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1. Introduction

One of the most important areas in modern number theory is the study of the distribution of the
zeros of L-functions. These zeros encode crucial number theoretic information on subjects ranging
from the distribution of the primes (from simply the number of primes at most x to biases in the
distribution of primes in various residue classes) to properties of class numbers to (conjecturally)
the geometric rank of the Mordell–Weil group of rational solutions of an elliptic curve. Further, the
observed behavior is similar to that found in nuclear physics and other disciplines, suggesting deep
connections between this branch of mathematics and other fields. The General Riemann Hypothesis
(GRH), often considered the most important open question in mathematics, is the conjecture that all
non-trivial zeros of these L-functions have real part equal to 1/2. As powerful as this conjecture is,
there are many problems in number theory where just knowing the real parts are 1/2 is not enough,
and we need to know finer properties of the distribution of the zeros on the critical line �(s) = 1/2.

As proofs of properties of these zeros have eluded researchers since Riemann’s seminal paper,
methods of modeling these zeros are indispensable in understanding and formulating appropriate
conjectures about L-functions. Many models have had various degrees of success. Perhaps the most
famous are those arising from Random Matrix Theory (see for example [KaSa1,KaSa2,KeSn1,KeSn2,
KeSn3] among others, and [FM] for some of the history of the interplay between nuclear physics and
number theory). Unfortunately, these models are only able to predict the main term behavior in the
problems of interest, and in many situations the arithmetic of the family of L-functions only surfaces
in lower order terms (see for instance [Mil2,Mil6,MilPe,Yo1]). This often requires the arithmetic to be
added in an ad hoc fashion. Another approach, which has the advantage of including the arithmetic
directly, is the hybrid model (see [GHK]), where L-functions are modeled by the product of a partial
Hadamard product of zeros (which is expected to be described by Random Matrix Theory) and a
partial Euler product (which is expected to provide the arithmetic).

In this work we discuss another method, the L-function Ratios Conjecture of Conrey, Farmer and
Zirnbauer [CFZ1,CFZ2]. We concentrate on the family of quadratic twists of a fixed elliptic curve of
prime conductor. The paper is organized as follows. We first describe the statistic of interest (the
one-level density), and then discuss the Ratios Conjecture’s prediction and its implications. The rest
of the paper is devoted to proving the conjecture. We calculate the number theory in Section 2, and
show for suitable test functions that it agrees with the Ratios’ prediction in Section 3. A key step in
the analysis is generalizing Jutila’s bound for character sums, which we do in Section 4. In addition to
being of use for this problem, this result was also implicitly used by Rubinstein [Rub] in determining
the main term in the one-level density for twists of a fixed GLn form.
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1.1. One-level density of low lying zeros

Assuming GRH, the non-trivial zeros of L-functions lie on the critical line, and thus it makes sense
to study the distribution of spacings. There is a mix of theoretical and experimental evidence [Mon,
Hej,RS,Od1,Od2] relating these normalized spacings in the limit as we climb the critical line to the
scaled spacings between eigenvalues of random matrix ensembles as the matrix size tends to infinity.
Initially this suggested that the Gaussian Unitary Ensemble (GUE) of matrices was the correct (and
only) model needed for number theory; however, Katz and Sarnak showed that the classical compact
groups (subgroups of N × N unitary matrices) all have the same n-level correlations as the GUE as
N → ∞. There is thus more to the story, and we need a statistic which is sensitive to finer properties
of the L-functions.

One such statistic is the one-level density of the low lying zeros of a family of L-functions, which
is different for the scaling limits of the different classical compact groups. Fix a Schwartz test function
φ such that φ̂ is supported in, say, (−σ ,σ ). Let L be related to the local rescaling near the central
point, so that normalized zeros near s = 1/2 have mean spacing one. For an L-function L(s, f ), its
one-level density is defined by

D( f , φ) :=
∑
γ f

φ

(
γ f L

π

)
; (1.1)

here 1/2 + iγ f runs over the non-trivial zeros of the L-function (which under GRH all have γ ∈ R)
and L/π is the scaling factor (it is related to the logarithm of the analytic conductor).2 Using the
explicit formula (see for instance [Mes,RS]), we replace the sum of φ at the scaled zeros with sums
of φ̂ at the logarithms of the primes, weighted by the Fourier coefficients of the L-function. As φ is
a Schwartz function, it vanishes rapidly as |x| → ∞ and thus most of the contribution is from zeros
near the central point (relative to the local average spacing).

Ideally we would use a delta spike instead of a Schwartz test function to get a perfect picture at
a point; however, the delta spike has a Fourier transform of infinite support, which leads to weighted
prime sums we cannot evaluate. As each L-function only has a bounded number of zeros within the
average spacing of the central point, it is necessary to average the one-level density over all f in a
family F . This allows us to use results from number theory3 to determine the behavior on average
near the central point. The exact nature of just what constitutes a family is still being determined;
standard examples include L-functions attached to Dirichlet characters, cuspidal newforms, and fami-
lies of elliptic curves to name just a few.

We assume our family of L-functions F can be ordered by conductor, and denote by F (Q ) all
elements of the family whose conductor is at most Q . Thus the quantity of interest ends up being

D(F , φ) := lim
Q →∞

1

|F (Q )|
∑

f ∈F (Q )

D( f , φ) = lim
Q →∞

1

|F (Q )|
∑

f ∈F (Q )

∑
γ f

φ

(
γ f L

π

)
. (1.2)

In other words, we consider the limiting behavior of the average of the one-level densities as the
conductors grow. To date a large number of families have been investigated (such as Dirichlet L-
functions, elliptic curves, cuspidal newforms, symmetric powers, number fields, and convolutions of
such families, to name a few), and for suitably restricted test functions the main terms in the one-
level densities agree with the scaling limits of a classical compact group; see for example [DM1,DM2,
FI,Gao,Gü,HM,HR,ILS,Mil1,MilPe,OS1,OS2,RR,Ro,Rub,Yo2].

2 Many works in the literature use L′/2π ; as this is a companion paper to [HKS] we use their notation to facilitate calling
their equations.

3 The needed result depends of course on the family being studied. For Dirichlet L-functions one uses the orthogonality of
the characters, for elliptic curves one uses properties of sums of Legendre symbols, while for cuspidal newforms one uses the
Petersson formula.
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1.2. The Ratios Conjecture

While Random Matrix Theory has successfully predicted the main term of the one-level density
of all families studied to date, it is insufficient as it is silent on lower order terms. These terms are
important for many reasons. The first is that the arithmetic of the family is often absent in the main
term but present in lower order terms (see for instance [Mil2,Mil6,Yo1]). For example, in [Mil6] lower
order effects were found related to the torsion group of the family of elliptic curve L-functions. Fur-
ther, these lower order terms are important, as they control the rate of convergence to the predicted
limiting behavior. This work is motivated by the companion paper [DHKMS2]. The authors there dis-
cuss a proposed model which explains the observed repulsion found by Miller [Mil3] of zeros of
elliptic curve L-functions near the central point. One of the two main ingredients in the model is the
first lower order term in the one-level density in elliptic curve families, which is needed to determine
the effective matrix size. The Ratios’ prediction of this was worked out in another companion paper,
[HKS]; the purpose of this paper is to verify the Ratios’ prediction (at least for suitably restricted
support).

The L-function Ratios Conjecture of Conrey, Farmer and Zirnbauer [CFZ1,CFZ2] (see also [CS1] for
many worked out examples of the conjecture’s prediction) are formulas for the averages over families
of L-functions of ratios of products of shifted L-functions. Their “recipe” for performing these cal-
culations starts by using the approximate functional equation, where the error term is discarded, to
expand the L-functions in the numerator; the L-functions in the denominator are expanded via the
Möbius function. They then average over the family, and retain only the diagonal pieces. These are
restricted sums over integers, but are then completed and extended to sums over all integers; again
the error term introduced is ignored. These methods, far simpler to implement than rigorous anal-
ysis, have easily predicted the answers to many difficult computations, and have shown remarkable
accuracy. The resulting formulas make very detailed predictions on numerous problems, ranging from
moments to spacings between adjacent zeros and values of L-functions.

A standard test of the Ratios Conjecture is to compare the Ratios Conjecture’s predictions for the
one-level density of a family of L-functions with the corresponding rigorous calculation. Agreement
has been found for suitably restricted test functions for many families. See [CS1,GJMMNPP,Mil3,Mil5,
Mil6,MilMon], as well as [BCY,CS1,CS2] for agreement with other statistics. In addition to strength-
ening the credibility of the conjecture, these calculations provide insight into the significance of the
terms that arise in the number theoretic calculations whose corresponding terms in the Ratios Con-
jecture’s predictions are more clearly understandable. For example, in [Mil5] the Ratios Conjecture’s
prediction allows the interpretation of a lower order term in the behavior of the family of quadratic
Dirichlet characters as arising from the non-trivial zeros of the Riemann zeta function.

