Let r = a1
b1

= · · · = ad

bd
� 1 and either a, b > 1̄ or al = bl � 1 for some

l ∈ {1,2, . . . , d}. If ϕ(x, y) satisfies (1.2) and Φ(x,y) satisfies (2.1), then the operator K in (1.3)

satisfies

‖Kf ‖p � C‖f ‖p, for p = 1 + 1

r
.
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