JOURNAL OF NUMBER THEORY 15, 164-181 (1982)

On the irreducibility of a Class of Polynomials, III

K. GYÖRY

Mathematical Institute. Kossuth Lajos University, 4010 Debrecen, Hungary

Communicated by H. Zassenhaus

Received December 15, 1980; revised May 8, 198 1

This work is a continuation and extension of our earlier articles on irreducible polynomials. We investigate the irreducibility of polynomials of the form $g(f(x))$ over an arbitrary but fixed totally real algebraic number field \mathbb{L} , where $g(x)$ and $f(x)$ are monic polynomials with integer coefficients in \mathbb{L} , g is irreducible over \mathbb{L} and its splitting field is a totally imaginary quadratic extension of a totally real number field. A consequence of our main result is as follows. If g is fixed then, apart from certain exceptions f of bounded degree, $g(f(x))$ is irreducible over $\mathbb L$ for all f having distinct roots in a given totally real number field.

1. INTRODUCTION

Let $f(x)$ denote an arbitrary monic polynomial having distinct integer roots. I. Schur conjectured (see [22, 5]) that for $g(x) = x^{2^n} + 1$, $n \ge 1$, $g(f(x))$ is irreducible over the rational field Q. Later Brauer et al. [6] posed the question of the irreducibility over $\mathbb Q$ of $g(f(x))$ for arbitrary irreducible polynomials $g(x) \in \mathbb{Z}[x]$ and showed that if $g(x)$ is of degree <4 and different from cx, then, up to the obvious translations $x \to x + a$ with $a \in \mathbb{Z}$, there are only finitely many $f(x)$ with distinct integer roots for which $g(f(x))$ is reducible and these f can be effectively determined. When $g(x)$ is linear, this statement can be deduced from an earlier theorem of Pólya [18].

Numerous authors obtained results in this direction (for references see, e.g., [6, 19, 25, 7, 8, 15]). For polynomials $g(x)$ of higher degree the first results were established by Seres [23-25]. In [25, 26] he proved Schur's conjecture in a more general form. Further, he solved [27] the Brauer-Hopf problem in the above sense for every $g(x)$ whose roots are complex units of a cyclotomic field.

In [7] the Brauer-Hopf problem has been settled for a much wider class of $g(x)$, namely for every monic polynomial $g(x)$ whose splitting field is a totally imaginary quadratic extension of a totally real number field.

Furthermore, the results of $[25-27]$ have been generalized to these polynomials $g(x)$.

In [7, 8] we extended our investigations to the case when the $f \in \mathbb{Z}[x]$ are manic polynomials having distinct real roots. We showed [8] that in this more general situation one can get general irreducibility theorems only if $m = \deg(f)$ is large relative to the degree of the splitting field of f or if m is a prime, and we obtained [8] in both cases general results. In order to formulate and prove our irreducibility theorems we associated to every pair of polynomials f , g a certain graph with vertex set consisting of the roots of $f(x)$ and showed [7] that if this graph has a connected component with s vertices, then the number of irreducible factors of $g(f(x))$ is not greater than $\deg(f)/s$. Applying a theorem of Baker ([1]; see also [2]) concerning the Thue equation, we proved [8] that if $m = \deg(f)$ is sufficiently large relative to $g(0)$ and certain parameters of the splitting field of $f(x)$ then the graph in question has a connected component with at least $|(m + 1)/2|$ vertices and so, in view of our estimate cited above, $g(f(x))$ is irreducible or the product of two irreducible factors of the same degree. We conjectured $[8]$ that here the lower bound $[(m + 1)/2]$ can be further improved (i.e., that for fixed $g(x)$, $g(f(x))$ is always irreducible if m is sufficiently large).

The resolution of a diophantine problem $|12|$ enabled us to confirm $|13|$ the above conjecture. In this paper, using our recent theorems $[13]$ on the graphs mentioned above and a theorem of $[11]$, we considerably improve and generalize the results of [25-27, 7,8] concerning the Brauer-Hopf problem. We obtain general results on the irreducibility of polynomials of the form $g(f(x))$ over an arbitrary but fixed totally real algebraic number field \mathbb{L} , where $f(x)$ and $g(x)$ are monic polynomials with integer coefficients in \mathbb{L} , the roots of f are totally real and distinct, g is irreducible over \mathbb{L} and its splitting field is a totally imaginary quadratic extension of a totally real number field. Our main result (Theorem 1) implies that if g is fixed then, apart from certain exceptions f of bounded degree, $g(f(x))$ is irreducible over $\mathbb L$ for all f having distinct roots in a fixed totally real number field. For polynomials g of the above type Theorem 1 may be regarded as a solution of a generalized version of the Brauer-Hopf problem.

We show that our theorems cannot be extended to arbitrary number fields $\mathbb L$ and to arbitrary irreducible polynomials $g(x)$ with integer coefficients in $\mathbb L$.

2. NOTATION

Before stating our theorems. we establish our notation and make some preliminary remarks.

Throughout Section 3 $\mathbb L$ and $\mathbb K$ denote totally real algebraic number fields with ring of integers \mathbb{Z}_L and \mathbb{Z}_K , respectively. We suppose that $\mathbb{L} \subseteq \mathbb{K}$. Let *l*,

 D_L and R_L (resp. k, D_K and R_K) be the degree, the discriminant and the regulator of \mathbb{L} (resp. of \mathbb{K}). Let r denote the number of fundamental units in K and let $R_K^* = \max(R_K, e)$. We signify by $\psi_K(x)$ the number of pairwise non-associate algebraic integers β in K with $|N_{K/O}(\beta)| \leq x$. We have (see (29)

$$
\psi_K(x) \leqslant e^{20k^2} |D_K|^{1/(k+1)} (\log |2D_K|)^k x. \tag{1}
$$

Let $f, g \in \mathbb{Z}_L[x]$. In order that $g(f(x))$ be irreducible over \mathbb{L} , it is necessary that $g(x)$ be irreducible over \mathbb{L} . However, this condition is not sufficient in general. Under the condition below concerning the splitting field of g we obtain general irreducibility theorems for the polynomials $g(f(x))$. In order to briefly state our theorems we introduce the following notation:

Let $G \geq 1$ denote an arbitrary constant and let $P_L(G)$ denote the set of monic polynomials $g \in \mathbb{Z}_L[x]$ having the following properties: g is irreducible over \mathbb{L} , the splitting field of g over \mathbb{L} is a totally imaginary quadratic extension of a totally real number field and

$$
|N_{L/0}(g(0))|^{1/n} \le G,\tag{2}
$$

where $n = \deg(g)$.

It is obvious that, e.g., $P₀(G)$ contains all cyclotomic polynomials and $P_L(G)$ contains infinitely many cyclotomic polynomials for every $G \geq 1$.