Our primary object of study is the collection of quadratic twists of a fixed elliptic curve of prime
conductor M . The families associated to elliptic curves are of considerable importance, as they are the
best laboratories (see [Mil3]) to see the effect of multiple zeros on nearby zeros. By work of C. Breuil,
B. Conrad, F. Diamond. R. Taylor and A. Wiles [BCDT,TW,Wi], the L-function of an elliptic curve agrees
with that of a weight 2 cuspidal newform of level N (where the integer N > 1 is the conductor of
the elliptic curve). The Ratios’ prediction was computed in [HKS], and was one of the key inputs in
[DHKMS2] in explaining the observed repulsion of zeros near the central point in families of elliptic
curve L-functions (see [DHKMS1] for an analysis of random matrix quantities relevant for the model
and comparison). We perform the number theoretic calculations of the zero statistics for the one-level
density for this family, and compare our results to the Ratios Conjecture’s prediction. For a similar
case see [MilMor], which performed comparable calculations for the family of quadratic twists of the
L-function associated to Ramanujan’s tau function, and found agreement with the Ratios’ prediction
up to a power-savings error term. These L-functions are similar to our elliptic curve L-functions but
without the bad prime. The simpler case provided a useful guide for performing the more complicated
analysis found in this paper.

We first set some notation for the paper. We always denote our elliptic curve by E , which we
assume has prime conductor M and even functional equation. We consider the family of quadratic
twists,
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F (X) = {
0 < d � X: d an even fundamental discriminant and χd(−M)ωE = 1

}
(1.3)

and set

X∗ = ∣∣F (X)
∣∣, L = log

(√
M X

2π

)
. (1.4)

The Ratios Conjecture’s prediction for these lower order terms, computed in [HKS], has been in-
putted in some of these models, but has not yet been verified. The main obstacle in verifying the
prediction, at least for suitably restricted test functions, is the presence of the level M in the Euler
products in the prediction. This leads to more complicated formulas than in [Mil5], where we studied
just quadratic Dirichlet characters. While the resulting Euler products are harder to analyze than other
cases, we are still able to show agreement with a power savings.

Our main (number theory) result is the following:

Theorem 1.1. Let E be an elliptic curve with even functional equation and prime conductor M and g an even
Schwartz test function whose Fourier transform ĝ is supported in (−σ ,σ ). The one-level density of the family
of even quadratic twists of E by even fundamental discriminants at most X is

1

X∗
∑

d∈F (X)

∑
γd

g

(
γd

L

π

)

= g(0)

2
+ 1

2L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[
2 log

(√
M|d|
2π

)
+ 	′

	

(
1 + i

πτ

L

)
+ 	′

	

(
1 − i

πτ

L

)]
dτ

+ 1

L

∞∫
−∞

g(τ )

(
−ζ ′

ζ

(
1 + 2π iτ

L

)
+ L′

E

LE

(
sym2,1 + 2π iτ

L

)
−

∞∑
�=1

(M� − 1) log M

M(2+ 2π iτ
L )�

)
dτ

− 1

L

∞∑
k=0

∞∫
−∞

g(τ )
log M

M(k+1)(1+ π iτ
L )

dτ + 1

L

∞∫
−∞

g(τ )
∑
p�M

log p

(p + 1)

∞∑
k=0

λ(p2k+2) − λ(p2k)

p(k+1)(1+ 2π iτ
L )

dτ

+ O M
(

X− 1−σ
2 log6 X

)
. (1.5)

Much of the work in determining the Ratios’ prediction was done in [HKS]. In this work we finish
the analysis, rewriting the expansion from [HKS] to facilitate comparisons with number theory.

Theorem 1.2. Notation as in Theorem 1.1, the prediction from the Ratios Conjecture is

1

X∗
∑

d∈F (X)

∑
γd

g

(
γd L

π

)

= 1

2L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[
2 log

(√
M|d|
2π

)
+ 	′

	

(
1 + iπτ

L

)
+ 	′

	

(
1 − iπτ

L

)]
dτ

+ 1

L

∞∫
g(τ )

(
−ζ ′

ζ

(
1 + 2π iτ

L

)
+ L′

E

LE

(
sym2,1 + 2π iτ

L

)
−

∞∑
�=1

(M� − 1) log M

M(2+ 2iπτ
L )�

)
dτ
−∞
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− 1

L

∞∑
k=0

∞∫
−∞

g(τ )
log M

M(k+1)(1+ π iτ
L )

dτ + 1

L

∞∫
−∞

g(τ )
∑
p�M

log p

(p + 1)

∞∑
k=0

λ(p2k+2) − λ(p2k)

p(k+1)(1+ 2π iτ
L )

dτ

− 1

L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[(√
M|d|
2π

)−2iπτ/L
	(1 − iπτ

L )

	(1 + iπτ
L )

ζ(1 + 2iπτ
L )LE(sym2,1 − 2iπτ

L )

LE(sym2,1)

× AE

(
− iπτ

L
,

iπτ

L

)]
dτ + O

(
X−1/2+ε

); (1.6)

see Section 3 for a definition of AE and A1
E .

As mentioned above, the main difficulty in showing agreement between number theory and the
above prediction is the presence of the level of the elliptic curve (which was not present in the
symplectic family studied in [Mil5]). By a careful analysis of the Euler products, we prove

Theorem 1.3. Notation as in Theorem 1.1, assuming GRH the Ratios Conjecture’s prediction agrees with number
theory for supp(φ̂) ⊂ (−σ ,σ ), up to error terms of size O (X (1−σ)/2).

2. The number theory result

The starting point of all one-level density investigations is the explicit formula; modifying [Mes,RS]
(among others; see [HMM] for a proof) one finds the following:

Lemma 2.1. The one-level density for the family of quadratic twists by even fundamental discriminants of a
fixed elliptic curve E with even functional equation and prime conductor M is

1

X∗
∑

d∈F (X)

∑
γd

g

(
γd

L

π

)

= 1

2L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[
2 log

(√
M|d|
2π

)
+ 	′

	

(
1 + i

πτ

L

)
+ 	′

	

(
1 − i

πτ

L

)]
dτ

− 2

2L

∑
d∈F (X)

∞∑
k=1

∑
p

(αk
p + βk

p)χk
d (p) log p

pk/2
ĝ

(
log pk

2L

)
, (2.1)

where F (X), X∗ , and L are as defined in Eqs. (1.3) and (1.4).

We prove Theorem 1.1 by analyzing the expansion above. As the integral term is also found in the
Ratios’ prediction, we need only study

S = − 2

2L X∗
∑

d∈F (X)

∞∑
k=1

∑
p

(αk
p + βk

p)χk
d (p) log p

pk/2
ĝ

(
log pk

2L

)
= Seven + Sodd, (2.2)

where
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Seven = − 1

X∗
∑

d∈F (X)

∞∑
k=1

∑
p

(α2k
p + β2k

p )χ2
d (p) log p

pk L
ĝ

(
log pk

L

)
,

Sodd = − 1

X∗
∑

d∈F (X)

∞∑
k=0

∑
p

(α2k+1
p + β2k+1

p )χd(p) log p

p(2k+1)/2L
ĝ

(
log p2k+1

2L

)
(2.3)

(note that χd(p) = χ2k+1
d (p) for any k ∈ N). We split Seven further by noting that

χ2
d (p) =

{
1 if p � d,

0 if p | d,
(2.4)

and write

Seven = Seven,1 + Seven,2 (2.5)

with

Seven,1 = −
∑

p

∞∑
k=1

(α2k
p + β2k

p ) log p

pk L
ĝ

(
log pk

L

)
,

Seven,2 = 1

X∗
∑

d∈F (X)

∞∑
k=1

∑
p|d

(α2k
p + β2k

p ) log p

pk L
ĝ

(
log pk

L

)
. (2.6)

We prove Theorem 1.1 by analyzing Seven and Sodd in a series of lemmata below, frequently break-
ing these summands down further.

2.1. Analysis of Seven,1

We consider Seven,1 and have

Seven,1 = −1

L

∑
p

∞∑
k=1

(α2k
p + β2k

p ) log p

pk
ĝ

(
log pk

L

)
= Seven,1,1 + Seven,1,2,

where

Seven,1,1 = −1

L

∞∑
k=1

(α2k
M + β2k

M ) log M

Mk
ĝ

(
log Mk

L

)
,

Seven,1,2 = −1

L

∑
p�M

∞∑
k=1

(α2k
p + β2k

p ) log p

pk
ĝ

(
log pk

L

)
. (2.7)

Lemma 2.2. We have

Seven,1,1 = −1

L

∞∑
k=1

log M

M2k
ĝ

(
log Mk

L

)
= −1

L

∞∑
k=1

∞∫
−∞

g(τ )
log M

M2k(1+ π iτ
L )

dτ . (2.8)
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Proof. For M we have

α2k
M + β2k

M =
(

ωE

M1/2

)2k

= M−k. (2.9)

Using (2.9) and unwinding the Fourier transform gives the claim. �
Lemma 2.3. Notation as above,

Seven,1,2 = g(0)

2
+ 1

L

∞∫
−∞

g(τ )

(
−ζ ′

ζ

(
1 + 2π iτ

L

)
+ L′

E

LE

(
sym2,1 + 2π iτ

L

)

−
∞∑

�=1

(M� − 1) log M

M(2+ 2π iτ
L )�

)
dτ . (2.10)

Proof. Let

ΛE(n) =
{

(α2�
p + α2�

p ) log p if n = p�, p � M,

0 otherwise.
(2.11)

We have

Seven,1,2 = −1

L

∞∑
n=1

ΛE(n)

n
ĝ

(
log n

L

)
. (2.12)

