JOURNAL OF NUMBER THEORY 15, 164-181 (1982)

On the Irreducibility of a Class of Polynomials, III

K. Györy

Mathematical Institute, Kossuth Lajos University, 4010 Debrecen, Hungary

Communicated by H. Zassenhaus

Received December 15, 1980; revised May 8, 1981

This work is a continuation and extension of our earlier articles on irreducible polynomials. We investigate the irreducibility of polynomials of the form g(f(x)) over an arbitrary but fixed totally real algebraic number field \mathbb{L} , where g(x) and f(x) are monic polynomials with integer coefficients in \mathbb{L} , g is irreducible over \mathbb{L} and its splitting field is a totally imaginary quadratic extension of a totally real number field. A consequence of our main result is as follows. If g is fixed then, apart from certain exceptions f of bounded degree, g(f(x)) is irreducible over \mathbb{L} for all f having distinct roots in a given totally real number field.

1. INTRODUCTION

Let f(x) denote an arbitrary monic polynomial having distinct integer roots. I. Schur conjectured (see [22, 5]) that for $g(x) = x^{2^n} + 1$, $n \ge 1$, g(f(x)) is irreducible over the rational field Q. Later Brauer *et al.* [6] posed the question of the irreducibility over Q of g(f(x)) for arbitrary irreducible polynomials $g(x) \in \mathbb{Z}[x]$ and showed that if g(x) is of degree <4 and different from *cx*, then, up to the obvious translations $x \to x + a$ with $a \in \mathbb{Z}$, there are only finitely many f(x) with distinct integer roots for which g(f(x))is reducible and these *f* can be effectively determined. When g(x) is linear, this statement can be deduced from an earlier theorem of Pólya [18].

Numerous authors obtained results in this direction (for references see, e.g., [6, 19, 25, 7, 8, 15]). For polynomials g(x) of higher degree the first results were established by Seres [23-25]. In [25, 26] he proved Schur's conjecture in a more general form. Further, he solved [27] the Brauer-Hopf problem in the above sense for every g(x) whose roots are complex units of a cyclotomic field.

In [7] the Brauer-Hopf problem has been settled for a much wider class of g(x), namely for every monic polynomial g(x) whose splitting field is a totally imaginary quadratic extension of a totally real number field.

Furthermore, the results of [25-27] have been generalized to these polynomials g(x).

In [7, 8] we extended our investigations to the case when the $f \in \mathbb{Z}[x]$ are monic polynomials having distinct real roots. We showed [8] that in this more general situation one can get general irreducibility theorems only if $m = \deg(f)$ is large relative to the degree of the splitting field of f or if m is a prime, and we obtained [8] in both cases general results. In order to formulate and prove our irreducibility theorems we associated to every pair of polynomials f, g a certain graph with vertex set consisting of the roots of f(x) and showed [7] that if this graph has a connected component with s vertices, then the number of irreducible factors of g(f(x)) is not greater than $[\deg(f)/s]$. Applying a theorem of Baker ([1]; see also [2]) concerning the Thue equation, we proved [8] that if $m = \deg(f)$ is sufficiently large relative to g(0) and certain parameters of the splitting field of f(x) then the graph in question has a connected component with at least $\lfloor (m+1)/2 \rfloor$ vertices and so, in view of our estimate cited above, g(f(x)) is irreducible or the product of two irreducible factors of the same degree. We conjectured [8] that here the lower bound [(m+1)/2] can be further improved (i.e., that for fixed g(x), g(f(x)) is always irreducible if m is sufficiently large).

The resolution of a diophantine problem [12] enabled us to confirm [13] the above conjecture. In this paper, using our recent theorems [13] on the graphs mentioned above and a theorem of [11], we considerably improve and generalize the results of [25–27, 7, 8] concerning the Brauer-Hopf problem. We obtain general results on the irreducibility of polynomials of the form g(f(x)) over an arbitrary but fixed totally real algebraic number field \mathbb{L} , where f(x) and g(x) are monic polynomials with integer coefficients in \mathbb{L} , the roots of f are totally real and distinct, g is irreducible over \mathbb{L} and its splitting field is a totally imaginary quadratic extension of a totally real number field. Our main result (Theorem 1) implies that if g is fixed then, apart from certain exceptions f of bounded degree, g(f(x)) is irreducible over \mathbb{L} for all f having distinct roots in a fixed totally real number field. For polynomials g of the above type Theorem 1 may be regarded as a solution of a generalized version of the Brauer-Hopf problem.

We show that our theorems cannot be extended to arbitrary number fields \mathbb{L} and to arbitrary irreducible polynomials g(x) with integer coefficients in \mathbb{L} .

2. NOTATION

Before stating our theorems, we establish our notation and make some preliminary remarks.

Throughout Section 3 \mathbb{L} and \mathbb{K} denote totally real algebraic number fields with ring of integers \mathbb{Z}_{L} and \mathbb{Z}_{K} , respectively. We suppose that $\mathbb{L} \subseteq \mathbb{K}$. Let l,

 D_L and R_L (resp. k, D_K and R_K) be the degree, the discriminant and the regulator of \mathbb{L} (resp. of \mathbb{K}). Let r denote the number of fundamental units in \mathbb{K} and let $R_K^* = \max(R_K, e)$. We signify by $\psi_K(x)$ the number of pairwise non-associate algebraic integers β in \mathbb{K} with $|N_{K/Q}(\beta)| \leq x$. We have (see [29])

$$\psi_K(x) \leqslant e^{20k^2} |D_K|^{1/(k+1)} (\log |2D_K|)^k x.$$
(1)

Let $f, g \in \mathbb{Z}_{L}[x]$. In order that g(f(x)) be irreducible over \mathbb{L} , it is necessary that g(x) be irreducible over \mathbb{L} . However, this condition is not sufficient in general. Under the condition below concerning the splitting field of g we obtain general irreducibility theorems for the polynomials g(f(x)). In order to briefly state our theorems we introduce the following notation:

Let $G \ge 1$ denote an arbitrary constant and let $P_L(G)$ denote the set of monic polynomials $g \in \mathbb{Z}_L[x]$ having the following properties: g is irreducible over \mathbb{L} , the splitting field of g over \mathbb{L} is a totally imaginary quadratic extension of a totally real number field and

$$|N_{L/Q}(g(0))|^{1/n} \leqslant G,$$
(2)

where $n = \deg(g)$.