The polynomials f, $f^* \in \mathbb{Z}_L[x]$ will be called \mathbb{Z}_L -equivalent if $f(x) =$ $f^*(x + a)$ with some $a \in \mathbb{Z}_L$. Clearly $g(f(x))$ and $g(f^*(x))$ are simultaneously reducible or irreducible over \mathbb{L} for any $g \in \mathbb{Z}_1[x]$.

As usual, $|f|$ will denote the maximum of the absolute values of the conjugates of the coefficients of a polynomial $f(x)$ with algebraic coefficients.

First we show that if $g \in P_L(\sigma)$ for some $\sigma \geqslant 1$, then, apart from certain exceptions, $g(f(x))$ is irreducible over $\mathbb L$ for all $f \in \mathbb Z_L[x]$ having distinct roots in K . To simplify the description of the exceptions we remark that among the polynomials f, g under consideration there exist monic polynomials f, $g \in \mathbb{Z}$, [x] with the following properties:

$$
f(x) = f_1(x) f_2(x), \quad \text{where} \quad f_1(x) - f_2(x) = t \in \mathbb{Z}_{L(t)},
$$

$$
f_i(x) - f_i(0) \in \mathbb{Z}_L[x], f_i(0) \in \mathbb{Z}_{L(t)}, i = 1, 2,
$$
 (3)

and t is a non-zero totally real algebraic integer with $|\mathbb{L}(t): \mathbb{L}| \leq 2$. Each root $\beta \in \mathbb{C}$ of g satisfies

$$
\beta = \varphi(\varphi - t),\tag{4}
$$

where $\varphi + f_2(0) \in \mathbb{Z}_{L(\beta)}$ with some non-zero $\varphi \in \mathbb{Z}_{L(\beta,0)}$.

It is easy to see that, e.g., $f(x) = (x + t)x$ $(0 \neq t \in \mathbb{Z}_L)$ and the minimal polynomial $g(x)$ of $i(i - t)$ over $\mathbb L$ satisfy (3) and (4). Further, if $\sqrt{d} \in \mathbb K$ for some non-zero $d \in \mathbb{Z}_L$ and $a^2 - db^2 = t$ with non-zero $a, b \in \mathbb{Z}_L$, then $f(x) = (x^2 - 2ax + t)(x^2 - 2ax)$ and the above $g(x)$ also have the required properties. Further (more complicated) examples can be found in 18).

In the case of polynomials f, g having the properties (3) and (4)

$$
f(x) - \beta = (f_1(x) - \varphi)(f_2(x) + \varphi)
$$

over $L(\beta)$ and so, by Lemma 1, $g(f(x))$ is reducible over L. Further, if $g \in P_L(G)$, then by Lemma 2 $|N_{L(O/O)}(t)| \leq (2^l G)^{\{L(O):L\}}$.

Our main result is then as follows:

THEOREM 1. Let \mathbb{L} , \mathbb{K} and $P_i(G)$ be as above, and let $f \in \mathbb{Z}$, $|x|$ be a monic polynomial of degree m with distinct roots in \mathbb{K} . If $g(f(x))$ is reducible over \mathbb{L} for some $g \in P$, (G) then

(i) m is even and $\leq 2(r + 1) \psi_K^2(C)$, f is of the form (3), each root of g satisfies (4) and $g(f(x))$ is the product of two irreducible factors of equal degree, or

(ii) $2 \le m \le 2C^5$, f is \mathbb{Z}_1 -equivalent to a polynomial of the form $\eta^{m} f^{*}(\eta^{-1} x) \in \mathbb{Z}_{1}[x]$, where η is a unit in $\mathbb{L}, f^{*} \in \mathbb{Z}_{1}[x]$ satisfies

$$
\left|\overline{f^*}\right| < \exp\{m(k+2) C^{10} (\log C)^4\} \tag{5}
$$

with

$$
C = \max\{(2G^{2/l})^k, |D_K|^{k^2}(\log|2D_K|)^{2r/5} \times \exp[(25(r+3)k)^{20(r+2)}R_K^2 \log R_K^*]\}
$$

and $g^*(f^*(x))$ is reducible over $\mathbb L$ where

$$
g^*(x) = \eta^{-mn} g(\eta^m x) \in P_L(G), \qquad n = \deg(g).
$$

For $\mathbb{L} = \mathbb{Q}$ and $[\mathbb{K} : \mathbb{Q}] \leq 2$ this result was proved in [7,8] as a generalization of some theorems of Seres [25, 27], The special case $\mathbb{L} = \mathbb{Q}$ of Theorem 1 is a considerable improvement of the main result (Theorem la) of [8]. As remarked in the Introduction, in case of polynomials $g \in P_L(G)$ our above theorem may be regarded as a solution of a generalization of the Brauer-Hopf problem.

As we mentioned, there exist polynomials f , g with property (i) and these exceptions are connected with the Tarry-Escott problem (cf. $[21, 8]$). Further, for suitably chosen $\mathbb L$ and $\mathbb K$ there are infinitely many g and, for each of these g, there are infinitely many pairwise inequivalent f such that f, g have the property (i), but do not have the property (ii). This is the case, e.g., if $\mathbb{L} = \mathbb{Q}$ and K contains a quadratic subfield (see [8] and the second example given before Theorem 1). In these examples $t \in \mathbb{Z}_l$, but it is easy to construct polynomials f, g satisfying (i) with $t \notin \mathbb{L}$. Finally we remark that for suitable f there are infinitely many g for which (i) holds.

There exists $f \in \mathbb{Z}$, |x| such that f, g have property (ii) for infinitely many $g \in P_L(G)$ (see, e.g., the exceptions in Theorem 6 of [7]). Apart from the exceptions f , g described in (i), Theorem 1 reduces the question of the irreducibility of polynomials $g(f(x))$ in question to that of the irreducibility of $g(f^*(x))$, where the polynomials $f^* \in \mathbb{Z}_L[x]$ satisfy (5) and deg(f^*) = $m \leq 2C^5$. Clearly there are only finitely many f^* with these properties and these f^* can be effectively determined.

It is evident that in case (ii) the reducibility of $g^*(f^*(x))$ implies the reducibility of $g(f(x))$. By using a well-known algorithm of Zassenhaus [31] we can check whether $g^*(f^*(x))$ is reducible over \mathbb{L} .

Since $R_K \ge 0$, 373 (see [17]), from (1) we get $2(r + 1)$ $\psi_K^2(C) \le C^3$ and Theorem 1 yields the following:

COROLLARY. Let $f(x)$, C and $P_L(G)$ be as in Theorem 1. If $deg(f) > 2C⁵$ then $g(f(x))$ is irreducible over \mathbb{L} for every $g \in P$ _t(G).

This corollary also improves and generalizes the main result of $[8]$.