We use Perron’s formula to re-write Seven,1 as a contour integral. For any ε > 0 set

I1 = 1

2π i

∫
�(z)=1+ε

g

(
(2z − 2) log A

4π i

) ∞∑
n=1

ΛE(n)

nz
dz; (2.13)

we will later take A = √
M X/2π , so that log A = L. We write z = 1 + ε + iy and use (B.2) (replacing

φ with g) to write g(x + iy) in terms of the integral of ĝ(u). We have

I1 =
∞∑

n=1

ΛE(n)

n1+ε

1

2π i

∞∫
−∞

g

(
y log A

2π
− iε log A

2π

)
e−iy logni dy

=
∞∑

n=1

ΛE(n)

n1+ε

1

2π

∞∫
−∞

[ ∞∫
−∞

[
ĝ(u)eεu log A]

e−2π i −y log A
2π u du

]
e−iy logn dy. (2.14)

We let hε(u) = ĝ(u)eεu log A . Note that hε is a smooth, compactly supported function and ˆ̂hε(w) =
hε(−w). Thus
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I1 =
∞∑

n=1

ΛE(n)

n1+ε

1

2π

∞∫
−∞

ĥε

(
− y log A

2π

)
e−iy log n dy

=
∞∑

n=1

ΛE(n)

n1+ε

1

2π

∞∫
−∞

ĥε(y)e−2π i −y logn
log A

2π dy

log A

=
∞∑

n=1

ΛE(n)

n1+ε

1

log A
ˆ̂hε

(
− logn

log A

)

=
∞∑

n=1

ΛE(n)

n1+ε

1

log A
ĝ

(
logn

log A

)
eε log n

= 1

log A

∞∑
n=1

ΛE(n)

n
ĝ

(
logn

log A

)
. (2.15)

By taking A = √
M X/2π we find

Seven,1,2 = −1

L

∞∑
n=1

ΛE(n)

n
ĝ

(
logn

L

)
= −I1. (2.16)

We now re-write I1 by shifting contours; we will not pass any poles as we shift. For each δ > 0
we consider the contour made up of three pieces: (1 − i∞,1 − iδ], Cδ , and [1 − iδ,1 + i∞), where
Cδ = {z: z − 1 = δeiθ , θ ∈ [−π/2,π/2]} is the semi-circle going counter-clockwise from 1 − iδ to
1 + iδ. By Cauchy’s residue theorem, we may shift the contour in I1 from �(z) = 1 + ε to the three
curves above.

Before analyzing this integral, we rewrite
∑

n ΛE (n)n−z as the sum of logarithmic derivatives of
L-functions. From (3.15) and (3.16) of [ILS], we have

LE
(
sym2, s

) =
∏
p�M

(
1 − α2

p

ps

)−1(
1 − 1

ps

)−1(
1 − β2

p

ps

)−1 ∏
p|M

(
1 − 1

ps+1

)−1

, (2.17)

as αpβp = 1 for p � M . Taking the logarithmic derivative yields

L′
E

LE

(
sym2, s

) = −
∑
p�M

∞∑
�=1

(α2�
p + 1 + β2�

p ) log p

ps�
−

∑
p|M

∞∑
�=1

log p

p(s+1)�

= −
∑
p�M

∞∑
�=1

(α2�
p + β2�

p ) log p

ps�
−

∑
p�M

∞∑
�=1

log p

ps�
−

∑
p|M

∞∑
�=1

log p

p(s+1)�
, (2.18)

so

∞∑
n=1

Λ(n)n−s =
∑
p�M

∞∑
�=1

(α2�
p + β2�

p ) log p

ps�

= −
∑
p�M

∞∑
�=1

log p

ps�
−

∑
p|M

∞∑
�=1

log p

p(s+1)�
− L′

E

LE

(
sym2, s

)
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= ζ ′

ζ
(s) − L′

E

LE

(
sym2, s

) +
∑
p|M

∞∑
�=1

log p

ps�
−

∑
p|M

∞∑
�=1

log p

p(s+1)�

= ζ ′

ζ
(s) − L′

E

LE

(
sym2, s

) +
∞∑

�=1

(M� − 1) log M

M(s+1)�
. (2.19)

We use this in replacing
∑

n ΛE (n)n−z in the integral definition of I1 in (2.13). We find

I1 = 1

2π i

[ 1−iδ∫
1−i∞

+
∫
Cδ

+
1+i∞∫

1+iδ

g

(
(2z − 2) log A

4π i

)∑
n

ΛE(n)

nz
dz

]

= 1

2π i

[ 1−iδ∫
1−i∞

+
∫
Cδ

+
1+i∞∫

1+iδ

g

(
(2z − 2) log A

4π i

)

·
(

ζ ′

ζ
(z) − L′

E

LE

(
sym2, z

) +
∞∑

�=1

(M� − 1) log M

M(z+1)�

)
dz

]
. (2.20)

The integral over Cδ is easily evaluated. Shimura [Sh] proved that LE(sym2, s) is entire, and thus
so too is its logarithmic derivative. Thus there is no contribution from the symmetric square piece in
the limit as δ → 0. As ζ(s) has a pole at s = 1, ζ ′(s)/ζ(s) = −1/(s − 1) + · · · , and we must multiply
the contribution from the residue by −1 because of the pole. We get just minus half the residue of
g(

(2z−2) log A
4π i ), which yields the contribution from the Cδ piece is −g(0)/2.

We now take the limit as δ → 0:

I1 = − g(0)

2
− lim

δ→0

1

2π

[ −δ∫
−∞

+
∞∫
δ

g

(
y log A

2π

)

·
(

−ζ ′

ζ
(z) + L′

E

LE

(
sym2, z

) −
∞∑

�=1

(M� − 1) log M

M(z+1)�

)
dy

]
. (2.21)

As g is an even Schwartz function, the limit of the integral above is well defined (for large y this
follows from the decay of g , while for small y it follows from the fact that ζ ′(1 + iy)/ζ(1 + iy)

has a simple pole at y = 0 and g is even). We again take A = √
M X/2π , and change variables to

τ = yL/2π . Thus

I1 = − g(0)

2
− 1

L

∞∫
−∞

g(τ )

(
−ζ ′

ζ

(
1 + 2π iτ

L

)
+ L′

E

LE

(
sym2,1 + 2π iτ

L

)
−

∞∑
�=1

(M� − 1) log M

M(2+ 2π iτ
L )�

)
dτ

= −Seven,1,2, (2.22)

which completes the proof of Lemma 2.3. �
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2.2. Analysis of Seven,2

Lemma 2.4. We have

Seven,2 = 1

L

∞∫
−∞

g(τ )
∑
p�M

log p

(p + 1)

∞∑
k=0

λ(p2k+2) − λ(p2k)

p(k+1)(1+ 2π iτ
L )

dτ + O
(

X1/2 log log X
)
.

Proof. Recall Seven,2 is

Seven,2 = 1

L X∗
∑

d∈F (X)

∞∑
k=1

∑
p|d

(α2k
p + β2k

p ) log p

pk
ĝ

(
log pk

L

)
, (2.23)

and a change of order of summation gives

Seven,2 = 1

L X∗
∑

p

∞∑
k=1

(α2k
p + β2k

p ) log p

pk
ĝ

(
log pk

L

) ∑
d∈F (X)

p|d

1. (2.24)

From Lemma A.1 we find that

∑
d∈F (X)

p|d

1 =
{

X∗
p+1 + O (X1/2) if p � M,

0 if p | M .
(2.25)

Using (2.25) in (2.24) yields

Seven,2 = 1

L

∑
p�M

∞∑
k=1

(α2k
p + β2k

p ) log p

pk(p + 1)
ĝ

(
log pk

L

)
+ O

(
X1/2 log log X

)
. (2.26)

Substituting

ĝ

(
log pk

L

)
=

∞∫
−∞

g(τ )e−2π iτ log pk

L dτ =
∞∫

−∞
g(τ )p− 2π iτ

L k dτ (2.27)

into (2.26) yields

Seven,2 = 1

L

∑
p�M

∞∑
k=1

(α2k
p + β2k

p ) log p

pk(p + 1)

∞∫
−∞

g(τ )p− 2π iτ
L k dτ + O

(
X1/2 log log X

)

= 1

L

∑
p�M

∞∑
k=1

(α2k
p + β2k

p ) log p

pk(p + 1)

∞∫
−∞

g(τ )p− 2π iτ
L k dτ + O

(
X1/2 log log X

)

= 1

L

∞∫
g(τ )

∑
p�M

log p

(p + 1)

∞∑
k=1

(α2k
p + β2k

p )

pk(1+ 2π iτ
L )

dτ + O
(

X1/2 log log X
)
. (2.28)
−∞
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For p � M we have

α2k
p + β2k

p = λ
(

p2k) − λ
(

p2k−2), (2.29)

thus

Seven,2 = 1

L

∞∫
−∞

g(τ )
∑
p�M

log p

(p + 1)

∞∑
k=1

λ(p2k) − λ(p2k−2)

pk(1+ 2π iτ
L )

dτ + O
(

X1/2 log log X
)

= 1

L

∞∫
−∞

g(τ )
∑
p�M

log p

(p + 1)