It is obvious that, e.g., $P_Q(G)$ contains all cyclotomic polynomials and $P_L(G)$ contains infinitely many cyclotomic polynomials for every $G \ge 1$.

The polynomials $f, f^* \in \mathbb{Z}_L[x]$ will be called \mathbb{Z}_L -equivalent if $f(x) = f^*(x+a)$ with some $a \in \mathbb{Z}_L$. Clearly g(f(x)) and $g(f^*(x))$ are simultaneously reducible or irreducible over \mathbb{L} for any $g \in \mathbb{Z}_L[x]$.

As usual, |f| will denote the maximum of the absolute values of the conjugates of the coefficients of a polynomial f(x) with algebraic coefficients.

3. Theorems

First we show that if $g \in P_L(G)$ for some $G \ge 1$, then, apart from certain exceptions, g(f(x)) is irreducible over \mathbb{L} for all $f \in \mathbb{Z}_L[x]$ having distinct roots in \mathbb{K} . To simplify the description of the exceptions we remark that among the polynomials f, g under consideration there exist monic polynomials f, $g \in \mathbb{Z}_L[x]$ with the following properties:

$$f(x) = f_1(x) f_2(x), \quad \text{where} \quad f_1(x) - f_2(x) = t \in \mathbb{Z}_{L(t)},$$

$$f_i(x) - f_i(0) \in \mathbb{Z}_L[x], f_i(0) \in \mathbb{Z}_{L(t)}, \quad i = 1, 2, \quad (3)$$

166

and t is a non-zero totally real algebraic integer with $[\mathbb{L}(t) : \mathbb{L}] \leq 2$. Each root $\beta \in \mathbb{C}$ of g satisfies

$$\beta = \varphi(\varphi - t), \tag{4}$$

where $\varphi + f_2(0) \in \mathbb{Z}_{L(\beta)}$ with some non-zero $\varphi \in \mathbb{Z}_{L(\beta,t)}$.

It is easy to see that, e.g., f(x) = (x + t)x ($0 \neq t \in \mathbb{Z}_L$) and the minimal polynomial g(x) of i(i - t) over \mathbb{L} satisfy (3) and (4). Further, if $\sqrt{d} \in \mathbb{K}$ for some non-zero $d \in \mathbb{Z}_L$ and $a^2 - db^2 = t$ with non-zero $a, b \in \mathbb{Z}_L$, then $f(x) = (x^2 - 2ax + t)(x^2 - 2ax)$ and the above g(x) also have the required properties. Further (more complicated) examples can be found in [8].

In the case of polynomials f, g having the properties (3) and (4)

$$f(x) - \beta = (f_1(x) - \varphi)(f_2(x) + \varphi)$$

over $\mathbb{L}(\beta)$ and so, by Lemma 1, g(f(x)) is reducible over \mathbb{L} . Further, if $g \in P_L(G)$, then by Lemma 2 $|N_{L(l)/Q}(t)| \leq (2^l G)^{\{L(l):L\}}$.

Our main result is then as follows:

THEOREM 1. Let \mathbb{L} , \mathbb{K} and $P_L(G)$ be as above, and let $f \in \mathbb{Z}_L[x]$ be a monic polynomial of degree m with distinct roots in \mathbb{K} . If g(f(x)) is reducible over \mathbb{L} for some $g \in P_L(G)$ then

(i) *m* is even and $\leq 2(r+1) \psi_K^2(C)$, *f* is of the form (3), each root of *g* satisfies (4) and g(f(x)) is the product of two irreducible factors of equal degree, or

(ii) $2 \leq m \leq 2C^5$, f is \mathbb{Z}_L -equivalent to a polynomial of the form $\eta^m f^*(\eta^{-1}x) \in \mathbb{Z}_L[x]$, where η is a unit in \mathbb{L} , $f^* \in \mathbb{Z}_L[x]$ satisfies

$$\overline{f^*} < \exp\{m(k+2) C^{10} (\log C)^4\}$$
(5)

with

$$C = \max\{(2G^{2/l})^k, |D_K|^{k^2} (\log |2D_K|)^{2r/5} \\ \times \exp[(25(r+3)k)^{20(r+2)} R_K^2 \log R_K^*]\}$$

and $g^*(f^*(x))$ is reducible over \mathbb{L} where

$$g^*(x) = \eta^{-mn}g(\eta^m x) \in P_L(G), \qquad n = \deg(g).$$

For $\mathbb{L} = \mathbb{Q}$ and $[\mathbb{K} : \mathbb{Q}] \leq 2$ this result was proved in [7,8] as a generalization of some theorems of Seres [25, 27], The special case $\mathbb{L} = \mathbb{Q}$ of Theorem 1 is a considerable improvement of the main result (Theorem 1a) of [8]. As remarked in the Introduction, in case of polynomials $g \in P_L(G)$ our above theorem may be regarded as a solution of a generalization of the Brauer-Hopf problem.

As we mentioned, there exist polynomials f, g with property (i) and these exceptions are connected with the Tarry-Escott problem (cf. [21, 8]). Further, for suitably chosen \mathbb{L} and \mathbb{K} there are infinitely many g and, for each of these g, there are infinitely many pairwise inequivalent f such that f, g have the property (i), but do not have the property (ii). This is the case, e.g., if $\mathbb{L} = \mathbb{Q}$ and \mathbb{K} contains a quadratic subfield (see [8] and the second example given before Theorem 1). In these examples $t \in \mathbb{Z}_L$, but it is easy to construct polynomials f, g satisfying (i) with $t \notin \mathbb{L}$. Finally we remark that for suitable f there are infinitely many g for which (i) holds.

There exists $f \in \mathbb{Z}_L[x]$ such that f, g have property (ii) for infinitely many $g \in P_L(G)$ (see, e.g., the exceptions in Theorem 6 of [7]). Apart from the exceptions f, g described in (i), Theorem 1 reduces the question of the irreducibility of polynomials g(f(x)) in question to that of the irreducibility of $g(f^*(x))$, where the polynomials $f^* \in \mathbb{Z}_L[x]$ satisfy (5) and $\deg(f^*) = m \leq 2C^5$. Clearly there are only finitely many f^* with these properties and these f^* can be effectively determined.