It is easy to verify that if $p \in \mathbb{Z}$, $[x]$ is a monic irreducible polynomial over \mathbb{L} , its splitting field is totally real, $a_1, ..., a_m \in \mathbb{Z}_L$ are distinct and m is sufficiently large then $f(x) = p(x + a_1) \cdots p(x + a_m)$ satisfies the conditions of the above corollary.

THEOREM 2. Let \mathbb{L} , \mathbb{K} , C and $P_L(G)$ be defined as in Theorem 1, and let $f \in \mathbb{Z}_L[x]$ be a monic polynomial with more than $max(deg(f)/2 + 1, 2C^5)$ distinct roots in K. Then $g(f(x))$ is irreducible over \mathbb{L} for every $g \in P$ _r(G).

In the case $\mathbb{L} = \mathbb{K} = \mathbb{Q}$ a slightly more precise result was established in [71.

Theorem 2 also constains the above corollary of Theorem 1.

Our Theorems 1 and 2 do not remain valid for any number field $\mathbb L$ and for any monic irreducible polynomial $g \in \mathbb{Z}_L[x]$. Indeed, let $\mathbb{L} \subseteq \mathbb{K}$ be any (not necessarily totally real) algebraic number fields having infinitely many units, $f \in \mathbb{Z}_L[x]$ a monic polynomial of degree m whose roots are distinct units of K and $g(x) = x - f(0)$. Then $|N_{L/0}(g(0))| = 1$, m can be arbitrarily large relative to C and $x | g(f(x))$ in $\mathbb{Z}_L[x]$.

We consider next the case when the polynomials $f \in \mathbb{Z}_L[x]$ are of prime degree. As usual, $D(f)$ will denote the discriminant of a polynomial $f(x)$.

THEOREM 3. Let $\mathbb L$ and $P_L(G)$ be as in Theorem 1, and let $f \in \mathbb Z$, $|x|$ be a monic irreducible polynomial over $\mathbb L$ with totally real splitting field. If $deg(f) = p$ is a prime and

$$
|N_{L/Q}(D(f))| > (2^l G)^{p(p-1)}
$$
\n(6)

then $g(f(x))$ is irreducible over \mathbb{L} for every $g \in P$, (G).

The case of Theorem 3 when $\mathbb{L} = \mathbb{Q}$ was proved in [8]. Theorem 3 together with Theorem 1 of [11] gives the following:

THEOREM 4. Let $\mathbb L$ and $P_L(G)$ be as in Theorem 1, and let $f \in \mathbb Z_L[x]$ be a monic irreducible polynomial over $\mathbb L$ with totally real splitting field. If $deg(f) = p$ is a prime and $g(f(x))$ is reducible over \mathbb{L} for some $g \in P_f(G)$, then f is \mathbb{Z}_L -equivalent to a polynomial of the form $\eta^p f^*(\eta^{-1}x)$, where η is a unit, $f^* \in \mathbb{Z}$, $[x]$ satisfies

$$
|f^*| < \exp\{c_1\left[\left(|D_L|G^{p-1}\right)^{3/2}(\log|2D_LG|)^{l+1}|^{4p^3}\right] \tag{7}
$$

with an effectively computable positive constant $c_1 = c_1(l, p)$ and $g^*(f^*(x))$ is reducible over \mathbb{L} , where $g^*(x) = \eta^{-pn}g(\eta^px) \in P_L(G)$, $n = \deg(g)$.

Our Theorem 4 generalizes Theorem 2a of $[8]$ and Theorem 4 of $[10]$.

There are only finitely many $f^* \in \mathbb{Z}$, $[x]$ of degree p with the property (7) and all these f^* can be effectively determined. Similarly to Theorem 1, Theorem 4 reduces the problem of the irreducibility of polynomials $g(f(x))$ of the type considered to the case of the polynomials $g(f^*(x))$.

Proposition 6 of [8] shows that our Theorems 3 and 4 cannot be extended to polynomials f of composite degree. Further, Theorems 3 and 4 do not remain true if the splitting field of f or of g does not possess the required property (see, e.g., Proposition 7 in [8]).

4. LEMMAS

To prove our theorems we need some lemmas. We keep the notations of Section 3, but without assuming that the fields \mathbb{L} , \mathbb{K} are totally real.

LEMMA 1. (Capelli). Let L be any algebraic number field, $f, g \in \mathbb{Z}$, $[x]$ monic polynomials, g irreducible over $\mathbb L$ and β one of the roots of g in $\mathbb C$. If

$$
f(x) - \beta = \prod_{i=1}^s (\pi_i(x))^{k_i}
$$

is the irreducible factorization of $f(x) - \beta$ over $\mathbb{L}(\beta)$ then

$$
g(f(x)) = \prod_{i=1}^{s} (N(\pi_i(x)))^{k_i} \qquad (N \text{ denotes } N_{L(\beta)(x)/L(x)})
$$

is the irreducible factorization of $g(f(x))$ over \mathbb{L} .

Proof. See [30] or [20]. We remark that Capelli proved this theorem in a less general form (cf. [30]).

LEMMA 2. Let M be a totally imaginary quadratic extension of a totally real algebraic number field, and let α and β be non-zero algebraic integers in M. If α/β is not real and $\alpha + \beta$ is real then

$$
N_{M/Q}\left(\frac{\alpha+\beta}{2}\right)\leq N_{M/Q}(\alpha\beta).
$$

Proof. This is Corollary 3.2 in [9].

Let M be an arbitrary algebraic number field, and let $\mathcal{A} = {\alpha_1, ..., \alpha_m}$ be a finite subset of \mathbb{Z}_M . Using the terminology of [4], for given $N \geq 1$ we denote by $\mathscr{G}_{M}(\mathscr{A}, N)$ the graph whose vertex set is \mathscr{A} and whose edges are the unordered pairs $[\alpha_i, \alpha_j]$ having the property

$$
|N_{M/O}(\alpha_i - \alpha_j)| > N.
$$

It is clear that the graph $\mathcal{G}_{M}(\mathcal{A}, N)$ defined above is uniquely determined by M, \mathscr{A} and N.

LEMMA 3. Let M be as in Lemma 2, $f_1 \in \mathbb{Z}_M[x]$ a monic polynomial with real coefficients, $\alpha_1, ..., \alpha_s$ $s \geq 2$ distinct real algebraic integers in M, and β a non-real algebraic integer in M. Let $\mathcal{A} = {\alpha_1, ..., \alpha_s}$, and let $\mathbb{M}' \supseteq \mathbb{M}$ be any totally imaginary quadratic extension of a totally real algebraic number field. If the graph $\mathcal{G}_M(\mathcal{A}, N_{M/O}(2\beta))$ is connected then $F(x)=f_1(x)(x-\alpha_1)\cdots(x-\alpha_s)-\beta$ has no irreducible factor of degree less than s over M'. If in particular $s > \deg(F)/2$, then $F(x)$ is irreducible over M' .