∞∑
k=0

λ(p2k+2) − λ(p2k)

p(k+1)(1+ 2π iτ
L )

dτ + O
(

X1/2 log log X
)
. � (2.30)

2.3. Analysis of Sodd

We now analyze Sodd by applying Theorem 4.1, which generalizes Jutila’s bound. In the sums
below, M is an odd prime and d is an even fundamental discriminant congruent to a non-zero square
modulo M . We modify the analysis of Sodd from [Mil4], where the Sodd term is now

Sodd = − 1

X∗
∑

d∈F (X)

∞∑
k=0

∑
p

(α2k+1
p + β2k+1

p )χd(p) log p

p(2k+1)/2L
ĝ

(
log p2k+1

2L

)
, (2.31)

with the d-sum over fundamental discriminants such that d equals a non-zero square modulo M . If
p � M then α2k+1

p +β2k+1
p = λE(p2k+1)−λE (p2k−1), provided we set λE(p−1) = 0; if p | M then βp = 0,

αp = λE(p) and therefore α2k+1
p = λE(p)2k+1. Thus we may re-write our sum as

Sodd = − 1

X∗
∞∑

k=0

∑
p�M

(λE(p2k+1) − λE(p2k−1)) log p

p(2k+1)/2L
ĝ

(
log p2k+1

2L

) ∑
d∈F (X)

d≡� �=0 mod M

χd(p)

− 1

X∗
∞∑

k=0

∑
p|M

λE(p)2k+1 log p

p(2k+1)/2L
ĝ

(
log p2k+1

2L

) ∑
d∈F (X)

d≡� �=0 mod M

χd(p). (2.32)

Lemma 2.5. We have

Sodd = −1

L

∞∫
−∞

g(τ )

[ ∞∑
k=0

log M

M
2k+1

2 (2+2 π iτ
L )

]
dτ + O M

(
X− 1−σ

2 log6 X
)
. (2.33)

Proof. We write Sodd as Sodd(p � M) + Sodd(p | M). We first analyze Sodd(p | M), the contribution
from M . As d = � �≡ 0 mod M , χd(M) = ( d

M ) = 1. The d-sum is just X∗ , and hence these terms
contribute

−
∞∑

k=0

λE(M)2k+1 log M

M(2k+1)/2L
ĝ

(
log M2k+1

2L

)
. (2.34)

We apply Cauchy–Schwartz to Sodd(p � M), and from Theorem 4.1 (our generalization of Jutila’s
bound) find
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∣∣Sodd(p � M)
∣∣ � 1

X∗

( ∞∑
�=0

∑
p2�+1�Xσ

p�M

∣∣∣∣ log p

p(2�+1)/2 log X
ĝ

(
log p2�+1

log X

)∣∣∣∣
2
)1/2

·
( ∞∑

�=0

∑
p2�+1�Xσ

(p,M)=1

∣∣∣∣ ∑
d�X

d≡� �=0 mod M

χd(p)

∣∣∣∣
2
)1/2

� 1

X∗

( ∑
n�Xσ

1

n

)1/2

· X
1+σ

2 log5 X

� X− 1−σ
2 log6 X; (2.35)

thus there is a power savings if σ < 1.
We substitute for ĝ((log M2k+1)/2L) its expansion as an integral, and find

Sodd = −1

L

∞∫
−∞

g(τ )

[ ∞∑
k=0

λE(M)2k+1 log M

M
2k+1

2 (1+2 π iτ
L )

]
dτ + O M

(
X− 1−σ

2 log6 X
)
. (2.36)

For p | M we have

λE(p) = ωE/p1/2 ⇒ λE(M)2k+1 = ωE

M
2k+1

2

= 1

M
2k+1

2

(2.37)

since our elliptic curve E has even functional equation. Thus

Sodd = −1

L

∞∫
−∞

g(τ )

[ ∞∑
k=0

log M

M
2k+1

2 (2+2 π iτ
L )

]
dτ + O M

(
X− 1−σ

2 log6 X
)
. � (2.38)

2.4. Proof of Theorem 1.1

Proof of Theorem 1.1. The proof of (1.5) follows by collecting the above lemmata and noticing that
from Eq. (2.8) for Seven,1,1 and Eq. (2.33) for Sodd we have

Seven,1,1 + Sodd = −1

L

∞∑
k=1

∞∫
−∞

g(τ )
log M

M2k(1+ π iτ
L )

dτ

− 1

L

∞∫
−∞

g(τ )

[ ∞∑
k=0

log M

M
2k+1

2 (2+2 π iτ
L )

]
dτ + O M

(
X− 1−σ

2 log6 X
)

= −1

L

∞∑
k=0

∞∫
−∞

g(τ )
log M

M(k+1)(1+ π iτ
L )

dτ + O M
(

X− 1−σ
2 log6 X

)
. � (2.39)
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3. The Ratios Conjecture’s prediction

From the analysis in [HKS], we have the following expansion for the Ratios Conjecture’s prediction:

Theorem 3.1. (See Theorem 2.3 and Eq. (3.11) in [HKS].) With notation as in Theorem 1.1, the prediction from
the Ratios Conjecture for the one-level density of the family F (X) of even quadratic twists of an elliptic curve
L-function LE(s) of even functional equation by even fundamental discriminants at most X is

1

X∗
∑

d∈F (X)

∑
γd

g

(
γd L

π

)

= 1

2L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[
2 log

(√
M|d|
2π

)
+ 	′

	

(
1 + iπτ

L

)

+ 	′

	

(
1 − iπτ

L

)
+ 2

[
−ζ ′(1 + 2iπτ

L )

ζ(1 + 2iπτ
L )

+ L′
E(sym2,1 + 2iπτ

L )

LE(sym2,1 + 2iπτ
L )

+ A1
E

(
iπτ

L
,

iπτ

L

)

−
(√

M|d|
2π

)−2iπτ/L
	(1 − iπτ

L )

	(1 + iπτ
L )

ζ(1 + 2iπτ
L )LE (sym2,1 − 2iπτ

L )

LE(sym2,1)
× AE

(
− iπτ

L
,

iπτ

L

)]]
dτ

+ O
(

X−1/2+ε
)

(3.1)

where AE is defined in (3.2) and d
dα AE(α,γ )|α=γ =r = A1

E (r, r).

Much of the expansion above is already found in our number theory result, Theorem 1.1. We are
left with analyzing the AE and A1

E terms, which we now proceed to do.

3.1. Analysis of A1
E

Before determining the contribution of A1
E we first obtain a useful expansion for it. The Euler

product AE(α,γ ) is given by

AE(α,γ )

= Y −1
E (α,γ ) ×

∏
p|M

( ∞∑
m=0

(
λ(pm)ωm

E

pm(1/2+α)
− λ(p)

p1/2+γ

λ(pm)ωm+1
E

pm(1/2+α)

))

×
∏
p�M

(
1 + p

p + 1

( ∞∑
m=1

λ(p2m)

pm(1+2α)
− λ(p)

p1+α+γ

∞∑
m=0

λ(p2m+1)

pm(1+2α)
+ 1

p1+2γ

∞∑
m=0

λ(p2m)

pm(1+2α)

))

(3.2)

where

Y E(α,γ ) = ζ(1 + 2γ )LE(sym2,1 + 2α)

ζ(1 + α + γ )LE(sym2,1 + α + γ )
. (3.3)

Note that

AE(r, r) = 1. (3.4)
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Rewriting AE(α,γ ) gives

AE(α,γ ) =
∏
p|M

(
1 − 1

p1+2γ

)(
1 − λ(p)2

p1+2α

)(
1 − 1

p1+α+γ

)−1(
1 − λ(p)2

p1+α+γ

)−1

×
( ∞∑

m=0

(
λ(pm)ωm

E

pm(1/2+α)
− λ(p)

p1/2+γ

λ(pm)ωm+1
E

pm(1/2+α)

))

×
∏
p�M

(
1 − 1

p1+2γ

)(
1 − λ(p2)

p1+2α
+ λ(p2)

p2(1+2α)
− 1

p3(1+2α)

)(
1 − 1

p1+α+γ

)−1

×
(

1 − λ(p2)

p1+α+γ
+ λ(p2)

p2(1+α+γ )
− 1

p3(1+α+γ )

)−1

×
(

1 + p

p + 1

( ∞∑
m=1

λ(p2m)

pm(1+2α)
− λ(p)

p1+α+γ

∞∑
m=0

λ(p2m+1)

pm(1+2α)
+ 1

p1+2γ

∞∑
m=0

λ(p2m)

pm(1+2α)

))
.