It is evident that in case (ii) the reducibility of $g^*(f^*(x))$ implies the reducibility of g(f(x)). By using a well-known algorithm of Zassenhaus [31] we can check whether $g^*(f^*(x))$ is reducible over \mathbb{L} .

Since $R_K \ge 0$, 373 (see [17]), from (1) we get $2(r+1) \psi_K^2(C) \le C^3$ and Theorem 1 yields the following:

COROLLARY. Let f(x), C and $P_L(G)$ be as in Theorem 1. If $\deg(f) > 2C^5$ then g(f(x)) is irreducible over \mathbb{L} for every $g \in P_L(G)$.

This corollary also improves and generalizes the main result of [8].

It is easy to verify that if $p \in \mathbb{Z}_L[x]$ is a monic irreducible polynomial over \mathbb{L} , its splitting field is totally real, $a_1, ..., a_m \in \mathbb{Z}_L$ are distinct and *m* is sufficiently large then $f(x) = p(x + a_1) \cdots p(x + a_m)$ satisfies the conditions of the above corollary.

THEOREM 2. Let \mathbb{L} , \mathbb{K} , C and $P_L(G)$ be defined as in Theorem 1, and let $f \in \mathbb{Z}_L[x]$ be a monic polynomial with more than $\max(\deg(f)/2 + 1, 2C^s)$ distinct roots in \mathbb{K} . Then g(f(x)) is irreducible over \mathbb{L} for every $g \in P_L(G)$.

In the case $\mathbb{L} = \mathbb{K} = \mathbb{Q}$ a slightly more precise result was established in [7].

Theorem 2 also constains the above corollary of Theorem 1.

Our Theorems 1 and 2 do not remain valid for any number field \mathbb{L} and for any monic irreducible polynomial $g \in \mathbb{Z}_L[x]$. Indeed, let $\mathbb{L} \subseteq \mathbb{K}$ be any (not necessarily totally real) algebraic number fields having infinitely many units, $f \in \mathbb{Z}_L[x]$ a monic polynomial of degree *m* whose roots are distinct units of \mathbb{K} and g(x) = x - f(0). Then $|N_{L/Q}(g(0))| = 1$, *m* can be arbitrarily large relative to *C* and x | g(f(x)) in $\mathbb{Z}_L[x]$. We consider next the case when the polynomials $f \in \mathbb{Z}_L[x]$ are of prime degree. As usual, D(f) will denote the discriminant of a polynomial f(x).

THEOREM 3. Let \mathbb{L} and $P_L(G)$ be as in Theorem 1, and let $f \in \mathbb{Z}_L[x]$ be a monic irreducible polynomial over \mathbb{L} with totally real splitting field. If $\deg(f) = p$ is a prime and

$$|N_{L/0}(D(f))| > (2^{l}G)^{p(p-1)}$$
(6)

then g(f(x)) is irreducible over \mathbb{L} for every $g \in P_L(G)$.

The case of Theorem 3 when $\mathbb{L} = \mathbb{Q}$ was proved in [8]. Theorem 3 together with Theorem 1 of [11] gives the following:

THEOREM 4. Let \mathbb{L} and $P_L(G)$ be as in Theorem 1, and let $f \in \mathbb{Z}_L[x]$ be a monic irreducible polynomial over \mathbb{L} with totally real splitting field. If $\deg(f) = p$ is a prime and g(f(x)) is reducible over \mathbb{L} for some $g \in P_L(G)$, then f is \mathbb{Z}_L -equivalent to a polynomial of the form $\eta^p f^*(\eta^{-1}x)$, where η is a unit, $f^* \in \mathbb{Z}_L[x]$ satisfies

$$\overline{|f^*|} < \exp\{c_1[(|D_L|G^{p-1})^{3/2}(\log|2D_LG|)^{l+1}|^{4p^3}\}$$
(7)

with an effectively computable positive constant $c_1 = c_1(l, p)$ and $g^*(f^*(x))$ is reducible over \mathbb{L} , where $g^*(x) = \eta^{-pn}g(\eta^p x) \in P_L(G)$, $n = \deg(g)$.

Our Theorem 4 generalizes Theorem 2a of [8] and Theorem 4 of [10].

There are only finitely many $f^* \in \mathbb{Z}_L[x]$ of degree p with the property (7) and all these f^* can be effectively determined. Similarly to Theorem 1, Theorem 4 reduces the problem of the irreducibility of polynomials g(f(x)) of the type considered to the case of the polynomials $g(f^*(x))$.

Proposition 6 of [8] shows that our Theorems 3 and 4 cannot be extended to polynomials f of composite degree. Further, Theorems 3 and 4 do not remain true if the splitting field of f or of g does not possess the required property (see, e.g., Proposition 7 in [8]).

4. Lemmas

To prove our theorems we need some lemmas. We keep the notations of Section 3, but without assuming that the fields \mathbb{L} , \mathbb{K} are totally real.

LEMMA 1. (Capelli). Let \mathbb{L} be any algebraic number field, $f, g \in \mathbb{Z}_L[x]$ monic polynomials, g irreducible over \mathbb{L} and β one of the roots of g in \mathbb{C} . If

$$f(x) - \beta = \prod_{i=1}^{s} (\pi_i(x))^{k_i}$$

K. GYÖRY

is the irreducible factorization of $f(x) - \beta$ over $\mathbb{L}(\beta)$ then

$$g(f(x)) = \prod_{i=1}^{s} (N(\pi_i(x)))^{k_i} \qquad (N \text{ denotes } N_{L(\mathcal{B})(x)/L(x)})$$

is the irreducible factorization of g(f(x)) over \mathbb{L} .

Proof. See [30] or [20]. We remark that Capelli proved this theorem in a less general form (cf. [30]).

LEMMA 2. Let \mathbb{M} be a totally imaginary quadratic extension of a totally real algebraic number field, and let α and β be non-zero algebraic integers in \mathbb{M} . If α/β is not real and $\alpha + \beta$ is real then

$$N_{M/Q} \left(\frac{lpha+eta}{2}\right) \leqslant N_{M/Q}(lphaeta).$$

Proof. This is Corollary 3.2 in [9].