Proof. This is Lemma 7 in $[8]$. It is not valid for arbitrary number fields M , M' (see [7, 8]). Further, the estimate given for the degree of irreducible factors of F is in general best possible (cf. $[8]$).

Now let K be an arbitrary algebraic number field with the parameters specified in Section 2. Suppose

$$
N \geqslant |D_K|^{k^2} (\log |2D_K|)^{2r/5} \exp \{ (25(r+3)k)^{20(r+2)} R_K^2 \log R_K^* \} \tag{8}
$$

and consider the graph $\mathcal{G}_{\kappa}(\mathcal{A}, N)$, where $\mathcal{A} = {\alpha_1, ..., \alpha_m}$ is a finite subset of \mathbb{Z}_κ with $m \geq 2$ elements. Let $\boxed{\alpha}$ denote the maximum of the absolute values of the conjugates of an algebraic number α .

LEMMA 4. Let N and $\mathscr{G}_K(\mathscr{A}, N)$ be as above. Then at least one of the following cases holds:

(i) $\mathcal{G}_k(\mathcal{A}, N)$ has a connected component with more than m/2 vertices,

(ii) m is even and $\leq 2(r+1)\psi^2_K(N)$, $\mathcal{G}_K(\mathcal{A}, N)$ has two connected components with $m/2$ vertices and both components are complete,

(iii) $m \leq 2N^5$ and there exist a unit ε in $\mathbb K$ and $\alpha_{ij} \in \mathbb Z_K$ such that $\alpha_i - \alpha_j = \varepsilon \alpha_{ij}$ for all $\alpha_i, \alpha_j \in \mathcal{A}$ and

$$
\max_{i,j} |\overline{\alpha_{ij}}| < \exp\{N^{10} (\log N)^4\}.\tag{9}
$$

Proof. This lemma is a simple consequence of Theorems 1 and 2 of $\vert 13 \vert$ (see also the remark after Theorem 1 in [13]).

LEMMA 5. Let $\mathcal{G}_{\kappa}(\mathcal{A}, N)$ be defined as above with N satisfying (8) and suppose that the number m of vertices of $\mathcal{G}_K(\mathcal{A}, N)$ is greater than $2N^5$. Then $\mathcal{F}_{\kappa}(\mathcal{A}, N)$ has a connected component with at least $m - 1$ vertices.

Proof. Lemma 5 is an immediate consequence of Theorem 2 of $[13]$.

LEMMA 6. Let M and M' be as in Lemma 3, K a real subfield of M , $\alpha_1,...,\alpha_m$ m ≥ 2 distinct algebraic integers in $\mathbb K$ and β a non-real algebraic integer in M. Suppose that N satisfies (8) and $N \ge N_{M/0}(2\beta^2)^{1/[M:K]}$. If $F(x) = (x - a_1) \cdots (x - a_m) - \beta$ is reducible over \mathbb{M}' then

(i) m is even and $\leq 2(r + 1) \psi_{\kappa}^2(N)$, $(x - \alpha_1) \cdots (x - \alpha_m) = f_1(x) f_2(x)$ with $f_1(x) - f_2(x) = t \in \mathbb{Z}_K$ and $N_{M/0}(t) \le N_{M/0}(2\beta)$, $\beta = \varphi(\varphi - t)$ with $\varphi \in \mathbb{Z}_M$, and

$$
F(x) = (f_1(x) - \varphi)(f_2(x) + \varphi)
$$

is the factorization of F into irreducible polynomials in $\mathbb{M}^{\prime}[x]$, or

(ii) $m \leq 2N^5$, there exist a unit $\varepsilon \in \mathbb{K}$ and $\alpha_{ij} \in \mathbb{Z}_K$ such that $a_i - a_j = \varepsilon a_{ij}$ for all a_i , a_i and (9) holds.

By the help of the example mentioned after Theorem 1 it is easy to show that in Lemma 6 both cases (i) and (ii) can occur.

In case (i) $\varphi + (t - \varphi) \in \mathbb{Z}_M$ and $-\beta = \varphi(t - \varphi) \in \mathbb{Z}_M$, hence either $\varphi \in \mathbb{Z}_M$ or φ is a quadratic algebraic integer over M.

In case (ii) $F(x)$ is \mathbb{Z}_k -equivalent to $x(x - \varepsilon \alpha_{21}) \cdots (x - \varepsilon \alpha_{m1}) - \beta$ and this polynomial is reducible over M' if and only if $x(x-a_{21}) \cdots (x-a_{m1}) - \varepsilon^{-m}\beta$ is also reducible.

Proof of Lemma 6. We shall use some ideas of the proof of Theorem 1a of [8].

Suppose that $F(x) = (x - a_1) \cdots (x - a_m) - \beta$ is reducible over M'. Write $\mathcal{A} = {\alpha_1,...,\alpha_m}$ and consider the graphs $\mathcal{G}_{K}(\mathcal{A}, N)$ and $\mathcal{G}_{M}(\mathcal{A}, N_{M/O}(2\beta))$. It follows from

$$
|N_{K/Q}(\alpha_i - \alpha_j)| > N
$$

that

$$
N_{M/O}(\alpha_i - \alpha_i) > N^{[M:K]} \ge N_{M/O}(2\beta).
$$

Hence any edge $[\alpha_i, \alpha_j]$ of $\mathcal{G}_k(\mathcal{A}, N)$ is an edge of $\mathcal{G}_M(\mathcal{A}, N_{M/O}(2\beta))$. Since $F(x)$ is reducible, by Lemma 3 $\mathcal{F}_M(\mathcal{A}, N_{M/Q}(2\beta))$ has no connected component with more than $m/2$ vertices and so $\mathcal{G}_k(\mathcal{A}, N)$ has the same property. Consequently, by Lemma 4 $\mathscr{L}_{k}(\mathscr{A}, N)$ has the properties (ii) or (iii) specified in Lemma 4.

First suppose that $\mathcal{G}_K(\mathcal{A}, N)$ has the property (ii) occurring in Lemma 4, i.e., that m is even, say $m = 2m'$, $m \leq 2(r + 1) \psi_k^2(N)$, $\mathcal{F}_k(\mathcal{A}, N)$ has two connected components with m' vertices and both components are complete. Since $\mathcal{G}_{M}(\mathcal{A}, N_{M/O}(2\beta))$ has no connected component with more than m' vertices, it has the same structure as $\mathcal{G}_k(\mathcal{A}, N)$. Thus by Lemma 3 $F(x)$ is the product of two irreducible polynomials of degree m' over M' . Suppose, for convenience, that $\alpha_1, ..., \alpha_m$, and $\alpha_{m'+1}, ..., \alpha_m$ are the vertex sets of the connected components of $\mathcal{E}_{\kappa}(\mathcal{A}, N)$. Write $f_1(x) = (x - \alpha_1) \cdots (x - \alpha_m)$, $f_2(x)=(x-\alpha_{m'+1})\cdots(x-\alpha_m)$ and