We find

d

dα
AE(α,γ )

= AE(α,γ )

(∑
p|M

log p

[ 2λ(p)2

p1+2α

1 − λ(p)2

p1+2α

−
1

p1+α+γ

1 − 1
p1+α+γ

−
λ(p)2

p1+α+γ

1 − λ(p)2

p1+α+γ

+
−∑∞

m=0(
mλ(pm)ωm

E
pm(1/2+α) − mλ(p)

p1/2+γ

λ(pm)ωm+1
E

pm(1/2+α) )∑∞
m=0(

λ(pm)ωm
E

pm(1/2+α) − λ(p)

p1/2+γ

λ(pm)ωm+1
E

pm(1/2+α) )

]∑
p�M

log p

[ 2λ(p2)

p1+2α − 4λ(p2)

p2(1+2α) + 6
p3(1+2α)

1 − λ(p2)

p1+2α + λ(p2)

p2(1+2α) − 1
p3(1+2α)

−
1

p1+α+γ

1 − 1
p1+α+γ

+
− λ(p2)

p1+α+γ + 2λ(p2)

p2(1+α+γ ) − 3
p3(1+α+γ )

1 − λ(p2)

p1+α+γ + λ(p2)

p2(1+α+γ ) − 1
p3(1+α+γ )

+
p

p+1 (−∑∞
m=1

2mλ(p2m)

pm(1+2α) + λ(p)

p1+α+γ

∑∞
m=0

(2m+1)λ(p2m+1)

pm(1+2α) − 1
p1+2γ

∑∞
m=0

2mλ(p2m)

pm(1+2α) )

(1 + p
p+1 (

∑∞
m=1

λ(p2m)

pm(1+2α) − λ(p)

p1+α+γ

∑∞
m=0

λ(p2m+1)

pm(1+2α) + 1
p1+2γ

∑∞
m=0

λ(p2m)

pm(1+2α) ))

])
.

Specializing to α = γ = r we find that

d

dα
AE(α,γ )|α=γ =r = A1

E(r, r)

=
∑
p|M

log p

[ 2λ(p)2

p1+2r

1 − λ(p)2

p1+2r

−
λ(p)2

p1+2r

1 − λ(p)2

p1+2r

−
1

p1+2r

1 − 1
p1+2r

−
∞∑

m=0

λ(pm+1)ωm+1
E

p(m+1)(1/2+r)

]

+
∑
p�M

log p

[ 2λ(p2)

p1+2r − 4λ(p2)

p2(1+2r) + 6
p3(1+2r)

1 − λ(p2)
1+2r + λ(p2)

2(1+2r) − 1
3(1+2r)

+
− λ(p2)

p1+2r + 2λ(p2)

p2(1+2r) − 3
p3(1+2r)

1 − λ(p2)
1+2r + λ(p2)

2(1+2r) − 1
3(1+2r)

−
1

p1+2r

1 − 1
p1+2r
p p p p p p
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−
∞∑

m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)
+ 1

p + 1

∞∑
m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)

]
. (3.5)

Next, we identify terms in (3.5) involving the logarithmic derivatives of ζ(s) and LE (sym2, s). Simple
calculations show

ζ ′(1 + 2r)

ζ(1 + 2r)
= −

∑
p

log p

1
p1+2r

1 − 1
p1+2r

(3.6)

and

L′
E (sym2,1 + 2r)

LE (sym2,1 + 2r)
= −

∑
p|M

log p

λ(p)2

p1+2r

1 − λ(p)2

p1+2r

−
∑
p�M

log p

λ(p2)

p1+2r − 2λ(p2)

p2(1+2r) + 3
p3(1+2r)

1 − λ(p2)

p1+2r + λ(p2)

p2(1+2r) − 1
p3(1+2r)

. (3.7)

Also note that

ζ ′(1 + 2r)

ζ(1 + 2r)
= − ζ̃ ′(1 + 2r)

ζ̃ (1 + 2r)
(3.8)

where

ζ̃ (s) = ζ−1(s); (3.9)

similarly we have

L′
E (sym2,1 + 2r)

LE (sym2,1 + 2r)
= − L̃′

E (sym2,1 + 2r)

L̃ E (sym2,1 + 2r)
(3.10)

where

L̃ E
(
sym2,1 + 2r

) = L−1
E

(
sym2,1 + 2r

)
. (3.11)

Using (3.6) and (3.7) in (3.5) yields

A1
E(r, r) = −2

L′
E (sym2,1 + 2r)

LE (sym2,1 + 2r)
+ L′

E(sym2,1 + 2r)

LE(sym2,1 + 2r)
+ ζ ′(1 + 2r)

ζ(1 + 2r)

−
∑
p|M

log p
∞∑

m=0

λ(pm+1)ωm+1
E

p(m+1)(1/2+r)

+
∑
p�M

log p

[
−

∞∑
m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)
+ 1

p + 1

∞∑
m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)

]
.

Hence
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A1
E(r, r) = − L′

E (sym2,1 + 2r)

LE (sym2,1 + 2r)
+ ζ ′(1 + 2r)

ζ(1 + 2r)
−

∑
p|M

log p
∞∑

m=0

λ(pm+1)ωm+1
E

p(m+1)(1/2+r)

+
∑
p�M

log p

[
−

∞∑
m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)
+ 1

p + 1

∞∑
m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)

]
. (3.12)

Lemma 3.2 (Contribution of A1
E ). We have

1

L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

A1
E

(
iπτ

L
,

iπτ

L

)
dτ

= 1

L

∞∫
−∞

g(τ )

(
−

∑
p|M

log p
∞∑

m=0

1

p(m+1)(1+r)
+

∑
p�M

log p

p + 1

∞∑
k=0

λ(p2k+2) − λ(p2k)

p(k+1)(1+ 2iπτ
L )

−
∞∑

�=1

(M� − 1) log M

M(2r+2)�

)
dτ . (3.13)

Proof. The sign ε f of a modular form f of weight k and level M is (see Eq. (3.5) of [ILS])

ε f = ikμ(M)λ(M)
√

M. (3.14)

In our case we denote ε f with ωE . As k is 2 and M is a prime, ik = i2 = −1 and μ(M) = −1, so

ωE = (−1)(−1)λ(M)
√

M ⇒ λ(M) = ωE√
M

. (3.15)

In particular we obtain for p | M that

λ
(

pm+1)ωm+1
E =

(
ωE

p1/2

)m+1

ωm+1
E = p−(m+1)/2, (3.16)

and for p | M we have

λ(p) = ωE

p1/2
. (3.17)

Hence in (3.12) we have

−
∑
p|M

log p
∞∑

m=0

λ(pm+1)ωm+1
E

p(m+1)(1/2+r)
= −

∑
p|M

log p
∞∑

m=0

1

p(m+1)(1+r)
. (3.18)

Collecting terms, we find

A1
E(r, r) = − L′

E (sym2,1 + 2r)
2

+ ζ ′(1 + 2r)
LE (sym ,1 + 2r) ζ(1 + 2r)
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−
∑
p|M

log p
∞∑

m=0

1

p(m+1)(1+r)
−

∑
p�M

log p
∞∑

m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)

+
∑
p�M

log p

p + 1

∞∑
m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)

= −
∑
p|M

log p
∞∑

m=0

1

p(m+1)(1+r)
+

∑
p�M

log p

p + 1

∞∑
m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)
+ B(r, r), (3.19)

where B(r, r) is the sum of the first pair of terms and the fourth term. Expanding the logarithmic
derivatives4 (see Eq. (2.18), etc.) and using the identity λ(p2m) − λ(p2m−2) = α2m

p + β2m
p , we have

B(r, r) = − L′
E (sym2,1 + 2r)

LE (sym2,1 + 2r)
+ ζ ′(1 + 2r)

ζ(1 + 2r)
−

∑
p�M

log p
∞∑

m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)

=
∑
p�M

∞∑
�=1

(α2�
p + β2�

p ) log p

p(1+2r)�
+

∑
p�M

∞∑
�=1

log p

p(1+2r)�
+

∑
p|M

∞∑
�=1

log p

p((1+2r)+1)�

−
∑

p

∞∑
�=1

log p

p(1+2r)�
−

∑
p�M

log p
∞∑

m=1

α2k
p + β2k

p

pm(1+2r)

=
∑
p�M

log p
∞∑

�=1

α2�
p + β2�

p − α2�
p − β2�

p + 1 − 1

p(1+2r)�

−
∑
p�M

∞∑
�=1

log p

p(1+2r)�
+

∑
p|M

∞∑
�=1

log p

p((1+2r)+1)�

= −
∞∑

�=1

(M� − 1) log M

M(2r+2)�
. (3.20)

This calculation implies that

A1
E(r, r) = −

∑
p|M

log p
∞∑

m=0

1

p(m+1)(1+r)
+

∑
p�M

log p

p + 1

∞∑
m=0

λ(p2m+2) − λ(p2m)

p(m+1)(1+2r)

−
∞∑

�=1

(M� − 1) log M

M(2r+2)�
. (3.21)

We are concerned with the term

1

L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

A1
E

(
iπτ

L
,

iπτ

L

)
dτ (3.22)

from the Ratios’ prediction. Using (3.21) yields (3.13), completing the proof. �
4 If Re(r) > 0 the series converge and the cancellation is justified; the result holds for all r by analytic continuation.