Let \mathbb{M} be an arbitrary algebraic number field, and let $\mathscr{A} = \{\alpha_1, ..., \alpha_m\}$ be a finite subset of \mathbb{Z}_M . Using the terminology of [4], for given $N \ge 1$ we denote by $\mathscr{G}_M(\mathscr{A}, N)$ the graph whose vertex set is \mathscr{A} and whose edges are the unordered pairs $[\alpha_i, \alpha_i]$ having the property

$$|N_{M/O}(\alpha_i - \alpha_i)| > N.$$

It is clear that the graph $\mathscr{G}_{\mathcal{M}}(\mathscr{A}, N)$ defined above is uniquely determined by \mathbb{M}, \mathscr{A} and N.

LEMMA 3. Let \mathbb{M} be as in Lemma 2, $f_1 \in \mathbb{Z}_M[x]$ a monic polynomial with real coefficients, $\alpha_1, ..., \alpha_s \ s \ge 2$ distinct real algebraic integers in \mathbb{M} , and β a non-real algebraic integer in \mathbb{M} . Let $\mathscr{A} = \{\alpha_1, ..., \alpha_s\}$, and let $\mathbb{M}' \supseteq \mathbb{M}$ be any totally imaginary quadratic extension of a totally real algebraic number field. If the graph $\mathscr{C}_M(\mathscr{A}, N_{M/Q}(2\beta))$ is connected then $F(x) = f_1(x)(x - \alpha_1) \cdots (x - \alpha_s) - \beta$ has no irreducible factor of degree less than s over \mathbb{M}' . If in particular $s > \deg(F)/2$, then F(x) is irreducible over \mathbb{M}' .

Proof. This is Lemma 7 in [8]. It is not valid for arbitrary number fields \mathbb{M} , \mathbb{M}' (see [7, 8]). Further, the estimate given for the degree of irreducible factors of F is in general best possible (cf. [8]).

Now let \mathbb{K} be an arbitrary algebraic number field with the parameters specified in Section 2. Suppose

$$N \ge |D_{\kappa}|^{k^{2}} (\log |2D_{\kappa}|)^{2r/5} \exp\{(25(r+3)k)^{20(r+2)}R_{\kappa}^{2} \log R_{\kappa}^{*}\}$$
(8)

and consider the graph $\mathscr{G}_{K}(\mathscr{A}, N)$, where $\mathscr{A} = \{\alpha_{1}, ..., \alpha_{m}\}$ is a finite subset of \mathbb{Z}_{K} with $m \ge 2$ elements. Let $|\alpha|$ denote the maximum of the absolute values of the conjugates of an algebraic number α .

LEMMA 4. Let N and $\mathscr{G}_{K}(\mathscr{A}, N)$ be as above. Then at least one of the following cases holds:

(i) $\mathscr{G}_{\kappa}(\mathscr{A}, N)$ has a connected component with more than m/2 vertices,

(ii) *m* is even and $\leq 2(r+1)\psi_{K}^{2}(N)$, $\mathcal{G}_{K}(\mathcal{A}, N)$ has two connected components with m/2 vertices and both components are complete,

(iii) $m \leq 2N^5$ and there exist a unit ε in \mathbb{K} and $\alpha_{ij} \in \mathbb{Z}_K$ such that $\alpha_i - \alpha_i = \varepsilon \alpha_{ij}$ for all $\alpha_i, \alpha_j \in \mathscr{A}$ and

$$\max_{i,j} |\alpha_{ij}| < \exp\{N^{10}(\log N)^4\}.$$
(9)

Proof. This lemma is a simple consequence of Theorems 1 and 2 of [13] (see also the remark after Theorem 1 in [13]).

LEMMA 5. Let $\mathscr{G}_{K}(\mathscr{A}, N)$ be defined as above with N satisfying (8) and suppose that the number m of vertices of $\mathscr{G}_{K}(\mathscr{A}, N)$ is greater than $2N^{5}$. Then $\mathscr{G}_{K}(\mathscr{A}, N)$ has a connected component with at least m-1 vertices.

Proof. Lemma 5 is an immediate consequence of Theorem 2 of [13].

LEMMA 6. Let \mathbb{M} and \mathbb{M}' be as in Lemma 3, \mathbb{K} a real subfield of \mathbb{M} , $\alpha_1,...,\alpha_m \ m \ge 2$ distinct algebraic integers in \mathbb{K} and β a non-real algebraic integer in \mathbb{M} . Suppose that N satisfies (8) and $N \ge N_{M/Q}(2\beta^2)^{1/[M:K]}$. If $F(x) = (x - \alpha_1) \cdots (x - \alpha_m) - \beta$ is reducible over \mathbb{M}' then

(i) *m* is even and $\leq 2(r+1) \psi_K^2(N)$, $(x - \alpha_1) \cdots (x - \alpha_m) = f_1(x) f_2(x)$ with $f_1(x) - f_2(x) = t \in \mathbb{Z}_K$ and $N_{M/Q}(t) \leq N_{M/Q}(2\beta)$, $\beta = \varphi(\varphi - t)$ with $\varphi \in \mathbb{Z}_{M'}$ and

$$F(x) = (f_1(x) - \varphi)(f_2(x) + \varphi)$$

is the factorization of F into irreducible polynomials in $\mathbb{M}'[x]$, or

(ii) $m \leq 2N^5$, there exist a unit $\varepsilon \in \mathbb{K}$ and $\alpha_{ij} \in \mathbb{Z}_K$ such that $\alpha_i - \alpha_i = \varepsilon \alpha_{ii}$ for all α_i , α_i and (9) holds.

By the help of the example mentioned after Theorem 1 it is easy to show that in Lemma 6 both cases (i) and (ii) can occur.

In case (i) $\varphi + (t - \varphi) \in \mathbb{Z}_M$ and $-\beta = \varphi(t - \varphi) \in \mathbb{Z}_M$, hence either $\varphi \in \mathbb{Z}_M$ or φ is a quadratic algebraic integer over \mathbb{M} .

In case (ii) F(x) is \mathbb{Z}_{K} -equivalent to $x(x - \varepsilon \alpha_{21}) \cdots (x - \varepsilon \alpha_{m1}) - \beta$ and this polynomial is reducible over \mathbb{M}' if and only if $x(x - \alpha_{21}) \cdots (x - \alpha_{m1}) - \varepsilon^{-m}\beta$ is also reducible.

Proof of Lemma 6. We shall use some ideas of the proof of Theorem 1a of [8].