$$
F(x) = f_1(x) f_2(x) - \beta = \pi_1(x) \pi_2(x), \tag{10}
$$

where $\pi_1, \pi_2 \in \mathbb{Z}_{M'}[x]$ are monic irreducible polynomials of degree m' over M'. Then

$$
\pi_1(x) = f_1(x) + \varphi_{11}(x) = f_2(x) + \varphi_{12}(x),
$$

\n
$$
\pi_2(x) = f_1(x) + \varphi_{21}(x) = f_2(x) + \varphi_{22}(x),
$$
\n(11)

with polynomials $\varphi_{11}(x), \varphi_{12}(x), \varphi_{21}(x), \varphi_{22}(x) \in \mathbb{Z}_{M'}[x]$ of degree $\leqslant m'-1$. By the definition of $f_1(x)$

$$
\varphi_{11}(a_i) = \pi_1(a_i) \neq 0, \qquad i = 1,..., m'.
$$

Since $[a_i, a_j]$ is an edge of $\mathcal{G}_k(\mathcal{A}, N)$ for all i, j with $1 \leq i, j \leq m'$, so

$$
N_{M'/Q}(\alpha_i - \alpha_j) > N^{\{M':K\}} \ge N_{M'/Q}(2\beta^2)
$$

= $2^{\{M':Q\}} N_{M'/Q}(\pi_1(\alpha_i) \pi_2(\alpha_i) \pi_1(\alpha_j) \pi_2(\alpha_j))$
 $\ge 2^{\{M':Q\}} N_{M'/Q}(\pi_1(\alpha_i) \pi_1(\alpha_j))$
= $2^{\{M':Q\}} N_{M'/Q}(\varphi_{11}(\alpha_i) \varphi_{11}(\alpha_j)) > 0.$

Consequently, by Lemma 5 of $[8]$ we get

$$
\varphi_{11}(x) = \rho_{11}\varphi_{11}(x)
$$

with some $\rho_{11} \in M'$ (where $\varphi_{11}(x)$ denotes the complex conjugate of $\varphi_{11}(x)$). We can prove in the same way as above that $\overline{\varphi_{12}(x)} = \rho_{12}\varphi_{12}(x), \overline{\varphi_{21}(x)} =$ $\rho_{21}\varphi_{21}(x)$ and $\overline{\varphi_{22}(x)} = \rho_{22}\varphi_{22}(x)$ with $\rho_{12}, \rho_{21}, \rho_{22} \in \mathbb{M}'$.

We follow now the argument of the proof of Theorem 1a of [8]. Equation (11) implies

$$
\frac{\overline{\pi_1(\alpha_i)}}{\pi_1(\alpha_i)} = \frac{\overline{\varphi_{11}(\alpha_i)}}{\varphi_{11}(\alpha_i)} = \rho_{11} \text{ and } \frac{\overline{\pi_2(\alpha_i)}}{\pi_2(\alpha_i)} = \frac{\overline{\varphi_{21}(\alpha_i)}}{\varphi_{21}(\alpha_i)} = \rho_{21}, \quad i = 1,..., m'.
$$

This together with (10) gives

$$
\rho = \frac{\bar{\beta}}{\beta} = \frac{\overline{\pi_1(\alpha_i)} \, \overline{\pi_2(\alpha_i)}}{\overline{\pi_1(\alpha_i)} \, \overline{\pi_2(\alpha_i)}} = \rho_{11} \rho_{21}
$$

and similarly $\rho_{12}\rho_{22} = \rho$. In view of (11), (10) may be written in the form

$$
f_1(x)f_2(x) - \beta
$$

= $\pi_1(x) \pi_2(x) = \{f_1(x) + \varphi_{11}(x)\}\{f_2(x) + \varphi_{22}(x)\},\$

whence

$$
-\beta = f_1(x)\,\varphi_{22}(x) + f_2(x)\,\varphi_{11}(x) + \varphi_{11}(x)\,\varphi_{22}(x). \tag{12}
$$

By taking the complex conjugate of both sides we get

$$
-\rho\beta = \rho_{22}f_1(x)\,\varphi_{22}(x) + \rho_{11}f_2(x)\,\varphi_{11}(x) + \rho_{11}\rho_{22}\varphi_{11}(x)\,\varphi_{22}(x). \tag{13}
$$

It follows from (12) and (13) that

$$
\varphi_{11}(x) | \rho \beta - \rho_{22} \beta = \rho_{22} \beta (\rho_{12} - 1).
$$

If $\rho_{12} - 1 = 0$ then $\overline{\varphi_{12}(x)} = \varphi_{12}(x)$ and so, by (11), $\pi_1(x)$ is a polynomial with real coefficients. Thus (10) gives

$$
\pi_1(x) \, | \, \beta - \bar{\beta} \neq 0,
$$

which is a contradiction. Consequently $\rho_{22}\beta(\rho_{12}- 1) \neq 0$ and so $\varphi_{11}(x) = \varphi_{11} \in \mathbb{Z}_{M'}$. Similarly, $\varphi_{12}(x) = \varphi_{12}, \varphi_{21}(x) = \varphi_{21}$ and $\varphi_{22}(x) = \varphi_{22}$ are also non-zero algebraic integers in M' .

From (11) we get

$$
f_1(x) - f_2(x) = \varphi_{12} - \varphi_{11} = \varphi_{22} - \varphi_{21} = t,\tag{14}
$$

where $0 \neq t \in \mathbb{Z}_k$. Now (12) and (14) imply

 $-\beta - \varphi_{22}(t + \varphi_{11}) = (\varphi_{11} + \varphi_{22}) f_2(x).$

But the polynomial $f_2(x)$ is not constant, hence

$$
-\beta - \varphi_{22}(t + \varphi_{11}) = 0, \qquad \varphi_{11} + \varphi_{22} = 0
$$

and with the notation $-\varphi_{11} = \varphi_{22} = \varphi$ we get $\beta = \varphi(\varphi - t)$. Then

$$
F(x) = (f1(x) - \varphi)(f2(x) + \varphi)
$$

is the irreducible factorization of F over M', φ and $t - \varphi$ are non-zero algebraic integers in M' and $(t - \varphi)/\varphi$ is not real. Thus, by Lemma 2

$$
N_{M'/O}(t/2) \leq N_{M'/O}(\varphi(t-\varphi)) = N_{M'/O}(\beta),
$$

whence

$$
N_{M/O}(t) \leqslant N_{M/O}(2\beta).
$$

Finally, if $\mathcal{G}_{\kappa}(\mathcal{A}, N)$ has property (iii) specified in Lemma 4, then $F(x)$ satisfies the conditions listed in (ii) of Lemma 6 and this completes the proof of our lemma.