D.K. Huynh et al. / Journal of Number Theory 131 (2011) 1117–1147 1135
3.2. Analysis of AE

Recapping our analysis to date, we have shown the Ratios’ prediction is

1

X∗
∑

d∈F (X)

∑
γd

g

(
γd L

π

)

= 1

2L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[
2 log

(√
M|d|
2π

)
+ 	′

	

(
1 + iπτ

L

)
+ 	′

	

(
1 − iπτ

L

)]
dτ

+ 1

L

∞∫
−∞

g(τ )

(
−ζ ′

ζ

(
1 + 2π iτ

L

)
+ L′

E

LE

(
sym2,1 + 2π iτ

L

)
−

∞∑
�=1

(M� − 1) log M

M(2+ 2iπτ
L )�

)
dτ

− 1

L

∞∑
k=0

∞∫
−∞

g(τ )
log M

M(k+1)(1+ π iτ
L )

dτ + 1

L

∞∫
−∞

g(τ )
∑
p�M

log p

(p + 1)

∞∑
k=0

λ(p2k+2) − λ(p2k)

p(k+1)(1+ 2π iτ
L )

dτ

− 1

L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[(√
M|d|
2π

)−2iπτ/L 	(1 − iπτ
L )

	(1 + iπτ
L )

ζ(1 + 2iπτ
L )LE (sym2,1 − 2iπτ

L )

LE(sym2,1)

× AE

(
− iπτ

L
,

iπτ

L

)]
dτ + O

(
X−1/2+ε

)
. (3.23)

Comparing (3.23) and the one-level density from number theory (Theorem 1.1), we see that we have
agreement in all but two terms – first, the constant g(0)/2; second, a term from (3.23) requiring
analysis, namely

− 1

L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[(√
M|d|
2π

)−2iπτ/L 	(1 − iπτ
L )

	(1 + iπτ
L )

ζ(1 + 2iπτ
L )LE(sym2,1 − 2iπτ

L )

LE (sym2,1)

× AE

(
− iπτ

L
,

iπτ

L

)]
dτ . (3.24)

Lemma 3.3. The contribution from the AE term to the Ratios’ prediction, given by (3.24), equals g(0)/2 plus

an error term bounded by O (X− 1−σ
2 ).

Before proving Lemma 3.3 we first derive a useful expansion. We consider the following term from
(3.24):

T (τ ) := ζ(1 + 2iπτ
L )LE (sym2,1 − 2iπτ

L )

LE(sym2,1)
× AE

(
− iπτ

L
,

iπτ

L

)
. (3.25)

Our goal is to replace this with a uniformly convergent Euler product times ζ(1 + 2iπτ/L), with
the residue at τ = 0 readily computable. We let s > 1 be a free parameter. From the expansion of
AE(α,γ ) in (3.2) we have

T (τ ) =
(

ζ(s) × V �

(
− iπτ

L
s,

iπτ

L
s

)
× V |

(
− iπτ

L
s,

iπτ

L
s

))∣∣∣∣ (3.26)

s=1
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where (see [HKS], Eqs. (2.17) and (2.18)) we introduced the following to improve convergence:

V �(α,γ ) =
∏
p�M

(
1 + p

p + 1

( ∞∑
m=1

λ(p2m)

pm(1+2α)
− λ(p)

p1+α+γ

∞∑
m=0

λ(p2m+1)

pm(1+2α)
+ 1

p1+2γ

∞∑
m=0

λ(p2m)

pm(1+2α)

))
,

V |(α,γ ) =
∏
p|M

( ∞∑
m=0

(
λ(pm)ωm

E

pm(1/2+α)
− λ(p)λ(pm)ωm+1

E

pm(1/2+α)+1/2+γ

))
. (3.27)

From [HKS], Eq. (2.31) we have

V �(α,γ ) =
∏
p�M

(
1 + λ(p2)

p1+2α
− λ(p2) + 1

p1+α+γ
+ 1

p1+2γ
+ · · ·

)
, (3.28)

where the · · · indicate terms that converge like 1/p2 when α and γ are small.
In (3.26) the contribution from the lone bad prime M is readily managed, and does not affect the

convergence or divergence of the product. We are left with

T̃ (τ ) :=
(

ζ(s) × V �

(
− iπτ

L
s,

iπτ

L
s

))∣∣∣∣
s=1

=
(∏

p

(
1 + λ(p2)

p1−2 iπτ
L s

− λ(p2) + 1

p
+ 1

p1+2 iπτ
L s

+ · · ·
)(

1 + 1

ps
+ · · ·

))∣∣∣∣
s=1

=
(∏

p

(
1 + λ(p2)

p1−2 iπτ
L s

− λ(p2) + 1

p
+ 1

p1+2 iπτ
L s

+ 1

ps

+ λ(p2)

p1+s−2 iπτ
L s

− λ(p2) + 1

p1+s
+ 1

p1+s+2 iπτ
L s

+ · · ·
))∣∣∣∣

s=1

=
(∏

p

(
1 + λ(p2)

p1−2 iπτ
L s

− λ(p2)

p
+ 1

p1+2 iπτ
L s

− 1

p

(
1 − 1

ps−1

)
+ · · ·

))∣∣∣∣
s=1

. (3.29)

Note that the (1/p)(1 − 1/ps−1) term goes to 0 as s → 1. Also note that (cf. [HKS], (2.32)
and (2.33))

LE
(
sym2,1 − 2iπτ/L

) =
∏

p

(
1 + λ(p2)

p1−2 iπτ
L

+ · · ·
)

, (3.30)

and

1

LE(sym2,1)
=

∏
p

(
1 − λ(p2)

p
+ · · ·

)
, ζ

(
1 + 2

iπτ

L

)
=

∏
p

(
1 + 1

p1+2 iπτ
L

+ · · ·
)

. (3.31)

Thus

T (τ ) = K (τ ) × LE (sym2,1 − 2iπτ/L)

L (sym2,1)
× ζ

(
1 + 2

iπτ

L

)
(3.32)
E
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where K (τ ) is a convergent Euler product that converges uniformly in the region of interest and
equals 1 when τ = 0 (the last claim follows from analyzing our above expansion at τ = 0 and com-
paring with the expressions in Section 3.1). In particular, we know that K (τ ) = ∏

p(1 + O (1/p2)); if

there were any higher order terms, we would have a term of higher order than 1/p2 in the expansion
of T̃ (τ ) besides those already accounted for, which does not occur.

Proof of Lemma 3.3. Instead of analyzing (3.24), it suffices to show

R(g, X) = − 1

L X∗

∞∫
−∞

g(τ )
∑

d∈F (X)

[(√
M|d|
2π

)−2iπτ/L 	(1 − iπτ
L )

	(1 + iπτ
L )

× LE (sym2,1 − 2iπτ/L)

LE (sym2,1)
× K (τ ) × ζ

(
1 + 2

iπτ

L

)]
dτ

is g(0)/2 + O (X− 1−σ
2 ). Recall from (1.4) that

L = log

(√
M X

2π

)
. (3.33)

By Lemma A.2

∑
d∈F (X)

(√
Md

2π

)− 2π iτ
L

= X∗e−2π iτ
(

1 − 2π iτ

L

)−1

+ O
(

X1/2 log X
)
. (3.34)

The O (X1/2) term yields a contribution of size O (X−1/2), which is negligible. Thus it suffices to study
the main term, which we denote R1(g, X).

We replace τ with τ − iw L
2π with w = 0 (we will shift the contour in a moment). Thus

R1(g; X) = − X∗

L X∗

∞∫
−∞

g

(
τ − iw

L

2π

)
e−2π i(τ−iw L

2π )
	(1 − w

2 − iπτ
L )

	(1 + w
2 + iπτ

L )

· LE(sym2,1 − w − 2iπτ/L)

LE(sym2,1)
· K (τ ) · ζ

(
1 + w + 2

iπτ

L

)
dτ . (3.35)

We now shift the contour to w = 3/2. Remembering we are assuming the GRH for ζ(s) and
LE(sym2,ρ) (so that if ζ(ρ) = 0 or LE(sym2, s) = 0 then either ρ = 1

2 + iγ for some γ ∈ R or ρ
is a negative even integer), there are two different residue contributions as we shift, arising from

• the pole of ζ(1 + w + 2π iτ
L ) at w = τ = 0;

• the zeros of LE(sym2,1 − w − 2iπτ/L) when w = 1/2 and τ = γ L
2π .

We claim the contribution from the pole of ζ(sym2,1 + w + 2π iτ
L ) at w = τ = 0 is g(0)/2. As the

pole of ζ(s) is 1/(s − 1), since s = 1 + 2π iτ
L the 1/τ term from the zeta function has coefficient L

2π i .
We lose the factor of 1/2π i when we apply the residue theorem, there is a minus sign outside the
integral and another from the direction we integrate (we replace the integral from −ε to ε with a
semi-circle oriented clockwise; this gives us a minus sign as well as a factor of 1/2 since we only
have half the contour), and everything else evaluated at τ = 0 is g(0) (remember K (0) = 1).
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We now analyze the contribution from the zeros of LE(sym2, s) as we shift w to 3/2. The
contributions from the non-trivial zeros arise when w = 1/2, and we sum over τ = γ L

2π with

LE (sym2, 1
2 + iγ ) = 0. The exp(−2π i(τ − iw L

2π )) term is O (exp(−L/2)) = O (X−1/2), and the K -piece
is bounded as it is uniformly convergent in this region.

From (3) of Lemma B.1 we have

g

(
γ

L

2π
− i

1

2

L

2π

)
� Xσ/2(τ 2 + 1

)−B
(3.36)

for any B > 0. From (4) of Lemma B.1, we see that the ratio of the Gamma factors is bounded by
a power of |τ |. Finally, the zeta function in the numerator is O (1). Thus the contribution from the
critical zeros of LE(sym2, s) is bounded by

∑
γ

LE (sym2, 1
2 +iγ )=0

X−1/2 Xσ/2
∫

dτ

(τ 2 + 1)B
� X− 1−σ

2 (3.37)

for sufficiently large B . Thus there is a power savings in this term so long as σ < 1; note, however,
that we do not obtain square-root cancellation in this error term for any support. This is very different
than [Mil4], and is due to the different ratio of L-functions arising in this case, leading to a more
complicated Euler product.