Suppose that $F(x) = (x - \alpha_1) \cdots (x - \alpha_m) - \beta$ is reducible over \mathbb{M}' . Write $\mathscr{A} = \{\alpha_1, ..., \alpha_m\}$ and consider the graphs $\mathscr{G}_K(\mathscr{A}, N)$ and $\mathscr{G}_M(\mathscr{A}, N_{M/Q}(2\beta))$. It follows from

$$|N_{K/O}(\alpha_i - \alpha_i)| > N$$

that

$$N_{M/O}(\alpha_i - \alpha_i) > N^{[M:K]} \ge N_{M/O}(2\beta)$$

Hence any edge $[\alpha_i, \alpha_j]$ of $\mathscr{G}_{\kappa}(\mathscr{A}, N)$ is an edge of $\mathscr{G}_{M}(\mathscr{A}, N_{M/Q}(2\beta))$. Since F(x) is reducible, by Lemma 3 $\mathscr{G}_{M}(\mathscr{A}, N_{M/Q}(2\beta))$ has no connected component with more than m/2 vertices and so $\mathscr{G}_{\kappa}(\mathscr{A}, N)$ has the same property. Consequently, by Lemma 4 $\mathscr{G}_{\kappa}(\mathscr{A}, N)$ has the properties (ii) or (iii) specified in Lemma 4.

First suppose that $\mathscr{G}_{K}(\mathscr{A}, N)$ has the property (ii) occurring in Lemma 4, i.e., that *m* is even, say m = 2m', $m \leq 2(r+1) \psi_{K}^{2}(N)$, $\mathscr{G}_{K}(\mathscr{A}, N)$ has two connected components with *m'* vertices and both components are complete. Since $\mathscr{G}_{M}(\mathscr{A}, N_{M/Q}(2\beta))$ has no connected component with more than *m'* vertices, it has the same structure as $\mathscr{G}_{K}(\mathscr{A}, N)$. Thus by Lemma 3 F(x) is the product of two irreducible polynomials of degree *m'*over \mathbb{M}' . Suppose, for convenience, that $\alpha_{1},...,\alpha_{m'}$ and $\alpha_{m'+1},...,\alpha_{m}$ are the vertex sets of the connected components of $\mathscr{G}_{K}(\mathscr{A}, N)$. Write $f_{1}(x) = (x - \alpha_{1}) \cdots (x - \alpha_{m'})$, $f_{2}(x) = (x - \alpha_{m'+1}) \cdots (x - \alpha_{m})$ and

$$F(x) = f_1(x) f_2(x) - \beta = \pi_1(x) \pi_2(x), \tag{10}$$

where $\pi_1, \pi_2 \in \mathbb{Z}_{M'}[x]$ are monic irreducible polynomials of degree m' over \mathbb{M}' . Then

$$\pi_1(x) = f_1(x) + \varphi_{11}(x) = f_2(x) + \varphi_{12}(x),$$

$$\pi_2(x) = f_1(x) + \varphi_{21}(x) = f_2(x) + \varphi_{22}(x),$$
(11)

with polynomials $\varphi_{11}(x)$, $\varphi_{12}(x)$, $\varphi_{21}(x)$, $\varphi_{22}(x) \in \mathbb{Z}_{M'}[x]$ of degree $\leq m' - 1$. By the definition of $f_1(x)$

$$\varphi_{11}(\alpha_i) = \pi_1(\alpha_i) \neq 0, \qquad i = 1, ..., m'.$$

Since $[\alpha_i, \alpha_i]$ is an edge of $\mathscr{G}_{\mathcal{K}}(\mathscr{A}, N)$ for all i, j with $1 \leq i, j \leq m'$, so

$$\begin{split} N_{M'/Q}(\alpha_i - \alpha_j) &> N^{[M';K]} \ge N_{M'/Q}(2\beta^2) \\ &= 2^{[M';Q]} N_{M'/Q}(\pi_1(\alpha_i) \, \pi_2(\alpha_i) \, \pi_1(\alpha_j) \, \pi_2(\alpha_j)) \\ &\ge 2^{[M';Q]} N_{M'/Q}(\pi_1(\alpha_i) \, \pi_1(\alpha_j)) \\ &= 2^{[M';Q]} N_{M'/Q}(\varphi_{11}(\alpha_i) \, \varphi_{11}(\alpha_j)) > 0. \end{split}$$

Consequently, by Lemma 5 of [8] we get

$$\varphi_{11}(\overline{x}) = \rho_{11}\varphi_{11}(x)$$

with some $\rho_{11} \in \mathbb{M}'$ (where $\overline{\varphi_{11}(x)}$ denotes the complex conjugate of $\underline{\varphi_{11}(x)}$). We can prove in the same way as above that $\overline{\varphi_{12}(x)} = \rho_{12}\varphi_{12}(x), \ \overline{\varphi_{21}(x)} = \rho_{22}\varphi_{21}(x)$ and $\overline{\varphi_{22}(x)} = \rho_{22}\varphi_{22}(x)$ with $\rho_{12}, \rho_{21}, \rho_{22} \in \mathbb{M}'$.

We follow now the argument of the proof of Theorem 1a of [8]. Equation (11) implies

$$\frac{\overline{\pi_1(\alpha_i)}}{\pi_1(\alpha_i)} = \frac{\overline{\varphi_{11}(\alpha_i)}}{\overline{\varphi_{11}(\alpha_i)}} = \rho_{11} \quad \text{and} \quad \frac{\overline{\pi_2(\alpha_i)}}{\pi_2(\alpha_i)} = \frac{\overline{\varphi_{21}(\alpha_i)}}{\overline{\varphi_{21}(\alpha_i)}} = \rho_{21}, \quad i = 1, ..., m'.$$

This together with (10) gives

$$\rho = \frac{\bar{\beta}}{\beta} = \frac{\overline{\pi_1(\alpha_i) \pi_2(\alpha_i)}}{\pi_1(\alpha_i) \pi_2(\alpha_i)} = \rho_{11}\rho_{21}$$

and similarly $\rho_{12}\rho_{22} = \rho$. In view of (11), (10) may be written in the form

$$f_1(x)f_2(x) - \beta$$

= $\pi_1(x) \pi_2(x) = \{f_1(x) + \varphi_{11}(x)\}\{f_2(x) + \varphi_{22}(x)\},\$

whence

$$-\beta = f_1(x) \,\varphi_{22}(x) + f_2(x) \,\varphi_{11}(x) + \varphi_{11}(x) \,\varphi_{22}(x). \tag{12}$$