LEMMA 7. Let M , M' , K and β be as in Lemma 6. Suppose that N satisfies (8) and $N \ge N_{M/Q}(2\beta)^{1/(M:K)}$. Let $\alpha_1, ..., \alpha_s$ be distinct algebraic integers in K, and $f_1 \in \mathbb{Z}_M[\tilde{x}]$ a monic polynomial with real coefficients. If

$$
F(x) = f_1(x)(x - \alpha_1) \cdots (x - \alpha_s) - \beta
$$

and

$$
s > \max(\deg(F)/2 + 1, 2N^5)
$$

then $F(x)$ is irreducible over M' .

Proof. Write $\mathcal{A} = \{a_1, ..., a_n\}$ and consider the graphs $\mathcal{G}_{\kappa}(\mathcal{A}, N)$ and $\mathcal{F}_{M}(\mathcal{A}, N_{M/O}(2\beta))$. By the assumption we have $s > 2N^5$ and so, by Lemma 5, $\mathcal{F}_{\mathbf{K}}(\mathcal{A}, N)$ has a connected component with at least s - 1 vertices. But we can see in the same way as in the proof of Lema 6 that every edge of $\mathcal{G}_{\kappa}(\mathcal{A},N)$ is an edge of $\mathcal{G}_{\mathcal{M}}(\mathcal{A},N_{\mathcal{M}/0}(2\beta))$. Consequently, this latter graph also has a connected component with at least $s - 1$ vertices. Since $s - 1 > deg(F)/2$, by Lemma 3 $F(x)$ is irreducible over M'.

LEMMA 8. Let $\mathbb L$ be any algebraic number field with the parameters specified in Section 2, a a non-zero element in $\mathbb L$ with $|N_{L/0}(a)| = m$, and v a positive integer. There exists a unit η in $\mathbb L$ such that

$$
\overline{|a\eta^{v}|}\leqslant m^{1/l}\exp\{v(6l^3)^{l-1}R_L\}.
$$

Proof. This lemma is a consequence of Lemma 3 of [14].

LEMMA 9. Let $\mathbb L$ be as in Lemma 8, and let $f \in \mathbb Z_L[x]$ be a monic polynomial of degree $m \geq 2$ such that $0 < |N_{L/0}(D(f))| \leq d$. Then f is \mathbb{Z}_{L} equivalent to a polynomial of the form $\eta^m f^*(\eta^{-1}x)$, where η is a unit in \mathbb{L} , $f^* \in \mathbb{Z}_L[x]$ and

$$
\left|\overline{f^*}\right| < \exp\{c_2\} (\left|D_L\right|d^{1/m})^{3/2} (\log|D_Ld|)^{l+1}|^{4m^3}\}
$$

with an effectively computable positive constant $c_2 = c_2(l, m)$.

Proof. Our Lemma 9 is a special case of Theorem 1 of $[11]$ (see also $(2')$ in [11]).

5. PROOFS OF THE THEOREMS

The proof of Theorem 1 will be based on Lemmas 6 and 1.

Proof of Theorem 1. Suppose that $f \in \mathbb{Z}_L[x]$ and $g \in P_L(G)$ satisfy the conditions of Theorem 1 and $g(f(x))$ is reducible over L. Then $m \ge 2$. Let α_1 ,..., α_m denote the roots of f and let β be one of the roots of g. By Lemma 1 $F(x) = (x - a_1) \cdots (x - a_m) - \beta$ is reducible over $\mathbb{L}(\beta)$ and hence reducible also over $\mathbb{K}(\beta)$. Since \mathbb{K} is totally real and the splitting field of g is a totally imaginary quadratic extension of a totally real field, $\mathbb{K}(\beta) = \mathbb{M}$ is also a totally imaginary quadratic extension of a totally real number field.

By virtue of (2) we have

$$
|N_{M/Q}(2\beta^2)|^{1/[M:K]} = 2^k |N_{L(\beta)/Q}(\beta)|^{2[M:L(\beta)]/[M:K]}
$$

= $2^k |N_{L/Q}(g(0))|^{2[M:L(\beta)]/[M:K]}$
 $\leq (2G^{2/l})^k \leq C$

with the C defined in Theorem 1. Consequently we may apply Lemma 6 with $M' = M$ and $N = C$, and we obtain that for $F(x)$ at least one of cases (i), (ii) of Lemma 6 holds.

First suppose that $F(x)$ possesses the properties specified by (i) of Lemma 6, i.e., $m = 2m'$, $m \leq 2(r+1)\psi_K^2(C)$, $(x-\alpha_1)\cdots(x-\alpha_m)$ $f_1(x) f_2(x)$ with $f_1(x) - f_2(x) = t \in \mathbb{Z}_{\kappa}$, $\beta = \varphi(\varphi - t)$ with $0 \neq \varphi \in \mathbb{Z}_{\kappa}$ and

$$
F(x) = (f_1(x) - \varphi)(f_2(x) + \varphi)
$$

is the decomposition of F into irreducible polynomials in $\mathbb{M}[x]$. Since $\mathbb{L}(\beta) \subseteq \mathbb{M}$ and $F(x)$ is reducible over $\mathbb{L}(\beta)$, this is at the same time the decompositions of F into irreducible polynomials over $\mathbb{L}(\beta)$. So, by Lemma 1, $g(f(x))$ is the product of two irreducible polynomials of degree m' deg(g) over \mathbb{L} .

Since $f_1(x) - f_2(x) = t$, f_1 and f_2 may be written in the form

$$
f_1(x) = x^{m'} + a_1 x^{m'-1} + \dots + a_{m'-1} x + f_1(0),
$$

\n
$$
f_2(x) = x^{m'} + a_1 x^{m'-1} + \dots + a_{m'-1} x + f_2(0).
$$

Here $f_1, f_2 \in \mathbb{Z}_K[x]$. Further, in view of $f_1(x) f_2(x) \in \mathbb{Z}_L[x]$ we have $2a_1 \in \mathbb{Z}_L$. Thus $a_1 \in \mathbb{Z}_L$. We can prove by induction on j that $a_j \in \mathbb{Z}_L$ for $j = 1,..., m' - 1$ and $f_1(0) + f_2(0), f_1(0) f_2(0) \in \mathbb{Z}_l$. Since $f_1(0) - f_2(0) = t$, it follows that t is a totally real algebraic integer with $|\mathcal{L}(t): \mathcal{L}| \leq 2$ and $f_i(0) \in \mathbb{Z}_{L}(i), i = 1, 2$. This proves that f is of the form (3).

As we showed above, $f_2(x) + \varphi \in \mathbb{Z}_{L(\beta)}[x]$. Hence $f_2(0) + \varphi \in \mathbb{Z}_{L(\beta)}$, and so $\varphi \in \mathbb{Z}_{L(\beta,\rho)}$, i.e., (4) also holds.