The proof is completed by a standard argument showing that the integral over w = 3/2 is neg-
ligible. Arguing as above shows the integral is bounded by O (X−3/2+3σ/2). It suffices to obtain
polynomial in τ bounds for LE (sym2,−1/2 − 2π iτ/L); see for instance [IK]. �
Remark 3.4. We sketch an alternate start of the proof of the above lemma. One difficulty is that
R1(g; X) is defined as an integral and there is a pole on the line of integration. We may write

ζ(s) = (s − 1)−1 + (
ζ(s) − (s − 1)−1). (3.38)

For us s = 1 + 2π iτ
L , so the first factor is just L

2π iτ . As g(τ ) is an even function, the main term of the
integral of this piece is

∞∫
−∞

g(τ )
e−2π iτ

2π iτ
dτ =

∞∫
−∞

g(τ )

(
e−2π iτ

4π iτ
− e2π iτ

4π iτ

)
dτ

= −
∞∫

−∞
g(τ )

sin(2πτ)

2πτ
dτ = − g(0)

2
, (3.39)

where the last equality is a consequence of supp(ĝ) ⊂ (−1,1). The other terms from the (s − 1)−1

factor and the terms from the ζ(s)− (s − 1)−1 piece are analyzed in a similar manner as the terms in
the proof of Lemma 3.3.

Remark 3.5. The proof of Lemma 3.3 follows from shifting contours and keeping track of poles of
ratios of Gamma, zeta and L-functions. Arguing as in Remark 2.3 of [Mil3] we can prove a related
result with significantly less work, specifically, agreement up to any power of the logarithm.



D.K. Huynh et al. / Journal of Number Theory 131 (2011) 1117–1147 1139
4. Generalizing Jutila’s bound

In these notes we generalize Jutila’s bound [Ju1,Ju2,Ju3], and show how it may be applied to ana-
lyze the contribution from odd powers of primes to the 1-level density of families of quadratic twists
of a fixed GLn form. While we are most interested in the case when the fixed form is an elliptic
curve of prime conductor, we prove our bound in greater generality as this may be of use to other
researchers. In particular, this result was implicitly assumed by Rubinstein [Rub] in his analysis of the
main term in the 1-level density of quadratic twists of a fixed form.

Recall Jutila’s bound (see (3.4) of [Ju3]) is

∑
1<n�N

n non-square

∣∣∣∣ ∑
0<d�X

d fund. disc.

χd(n)

∣∣∣∣
2

� N X log10 N, (4.1)

where the d-sum is over even fundamental discriminants at most X . For many applications we need
to modify it further. Let M be a square-free integer. We often need to restrict the d-sum to be over
d relatively prime to M that are congruent to a non-zero square modulo M . We have χd(n) = ( d

n ),

where ( d
n ) is the Kronecker symbol. We can encode the restriction on the d-sum by noting

1

2

(
χd(M)2 + χd(M)

) =
{

1 if d is a non-zero square modulo M and (d, M) = 1,

0 otherwise;
(4.2)

if instead we wanted to detect d a non-square modulo M we would use χd(M)2 − χd(M).

Theorem 4.1 (Generalization of Jutila’s bound). Let M be a square-free positive integer. Then

∑
1<n�N, (n,M)=1

n non-square

( ∑
d�X, (d,M)=1
d≡� �=0 mod M

χd(n)

)2

� N M2 X log10(N M). (4.3)

The same bound holds if instead we restrict the d-sum to be over non-squares modulo M.

Proof. In all sums below, d and d′ denote an even fundamental discriminant. Letting S(N, M, X)

denote our sum of interest, we find

S(N, M, X) =
∑

1<n�N, (n,M)=1
n non-square

( ∑
d�X, (d,M)=1
d≡� �=0 mod M

χd(n)

)2

= 1

4

∑
1<n�N, (n,M)=1

n non-square

( ∑
d�X

χd(n)χd(M)2 +
∑
d�X

χd(n)χd(M)

)2

= S1(N, M, X) + S2(N, M, X) (4.4)

(using the estimate (a + b)2 � 4a2 + 4b2), where

S1(N, M, X) =
∑

1<n�N, (n,M)=1
n non-square

( ∑
d�X

χd(n)χd(M)2
)2

,
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S2(N, M, X) =
∑

1<n�N, (n,M)=1
n non-square

( ∑
d�X

χd(n)χd(M)

)2

. (4.5)

The first sum, S1(N, M, x), is easily estimated using Jutila’s bound. Note that χd(n)χd(M2) =
χd(nM2), and if n is not a square at most N then nM2 is not a square at most N M2. Thus

S1(N, M, X) � N M2 X log10(N M2) � N M2 X log10(N M) (4.6)

(while Jutila’s bound is over all square-free n, as it is a sum of squares we can restrict the sum over n).
The second sum is handled similarly, using χd(n)χd(M) = χd(nM). As M is prime and (n, M) = 1, nM
is not a square at most N M . Thus

S2(N, M, X) � N M X log10(N M). (4.7)

We therefore find

S(N, M, X) � N M2 X log10(N M). � (4.8)

Remark 4.2. Not surprisingly, we restrict to n relatively prime to M in Theorem 4.1; if n = M then
since d ≡ � �= 0 mod d, χd(n) would equal 1 and these terms would contribute on the order of X2 to
the sum.

Remark 4.3. Rubinstein [Rub] calculated the main term in the 1-level density for the family of
quadratic twists of a fixed form on GLn , where the fundamental discriminants used in twisting were
additionally restricted so that the family had constant sign. In his work he implicitly assumed that
Jutila’s bound (which was the key arithmetic ingredient in the number theory calculations of the 1-
level density for the family of quadratic characters) still held when the fundamental discriminants
were further restricted as above; Theorem 4.1 justifies this assumption, and almost suffices to com-
plete the analysis. Unlike our present work, where we are attempting to determine all lower order
terms up to square-root cancellation, in [Rub] the goal is just to show agreement between the main
term and the predictions from random matrix theory. Thus we do not need to identify the term cor-
responding to the 1/L term from (2.33). We thus simply follow the argument in [Rub] and trivially
bound the contribution from primes dividing M (which we now assume is just square-free and not
necessarily prime).

Appendix A. Sums over fundamental discriminants

We generalize the calculations in Appendix B of [Mil4] to handle our family, which has the added
restriction of requiring our even fundamental discriminants d to be a non-zero square modulo a
prime M . We can encode the restriction on the d-sum by noting

1

2

(
χd(M)2 + χd(M)

) =
{

1 if d is a non-zero square modulo M and (d, M) = 1,

0 otherwise;
(A.1)

if instead we wanted to detect d a non-square modulo M we would use χd(M)2 − χd(M).

Lemma A.1. Let d denote an even fundamental discriminant at most X, and set

X∗ =
∑
d�X

d=� �≡0 mod M

1 (A.2)
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for an odd prime M. Then5

X∗ = 3

π2
X · M

2(M + 1)
+ O

(
X1/2) (A.3)

and for p � X1/2 we have

∑
d�X, p|d

d=� �≡0 mod M

1 =
{

X∗
p+1 + O (X1/2) if p � M,

0 if p | M.
(A.4)

Proof. We first prove the claim for X∗ , and then indicate how to modify the proof when p | d. We
could show this by recognizing certain products as ratios of zeta functions or by using a Taube-
rian theorem; instead we shall give a straightforward proof suggested to us by Tim Browning (see
also [OS1]).

We first assume that d ≡ 1 mod 4, so we are considering even fundamental discriminants {d � X:
d ≡ 1 mod 4, μ(d)2 = 1, d = � �≡ 0 mod M}; it is trivial to modify the arguments below for d such that
d/4 ≡ 2 or 3 modulo 4 and μ(d/4)2 = 1. Let χ4(n) be the non-trivial character modulo 4: χ4(2m) = 0
and

χ4(n) =
{

1 if n ≡ 1 mod 4,

0 if n ≡ 3 mod 4.
(A.5)

We have

S(X) =
∑

d�X, d=� �≡0 mod M
μ(d)2=1, d≡1 mod 4

1

=
∑
d�X
2�d

μ(d)2 · 1 + χ4(d)

2

χd(M)2 + χd(M)

2

= 1

4

∑
d�X

(2M,d)=1

μ(d)2 + 1

4

∑
d�X

μ(d)2[χ4(d)
(
χd(M)2 + χd(M)

) − χ4(d)2χd(M)
]

= S1(X) + S2(X). (A.6)

By Möbius inversion

∑
m2|d

μ(m) =
{

1 if d is square-free,

0 otherwise.
(A.7)

Thus

5 We chose to write X∗ to facilitate comparison with the cardinality of the corresponding family from [Mil4], where we did
not impose the constraint that d equals a non-zero square modulo M .
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S1(X) = 1

4

∑
d�X

(2M,d)=1

∑
m2|d

μ(m)