By taking the complex conjugate of both sides we get

$$-\rho\beta = \rho_{22}f_1(x)\,\varphi_{22}(x) + \rho_{11}f_2(x)\,\varphi_{11}(x) + \rho_{11}\rho_{22}\varphi_{11}(x)\,\varphi_{22}(x). \tag{13}$$

It follows from (12) and (13) that

$$\varphi_{11}(x) | \rho\beta - \rho_{22}\beta = \rho_{22}\beta(\rho_{12} - 1).$$

641/15/2-3

If $\rho_{12} - 1 = 0$ then $\overline{\varphi_{12}(x)} = \varphi_{12}(x)$ and so, by (11), $\pi_1(x)$ is a polynomial with real coefficients. Thus (10) gives

$$\pi_{\mathfrak{l}}(x) \,|\, \beta - \bar{\beta} \neq 0,$$

which is a contradiction. Consequently $\rho_{22}\beta(\rho_{12}-1) \neq 0$ and so $\varphi_{11}(x) = \varphi_{11} \in \mathbb{Z}_{M'}$. Similarly, $\varphi_{12}(x) = \varphi_{12}$, $\varphi_{21}(x) = \varphi_{21}$ and $\varphi_{22}(x) = \varphi_{22}$ are also non-zero algebraic integers in \mathbb{M}' .

From (11) we get

$$f_1(x) - f_2(x) = \varphi_{12} - \varphi_{11} = \varphi_{22} - \varphi_{21} = t,$$
(14)

where $0 \neq t \in \mathbb{Z}_{\kappa}$. Now (12) and (14) imply

 $-\beta - \varphi_{22}(t + \varphi_{11}) = (\varphi_{11} + \varphi_{22}) f_2(x).$

But the polynomial $f_2(x)$ is not constant, hence

$$-\beta - \varphi_{22}(t + \varphi_{11}) = 0, \qquad \varphi_{11} + \varphi_{22} = 0$$

and with the notation $-\varphi_{11} = \varphi_{22} = \varphi$ we get $\beta = \varphi(\varphi - t)$. Then

$$F(x) = (f_1(x) - \varphi)(f_2(x) + \varphi)$$

is the irreducible factorization of F over \mathbb{M}' , φ and $t - \varphi$ are non-zero algebraic integers in \mathbb{M}' and $(t - \varphi)/\varphi$ is not real. Thus, by Lemma 2

$$N_{\mathcal{M}'/\mathcal{O}}(t/2) \leqslant N_{\mathcal{M}'/\mathcal{O}}(\varphi(t-\varphi)) = N_{\mathcal{M}'/\mathcal{O}}(\beta),$$

whence

$$N_{M/Q}(t) \leqslant N_{M/Q}(2\beta).$$

Finally, if $\mathscr{G}_{\kappa}(\mathscr{A}, N)$ has property (iii) specified in Lemma 4, then F(x) satisfies the conditions listed in (ii) of Lemma 6 and this completes the proof of our lemma.

LEMMA 7. Let \mathbb{M} , \mathbb{M}' , \mathbb{K} and β be as in Lemma 6. Suppose that N satisfies (8) and $N \ge N_{M/Q} (2\beta)^{1/[M:K]}$. Let $\alpha_1, ..., \alpha_s$ be distinct algebraic integers in \mathbb{K} , and $f_1 \in \mathbb{Z}_M[x]$ a monic polynomial with real coefficients. If

$$F(x) = f_1(x)(x - \alpha_1) \cdots (x - \alpha_s) - \beta$$

and

$$s > \max(\deg(F)/2 + 1, 2N^5)$$

then F(x) is irreducible over \mathbb{M}' .

Proof. Write $\mathscr{A} = \{\alpha_1, ..., \alpha_s\}$ and consider the graphs $\mathscr{G}_K(\mathscr{A}, N)$ and $\mathscr{G}_M(\mathscr{A}, N_{M/Q}(2\beta))$. By the assumption we have $s > 2N^5$ and so, by Lemma 5, $\mathscr{G}_K(\mathscr{A}, N)$ has a connected component with at least s - 1 vertices. But we can see in the same way as in the proof of Lema 6 that every edge of $\mathscr{G}_K(\mathscr{A}, N)$ is an edge of $\mathscr{G}_M(\mathscr{A}, N_{M/Q}(2\beta))$. Consequently, this latter graph also has a connected component with at least s - 1 vertices. Since $s - 1 > \deg(F)/2$, by Lemma 3 F(x) is irreducible over \mathbb{M}' .

LEMMA 8. Let \mathbb{L} be any algebraic number field with the parameters specified in Section 2, α a non-zero element in \mathbb{L} with $|N_{L/Q}(\alpha)| = m$, and v a positive integer. There exists a unit η in \mathbb{L} such that

$$\overline{|\alpha\eta^v|} \leqslant m^{1/l} \exp\{v(6l^3)^{l-1}R_L\}.$$

Proof. This lemma is a consequence of Lemma 3 of [14].

LEMMA 9. Let \mathbb{L} be as in Lemma 8, and let $f \in \mathbb{Z}_L[x]$ be a monic polynomial of degree $m \ge 2$ such that $0 < |N_{L/Q}(D(f))| \le d$. Then f is \mathbb{Z}_{L^-} equivalent to a polynomial of the form $\eta^m f^*(\eta^{-1}x)$, where η is a unit in \mathbb{L} , $f^* \in \mathbb{Z}_L[x]$ and

$$\overline{|f^*|} < \exp\{c_2[(|D_L| d^{1/m})^{3/2} (\log |D_L d|)^{l+1}]^{4m^3}\}$$

with an effectively computable positive constant $c_2 = c_2(l, m)$.

Proof. Our Lemma 9 is a special case of Theorem 1 of [11] (see also (2') in [11]).

5. PROOFS OF THE THEOREMS

The proof of Theorem 1 will be based on Lemmas 6 and 1.

Proof of Theorem 1. Suppose that $f \in \mathbb{Z}_L[x]$ and $g \in P_L(G)$ satisfy the conditions of Theorem 1 and g(f(x)) is reducible over \mathbb{L} . Then $m \ge 2$. Let $\alpha_1, ..., \alpha_m$ denote the roots of f and let β be one of the roots of g. By Lemma 1 $F(x) = (x - \alpha_1) \cdots (x - \alpha_m) - \beta$ is reducible over $\mathbb{L}(\beta)$ and hence reducible also over $\mathbb{K}(\beta)$. Since \mathbb{K} is totally real and the splitting field of g is a totally imaginary quadratic extension of a totally real field, $\mathbb{K}(\beta) = \mathbb{M}$ is also a totally imaginary quadratic extension of a totally real number field.