Suppose now that for $F(x)$ case (ii) of Lemma 6 holds. Then $m \le 2C^5$ and there exist a unit $\varepsilon \in \mathbb{K}$ and $\alpha_{ij} \in \mathbb{Z}_K$ such that for all distinct α_i, α_j

$$
\alpha_i - \alpha_j = \varepsilon \alpha_{ij} \tag{15}
$$

and

$$
\max_{i,j} |\overline{\alpha_{ij}}| < \exp\{C^{10}(\log C)^4\}.\tag{16}
$$

Evidently

$$
0\neq D(f)=\prod_{1\leq i
$$

Further, by (15) and (16) we get

$$
|N_{L/Q}(D(f))| \leqslant \exp\{lm(m-1) C^{10} (\log C)^4\} = C_1.
$$
 (17)

We could now apply Theorem 1 of $[11]$ (or our Lemma 9 which is a particular case of that theorem) to f . However, following the argument of the proof of Theorem 1 of [11] we shall get much better and explicit bound in (5).

By virtue of Lemma 8 (17) implies that there exist a unit $\eta \in \mathbb{L}$ and a $\delta \in \mathbb{Z}_L$ such that $D(f) = \eta^{m(m-1)}\delta$ and

$$
|\overline{\delta}| \leqslant C_1^{1/l} \exp\{m(m-1)(6l^3)^{l-1}R_L\} = C_2.
$$

It follows from (15) that

$$
(\varepsilon/\eta)^{m(m-1)} = \delta \prod_{1 \leqslant i < j \leqslant m} \alpha_{ij}^{-2},
$$

whence

$$
\begin{aligned} |\varepsilon/\eta| &\leq C_2^{1/m(m-1)} \exp\{(k-1) C^{10} (\log C)^4\} \\ &= \exp\{k C^{10} (\log C)^4 + (6l^3)^{l-1} R_L\} = C_3. \end{aligned}
$$

So from (15) we get

$$
\alpha_i - \alpha_i = \eta \chi_{ii}, \qquad 1 \leq i < j \leq m,\tag{18}
$$

with an algebraic integer $\chi_{ii} \in \mathbb{Z}_k$ satisfying

$$
\max_{i,j} |\overline{\chi_{ij}}| \leqslant C_3 C_1^{1/\ln(m-1)} = C_4.
$$

Writing $\chi_{ii}=0$, $\alpha_1+\cdots+\alpha_m=a_1$ and $\chi_{i1}+\cdots+\chi_{im}=\vartheta_i$, from (18) we obtain

$$
m\alpha_i = a_1 + \eta \vartheta_i, \qquad i = 1, \dots, m,
$$
 (19)

where $a_1 \in \mathbb{Z}_L$ and

$$
|\overline{\vartheta_i}| \leqslant mC_4, \qquad i = 1, \dots, m. \tag{20}
$$

Equation (19) gives

 $\eta \vartheta_i \equiv -a_1 \pmod{m}$.

Since η , $a_1 \in \mathbb{Z}_L$, there is an $a_2 \in \mathbb{Z}_L$ such that

 $\vartheta_i \equiv a$, (mod *m*)

for each i, $i = 1,..., m$. Further, by a result of Mahler [16] and Bartz [3] there exists an integral basis $\omega_1, ..., \omega_i$ in \mathbb{L} with the property

$$
\max_{1\leqslant k\leqslant l}\left\lceil\overline{\omega_l}\right\rceil\leqslant l^l\left|D_L\right|^{1/2}
$$

Let us represent a_2 in such a basis. We can easily see that there is an $a_3 \in \mathbb{Z}_L$ congruent to a_2 (mod m) for which

$$
|a_3| \leqslant m l^{l+1} |D_L|^{1/2}.
$$
 (21)

Write $\vartheta_i = a_3 + m\gamma_i$, $i = 1,..., m$. Then γ_i is an algebraic integer for each i and by (20), (21), $l \le k$ and $|D_l| \le |D_k|$ we have

$$
\max_{i} |\gamma_{i}| \leqslant C_{4} + l^{l+1} |D_{L}|^{1/2} \leqslant 2C_{4}.
$$
 (22)

Finally, from (19) we get

$$
a_i = a + \eta \gamma_i, \qquad i = 1, \dots, m,
$$

with a suitable algebraic integer a of \mathbb{L} .

Take now the polynomial

$$
f^*(x) = \prod_{i=1}^m (x - \gamma_i).
$$

Then $\eta^m f^*(\eta^{-1} x) \in \mathbb{Z}_L[x]$ is \mathbb{Z}_L -equivalent to $f, f^* \in \mathbb{Z}_L[x]$ and by (22)

$$
\left|\overline{f^*}\right| < \exp\{m\left[(k+1)\,C^{10}(\log C)^4 + (6l^3)^{l-1}R_L\right]\}.
$$
\n(23)

Using an explicit estimate of Siegel [28] we get

$$
(6l^3)^{l-1}R_L < (6el^3)^l |D_L|^{1/2} (\log |2D_L|)^{l-1} \leq C
$$

and (23) implies (5).

It is easily seen that $g^*(x) = \eta^{-mn}g(\eta^mx) \in P_L(G)$ and that $g^*(f^*(x))$ is reducible over L.

Proof of Theorem 2. Let g be an arbitrary polynomial in $P₁(G)$, and let β be one of the roots of g in $\mathbb C$. Let $\mathbb M = \mathbb K(\beta)$. Then $\mathbb M$ is a totally imaginary quadratic extension of a totally real number field. In view of (2) we have

$$
N_{M/Q}(2\beta)^{1/[M:K]} = 2^k |N_{L(\beta)/Q}(\beta)|^{[M:L(\beta)]/[M:K]}
$$

= $2^k |N_{L/Q}(g(0))|^{[M:L(\beta)]/[M:K]}$
 $\leq (2G^{1/l})^k \leq C.$

Let $\alpha_1, ..., \alpha_n$ denote the roots of f in K, and write $f(x) =$ $f_1(x)(x - \alpha_1) \cdots (x - \alpha_s)$. Since $f_1(x) \in \mathbb{Z}_k[x]$ is a monic polynomial and s > max(deg(f)/2 + 1, 2C⁵), by applying Lemma 7 to $f(x) - \beta$ with the choice $N = C$ we obtain that $f(x) - \beta$ is irreducible over M. So it is irreducible over $L(\beta)$, and by Lemma 1 $g(f(x))$ is irreducible over L .