= 1

4

∑
m�X1/2

(2M,m)=1

μ(m) ·
∑

d�X/m2

(2M,d)=1

1

= 1

4

∑
m�X1/2

(2M,m)=1

μ(m)

(
X

m2

φ(2M)

2M
+ O (1)

)

= X

8

M − 1

M

∞∑
m=1

(2M,m)=1

μ(m)

m2
+ O

(
X1/2)

= 1

8

M − 1

M

6

ζ(2)
·
(

1 − 1

22

)−1(
1 − 1

M2

)−1

· X + O
(

X1/2)

= 1

π2

M

M + 1
X + O

(
X1/2) (A.8)

(because we are missing the factors corresponding to 2 and M in 1/ζ(2) above). To make this compa-
rable to the sum from [Mil4] (where we did not have the condition that d = � �≡ 0 mod M) we may
rewrite the above as

S1(X) = 2

π2
X · M

2(M + 1)
. (A.9)

Arguing in a similar manner shows S2(X) = O (X1/2); this is due to the presence of a non-principal
character in each of the three sums of modulus at most 8M (we use quadratic reciprocity to replace
χd(M) with a character of conductor at most 8M). For example, let χ denote any of the three non-
principal characters in the expansion of S2(X). Such a term contributes

1

4

∑
m�X1/2

χ
(
m2)μ(m)

∑
d�X/m2

χ(d) � X1/2 (A.10)

(because we are summing χ at consecutive integers, and thus this sum is at most 8M).
A similar analysis shows that the number of even fundamental discriminants d � X with d/4 ≡ 2

or 3 modulo 4 is 1
π2 X · M

2(M+1)
+ O (X1/2). Thus

∑
d�X, d=� �≡0 mod M
d an even fund. disc.

1 = X∗ = 3

π2
X

M

2(M + 1)
+ O

(
X1/2). (A.11)

We may trivially modify the above calculations to determine the number of even fundamental
discriminants d � X with p | d for a fixed prime p. We first assume p ≡ 1 mod 4. In (A.6) we replace
μ(d)2 with μ(pd)2, d � X with d � X/p, (2M,d) = 1 with (2Mp,d) = 1. As d and p are now relatively
prime (after this change of variables), μ(pd) = μ(p)μ(d) and the main term becomes

S1;p(X) = 1

4

∑
d�X/p

(2Mp,d)=1

∑
m2|d

μ(m)
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= 1

4

∑
m�(X/p)1/2

(2Mp,m)=1

μ(m) ·
∑

d�(X/p)/m2

(2Mp,d)=1

1

= 1

4

∑
m�(X/p)1/2

(2Mp,m)=1

μ(m)

(
X/p

m2
· φ(2Mp)

2Mp
+ O (1)

)

= (p − 1)(M − 1)X

8Mp2

∞∑
m=1

(2Mp,m)=1

μ(m)

m2
+ O

(
X1/2)

= 1

8

6

ζ(2)
·
(

1 − 1

22

)−1(
1 − 1

p2

)−1(
1 − 1

M2

)−1
(p − 1)(M − 1)X

Mp2
+ O

(
X1/2)

= 2X

(p + 1)π2

M

2(M + 1)
+ O

(
X1/2) = 2X∗/3

p + 1
+ O

(
X1/2), (A.12)

and the cardinality of this piece is reduced by (p + 1)−1 (note above we used #{n � Y : (2p,n) =
1} = p−1

2p Y + O (1)). A similar analysis as before shows that S2;p(X) = O (X1/2); the case of even
fundamental discriminants d with d/4 ≡ 2 or 3 modulo 4 follows analogously.

We need to trivially modify the above arguments if p ≡ 3 mod 4 (if p = M these arguments are
not applicable, although in this case the result is clearly zero as we are only considering d = � �≡
0 mod M , and such d are never divisible by M). If for instance we require d ≡ 1 mod 4 then instead
of using the factor μ(d)2(1+χ4(d))/2 we use μ(pd)2(1−χ4(d))/2, and the rest of the proof proceeds
similarly.

It is a completely different story if p = 2. Note if d ≡ 1 mod 4 then 2 never divides d, while if
d/4 ≡ 2 or 3 modulo 4 then 2 always divides d. There are 3X/π2 · M

2(M+1)
+o(X1/2) even fundamental

discriminants at most X , and X/π2 M
2(M+1)

+ O (x1/2) of these are divisible by 2. Thus, if our family is
all even fundamental discriminants, we do get the factor of 1/(p + 1) for p = 2, as one-third (which
is 1/(2 + 1)) of the fundamental discriminants in this family are divisible by 2. �

In our analysis of the terms from the L-functions Ratios Conjecture, we shall need a partial sum-
mation consequence of Lemma A.1.

Lemma A.2. Let F (X) denote all even fundamental discriminants congruent to a non-zero square modulo M
that are at most X, and set X∗ = ∑

d∈F (X) 1. Let z = τ − iw L
2π with w ∈ [0,1/2] and L = log(

√
M X/2π).

Then

∑
d∈F (X)

(√
Md

2π

)− 2π iz
L

= X∗e−2π iz
(

1 − 2π iz

L

)−1

+ O
(

X1/2−w log X
)
. (A.13)

Proof. Note

∑
d∈F (X)

(√
Md

2π

)− 2π iz
L

=
∑

d∈F (X)

exp

(
−2π iz

√
M/2π

L

)
exp

(
−2π iz

L
log d

)

= exp

(
−2π iz + 2π iz

log X

L

) ∑
d∈F (X)

d−2π iz/L . (A.14)
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We now analyze
∑

d∈F (X) d−2π iz/L . By Lemma A.1 we have

∑
d∈F (u)

1 = 3u

π2

M

2(M + 1)
+ O

(
u1/2). (A.15)

Therefore by partial summation we have

∑
d∈F (X)

d−2π iz/L = (
X∗ + O

(
X1/2))X− 2π iz

L

−
X∫

1

(
3u

π2

M

2(M + 1)
+ O

(
u1/2))u− 2π iz

L
−2π iz

L

du

u
. (A.16)

As w ∈ [0,1/2], the error terms contribute at most O (X1/2−w log X) (we need to add the log X as if
w = 1/2 the integral of the error is log X ); further, we may absorb the lower boundary term of the
integral in the O (X1/2−w log X) error term, and we find

∑
d∈F (X)

d−2π iz/L = X∗ exp

(
−2π iz log X

L

)
+ 3

π2

M

2(M + 1)

X1− 2π iz
L

1 − 2π iz
L

+ O
(

X1/2−w log X
)

= X∗ exp

(
−2π iz log X

L

)
+ X∗ exp

(
−2π iz log X

L

)
+ 2π iz

L

∞∑
ν=0

(
2π iz

L

)ν

+ O
(

X1/2−w log X
)

= X∗ exp

(
−2π iz log X

L

)(
1 − 2π iz

L

)−1

+ O
(

X1/2−w log X
)
. (A.17)

Substituting yields the claim. �
Appendix B. Schwartz function expansions

Let φ be an even Schwartz function and φ̂ be its Fourier transform (φ̂(ξ) = ∫
φ(x)e−2π ixξ dx); we

often assume supp(φ̂) ⊂ (−σ ,σ ) for some σ < ∞. We set

H(s) = φ

(
s − 1

2

i

)
. (B.1)

While H(s) is initially defined only when �(s) = 1/2, because of the compact support of φ̂ we may
extend it to all of C:

φ(x) =
∞∫

−∞
φ̂(ξ)e2π ixξ dξ,

φ(x + iy) =
∞∫

φ̂(ξ)e2π i(x+iy)ξ dξ,
−∞



D.K. Huynh et al. / Journal of Number Theory 131 (2011) 1117–1147 1145
H(x + iy) =
∞∫

−∞

[
φ̂(ξ)e2π(x− 1

2 )
] · e2π iyξ dξ. (B.2)

Note that H(x + iy) is rapidly decreasing in y (for a fixed x it is the Fourier transform of a nice
function, and thus the claim follows from the Riemann–Lebesgue lemma).

The following result is useful in expanding some terms in the Ratios’ prediction.

Lemma B.1. Let supp(ĝ) ⊂ (−σ ,σ ) ⊂ (−1,1) and L = log(
√

M X/2π).

(1) For w � 0, g(τ − iw L
2π ) � Xσ w(τ 2 + (w L

2π )2)−B for any B � 0.
(2) For 0 < a < b we have |	(a ± iy)/	(b ± iy)| = O a,b(1).

Proof. (1) As g(τ ) = ∫
ĝ(ξ)e2π iξτ dξ , we have

g(τ − iy) =
∞∫

−∞
ĝ(ξ)e2π i(τ−iy)ξ dξ

=
∞∫

−∞
ĝ(2n)(ξ)

(
2π i(τ − iy)

)−n
e2π i(τ−iy)ξ dξ

� e2π yσ (τ − iy)−2n; (B.3)

the claim follows by taking y = wL/2π .
(2) As |	(x − iy)| = |	(x + iy)|, we may assume all signs are positive. The claim follows from the

definition of the Beta function:

	(a + iy)	(b − a)

	(b + iy)
=

1∫
0

ta+iy−1(1 − t)b−a−1 = O a,b(1). � (B.4)

Supplementary material

The online version of this article contains additional supplementary material. Please visit
doi:10.1016/j.jnt.2010.12.004.
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