By virtue of (2) we have

$$|N_{M/Q}(2\beta^2)|^{1/[M:K]} = 2^k |N_{L(\beta)/Q}(\beta)|^{2[M:L(\beta)]/[M:K]}$$
$$= 2^k |N_{L/Q}(g(0))|^{2[M:L(\beta)]/[M:K]}$$
$$\leq (2G^{2/l})^k \leq C$$

with the C defined in Theorem 1. Consequently we may apply Lemma 6 with $\mathbb{M}' = \mathbb{M}$ and N = C, and we obtain that for F(x) at least one of cases (i), (ii) of Lemma 6 holds.

First suppose that F(x) possesses the properties specified by (i) of Lemma 6, i.e., m = 2m', $m \leq 2(r+1) \psi_K^2(C)$, $(x - \alpha_1) \cdots (x - \alpha_m) = f_1(x) f_2(x)$ with $f_1(x) - f_2(x) = t \in \mathbb{Z}_K$, $\beta = \varphi(\varphi - t)$ with $0 \neq \varphi \in \mathbb{Z}_M$ and

$$F(x) = (f_1(x) - \varphi)(f_2(x) + \varphi)$$

is the decomposition of F into irreducible polynomials in $\mathbb{M}[x]$. Since $\mathbb{L}(\beta) \subseteq \mathbb{M}$ and F(x) is reducible over $\mathbb{L}(\beta)$, this is at the same time the decompositions of F into irreducible polynomials over $\mathbb{L}(\beta)$. So, by Lemma 1, g(f(x)) is the product of two irreducible polynomials of degree $m' \deg(g)$ over \mathbb{L} .

Since $f_1(x) - f_2(x) = t$, f_1 and f_2 may be written in the form

$$f_1(x) = x^{m'} + a_1 x^{m'-1} + \dots + a_{m'-1} x + f_1(0),$$

$$f_2(x) = x^{m'} + a_1 x^{m'-1} + \dots + a_{m'-1} x + f_2(0).$$

Here f_1 , $f_2 \in \mathbb{Z}_K[x]$. Further, in view of $f_1(x) f_2(x) \in \mathbb{Z}_L[x]$ we have $2a_1 \in \mathbb{Z}_L$. Thus $a_1 \in \mathbb{Z}_L$. We can prove by induction on j that $a_j \in \mathbb{Z}_L$ for j = 1, ..., m' - 1 and $f_1(0) + f_2(0), f_1(0) f_2(0) \in \mathbb{Z}_L$. Since $f_1(0) - f_2(0) = t$, it follows that t is a totally real algebraic integer with $|\mathbb{L}(t) : \mathbb{L}| \leq 2$ and $f_i(0) \in \mathbb{Z}_L(t), i = 1, 2$. This proves that f is of the form (3).

As we showed above, $f_2(x) + \varphi \in \mathbb{Z}_{L(\beta)}[x]$. Hence $f_2(0) + \varphi \in \mathbb{Z}_{L(\beta)}$, and so $\varphi \in \mathbb{Z}_{L(\beta,1)}$, i.e., (4) also holds.

Suppose now that for F(x) case (ii) of Lemma 6 holds. Then $m \leq 2C^5$ and there exist a unit $\varepsilon \in \mathbb{K}$ and $\alpha_{ii} \in \mathbb{Z}_K$ such that for all distinct α_i, α_i

$$\alpha_i - \alpha_j = \varepsilon \alpha_{ij} \tag{15}$$

and

$$\max_{i,j} \left[\alpha_{ij} \right] < \exp\{C^{10} (\log C)^4\}.$$
(16)

Evidently

$$0 \neq D(f) = \prod_{1 \leq i < j \leq m} (\alpha_i - \alpha_j)^2 \in \mathbb{Z}_L.$$

Further, by (15) and (16) we get

$$|N_{L/Q}(D(f))| \leq \exp\{lm(m-1) C^{10}(\log C)^4\} = C_1.$$
(17)

We could now apply Theorem 1 of [11] (or our Lemma 9 which is a particular case of that theorem) to f. However, following the argument of the proof of Theorem 1 of [11] we shall get much better and explicit bound in (5).

By virtue of Lemma 8 (17) implies that there exist a unit $\eta \in \mathbb{L}$ and a $\delta \in \mathbb{Z}_L$ such that $D(f) = \eta^{m(m-1)}\delta$ and

$$\overline{|\delta|} \leqslant C_1^{1/l} \exp\{m(m-1)(6l^3)^{l-1}R_L\} = C_2.$$

It follows from (15) that

$$(\varepsilon/\eta)^{m(m-1)} = \delta \prod_{1 \leq i < j \leq m} \alpha_{ij}^{-2},$$

whence

$$\overline{|\varepsilon/\eta|} \leqslant C_2^{1/m(m-1)} \exp\{(k-1) C^{10} (\log C)^4\}$$

= $\exp\{kC^{10} (\log C)^4 + (6l^3)^{l-1}R_L\} = C_3.$

So from (15) we get

$$\alpha_i - \alpha_j = \eta \chi_{ii}, \qquad 1 \le i < j \le m, \tag{18}$$

with an algebraic integer $\chi_{ii} \in \mathbb{Z}_{\kappa}$ satisfying

$$\max_{i,j} |\chi_{ij}| \leq C_3 C_1^{1/lm(m-1)} = C_4.$$

Writing $\chi_{ii} = 0$, $\alpha_1 + \cdots + \alpha_m = \alpha_1$ and $\chi_{i1} + \cdots + \chi_{im} = \vartheta_i$, from (18) we obtain

$$m\alpha_i = a_1 + \eta\vartheta_i, \qquad i = 1, ..., m, \tag{19}$$

where $a_1 \in \mathbb{Z}_L$ and

$$\left|\vartheta_{i}\right| \leqslant mC_{4}, \qquad i = 1, \dots, m. \tag{20}$$