Proof of Theorem 3. Let g be an arbitrary polynomial in $P_L(G)$, β one of the roots of g and $\alpha_1, ..., \alpha_n$ the roots of f in $\mathbb C$. Let $\mathbb M = \mathbb L(\alpha_1, ..., \alpha_p, \beta)$. Then M is a totally imaginary quadratic extension of a totally real number field. Write $\mathcal{A} = {\alpha_1, ..., \alpha_p}$ and consider the graph $\mathcal{G} = \mathcal{G}_M(\mathcal{A}, N_{M/O}(2\beta)).$

Suppose, for convenience, that $\alpha_1, ..., \alpha_s$ are the vertices of a maximal connected component of \mathscr{G} . In view of (6) and (2) we have

$$
\prod_{1 \le i < j \le p} N_{M/Q}^2(\alpha_i - \alpha_j) = |N_{L/Q}(D(f))|^{[M:L]}
$$
\n
$$
> (2^l G)^{p(p-1)[M:L]}
$$
\n
$$
\ge |N_{M/Q}(2\beta)|^{p(p-1)}.
$$

This implies

$$
N_{M/O}(\alpha_i - \alpha_j) > N_{M/O}(2\beta)
$$

for some *i* and *j*, and so $s \ge 2$.

Denoting by Γ the Galois group of $f(x)$ over \mathbb{L} , Γ may be regarded as a subgroup of the automorphism group of \mathcal{F} . So $\{\chi(\alpha_1),...,\chi(\alpha_n)\}\$ and $\{\psi(\alpha_1),...,\psi(\alpha_n)\}\$ are identical or disjoint for each $\chi, \psi \in \Gamma$ (where $\chi(\alpha_i)$ and $\psi(\alpha_i)$ denote the images of α_i under the automorphisms χ and ψ). Consequently there are $\chi_1, ..., \chi_d \in \Gamma$ such that $\{\chi_1(\alpha_1), ..., \chi_1(\alpha_s)\},...,$ $\{\chi_a(\alpha_1),...,\chi_a(\alpha_s)\}\$ are pairwise disjoint and $p = ds$. Since $s \ge 2$ hence $s = p$ and so $\mathscr G$ is connected. Thus by Lemma 3 $f(x) - \beta$ is irreducible over $\mathbb L(\beta)$. Finally, Lemma 1 implies that $g(f(x))$ is irreducible over \mathbb{L} .

Proof of Theorem 4. Suppose that $f(x)$ **satisfies the conditions of** Theorem 4 and $g(f(x))$ is reducible over $\mathbb L$ for some $g \in P$ _{*i*}(G). Then by Theorem 3 we have

$$
|N_{L/O}(D(f))| \leqslant (2^{l}G)^{p(p-1)}.
$$

So, by virtue of Lemma 9 f is \mathbb{Z}_1 -equivalent to a polynomial of the form $\eta^{p} f^{*}(\eta^{-1} x)$, where $\eta \in \mathbb{L}$ is a unit, $f^{*} \in \mathbb{Z}_{1}[x]$ and (7) holds. Further $g^*(x) = \eta^{-pn}g(\eta^p x) \in P_I(G)$ and $g^*(f^*(x))$ is reducible over \mathbb{L} .

REFERENCES

- 1. A. BAKER, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65(1969), 439-444.
- 2. A. BAKER AND J. COATES, Integer points on curves of genus 1, Proc. Cambridge Philos. Soc. 67 (1970), 595-602.
- 3. K. M. BARTZ, On a theorem of Sokolovskii, Acta Arith. 34 (1978), 113-126.
- 4. C. BERGE, "Graphs and Hypergraphs," North-Holland, Amsterdam/London, 1973.
- 5. A. BRAUER AND R. BRAUER, Über Irreduzibilitätskriterien von I. Schur and G. Polya, Math. Z. 40 (1936). 242-265.
- 6. A. BRAUER, R. BRAUER, AND H. HOPF, Über die Irreduzibilität einiger spezieller Klassen von Polynomen, Jahresber. Deutsch Math.-Verein. 35 (1926), 99-112.
- 7. K. Györy, Sur l'irréductibilité d'une classe des polynômes I, Publ. Math. Debrecen 18 (1971). 289-307.
- 8. K. GYÖRY, Sur l'irréductibilité d'une classe des polynômes II, Publ. Math. Debrecen 19 (1972), 293-326.
- 9. K. GYÖRY, Sur une classe des corps de nombres algébriques et ses applications, $Publ$. Math. Debrecen 22 (1975), 151-175.
- 10. K. GYÖRY, Sur les polynômes à coefficients entiers et de discriminant donné III, Publ. Math. Debrecen 23 (1976). 141-165.
- 11. K. GYGRY. On polynomials with integers coefficients and given discriminant V. p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190.
- 12. K. GYÖRY. On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 583-600.
- 13. K. GYÖRY, On certain graphs composed of algebraic integers of a number field and their applications I. Publ. Math. Debrecen 27 (1980), 229-242.
- 14. K. GYÖRY, On the solutions of linear diopantine equations in algebraic integers of bounded norm, Ann. Univ. Budapest Eötvös, Sect. Math. 22-23 (1979-1980), 225-233.
- 15. K. GYGRY AND J. RIMAN. On irreducibility criteria of Schur type (in Hungarian). Mat. Lapok 24 (1973), 225-253.
- 16. K. MAHLER, Inequalities for ideal bases in algebraic number fields, *J. Austral Math. Soc.* 4 (1964), 425–428.
- 17. M. POHST, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), 459-492.
- 18. G. PÓLYA, Verschiedene Bemerkungen zur Zahlentheorie, Jahresber. Deutsch. Math-Verein. 28 (1919). 31–40.
- 19. G. PÓLYA AND G. SZEGÖ, "Aufgaben und Lehrsätze aus der Analysis," Band II. Springer-Verlag, Berlin, 1925.
- 20. L. RÉDEI, "Algebra," Akadémiai Kiadó, Budapest, 1967.
- 21. W. SCHULZ, Über Reduzibilität bei gewissen Polynomen und das Tarry-Escottsche Problem, Math. Z. 63 (1955), 133-144.
- 22. I. SCHUR, Aufgabe 275, Archiv Math. Phys. 15 (1909), 259.
- 23. 1. SERES, On the irreducibility of certain polynomials (in Hungarian), Mat. Lapok 3 (1952). 148-150.
- 24. I. SERES, Über eine Aufgabe von Schur, Publ. Math. Debrecen 3 (1953), 138–139.
- 25. I. SERES. Losung und Verallgemeinerung eines Schurschen Irreduzibilitatsproblems fur Polynome, Acta Math. Acad. Sci. Hungar. 7 (1956), 151-157.
- 26. I. SERES, Über die Irreduzibilität gewisser Polynome, Acta Arith. 8 (1963), 321-341.
- 27. I. SERES, Irreducibility of polynomials, J. Algebra 2 (1965), 283-286.
- 28. C. L. SIEGEL. Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1969), 71-86.
- 29. J. S. SUNLEY. Class numbers of totally imaginary quadratic extensions of totally real fields, Trans. Amer. Math. Soc. 175 (1973), 209-232.
- 30. N. Tschebotaröw and H. Schwerdtreger. "Grundzüge der Galois'schen Theorie," Noordhoff, Groningen/Djakarta, 1950.
- 3 1. H. ZASSENHAUS, On Hensel factorization, I, J. Number Theory 1 (1969), 291-311.