Equation (19) gives

 $\eta \vartheta_i \equiv -a_1 \pmod{m}.$

Since η , $a_1 \in \mathbb{Z}_L$, there is an $a_2 \in \mathbb{Z}_L$ such that

 $\vartheta_i \equiv a_2 \pmod{m}$

K. GYÖRY

for each *i*, i = 1,...,m. Further, by a result of Mahler [16] and Bartz [3] there exists an integral basis $\omega_1,...,\omega_l$ in \mathbb{L} with the property

$$\max_{1 \leq h \leq l} \left[\omega_l \right] \leq l^l \left| D_L \right|^{1/2}$$

Let us represent a_2 in such a basis. We can easily see that there is an $a_3 \in \mathbb{Z}_L$ congruent to $a_2 \pmod{m}$ for which

$$\boxed{a_3} \leqslant m l^{l+1} |D_L|^{1/2}.$$
(21)

Write $\vartheta_i = a_3 + m\gamma_i$, i = 1,..., m. Then γ_i is an algebraic integer for each *i* and by (20), (21), $l \leq k$ and $|D_L| \leq |D_K|$ we have

$$\max_{i} |\overline{\gamma_{i}}| \leq C_{4} + l^{l+1} |D_{L}|^{1/2} \leq 2C_{4}.$$
 (22)

Finally, from (19) we get

$$\alpha_i = a + \eta \gamma_i, \qquad i = 1, ..., m,$$

with a suitable algebraic integer a of \mathbb{L} .

Take now the polynomial

$$f^*(x) = \prod_{i=1}^m (x - \gamma_i).$$

Then $\eta^m f^*(\eta^{-1}x) \in \mathbb{Z}_L[x]$ is \mathbb{Z}_L -equivalent to $f, f^* \in \mathbb{Z}_L[x]$ and by (22)

$$\overline{[f^*]} < \exp\{m[(k+1) C^{10}(\log C)^4 + (6l^3)^{l-1}R_L]\}.$$
 (23)

Using an explicit estimate of Siegel [28] we get

$$(6l^3)^{l-1}R_L < (6el^3)^l |D_L|^{1/2} (\log |2D_L|)^{l-1} \leqslant C$$

and (23) implies (5).

It is easily seen that $g^*(x) = \eta^{-mn}g(\eta^m x) \in P_L(G)$ and that $g^*(f^*(x))$ is reducible over \mathbb{L} .

Proof of Theorem 2. Let g be an arbitrary polynomial in $P_L(G)$, and let β be one of the roots of g in \mathbb{C} . Let $\mathbb{M} = \mathbb{K}(\beta)$. Then \mathbb{M} is a totally imaginary quadratic extension of a totally real number field. In view of (2) we have

$$\begin{split} N_{M/Q}(2\beta)^{1/[M:K]} &= 2^k \left| N_{L(\beta)/Q}(\beta) \right|^{[M:L(\beta)]/[M:K]} \\ &= 2^k \left| N_{L/Q}(g(0)) \right|^{[M:L(\beta)]/[M:K]} \\ &\leqslant (2G^{1/l})^k \leqslant C. \end{split}$$

178

Let $\alpha_1,...,\alpha_s$ denote the roots of f in \mathbb{K} , and write $f(x) = f_1(x)(x-\alpha_1)\cdots(x-\alpha_s)$. Since $f_1(x) \in \mathbb{Z}_K[x]$ is a monic polynomial and $s > \max(\deg(f)/2 + 1, 2C^5)$, by applying Lemma 7 to $f(x) - \beta$ with the choice N = C we obtain that $f(x) - \beta$ is irreducible over \mathbb{M} . So it is irreducible over $\mathbb{L}(\beta)$, and by Lemma 1 g(f(x)) is irreducible over \mathbb{L} .

Proof of Theorem 3. Let g be an arbitrary polynomial in $P_L(G)$, β one of the roots of g and $\alpha_1, ..., \alpha_p$ the roots of f in \mathbb{C} . Let $\mathbb{M} = \mathbb{L}(\alpha_1, ..., \alpha_p, \beta)$. Then \mathbb{M} is a totally imaginary quadratic extension of a totally real number field. Write $\mathscr{A} = \{\alpha_1, ..., \alpha_p\}$ and consider the graph $\mathscr{G} = \mathscr{G}_{\mathcal{M}}(\mathscr{A}, N_{M/Q}(2\beta))$.

Suppose, for convenience, that $\alpha_1, ..., \alpha_s$ are the vertices of a maximal connected component of \mathcal{G} . In view of (6) and (2) we have

$$\prod_{1 \le i < j \le p} N_{M/Q}^2(\alpha_i - \alpha_j) = |N_{L/Q}(D(f))|^{[M:L]}$$

> $(2^l G)^{p(p-1)[M:L]}$
 $\ge |N_{M/Q}(2\beta)|^{p(p-1)}.$

This implies

$$N_{M/O}(\alpha_i - \alpha_i) > N_{M/O}(2\beta)$$

for some *i* and *j*, and so $s \ge 2$.

Denoting by Γ the Galois group of f(x) over \mathbb{L} , Γ may be regarded as a subgroup of the automorphism group of \mathscr{G} . So $\{\chi(\alpha_1),...,\chi(\alpha_s)\}$ and $\{\psi(\alpha_1),...,\psi(\alpha_s)\}$ are identical or disjoint for each $\chi, \psi \in \Gamma$ (where $\chi(\alpha_i)$ and $\psi(\alpha_i)$ denote the images of α_i under the automorphisms χ and ψ). Consequently there are $\chi_1,...,\chi_d \in \Gamma$ such that $\{\chi_1(\alpha_1),...,\chi_1(\alpha_s)\},...,$ $\{\chi_d(\alpha_1),...,\chi_d(\alpha_s)\}$ are pairwise disjoint and p = ds. Since $s \ge 2$ hence s = p and so \mathscr{G} is connected. Thus by Lemma 3 $f(x) - \beta$ is irreducible over $\mathbb{L}(\beta)$. Finally, Lemma 1 implies that g(f(x)) is irreducible over \mathbb{L} .

Proof of Theorem 4. Suppose that f(x) satisfies the conditions of Theorem 4 and g(f(x)) is reducible over \mathbb{L} for some $g \in P_L(G)$. Then by Theorem 3 we have

$$|N_{L/Q}(D(f))| \leq (2^{l}G)^{p(p-1)}$$

So, by virtue of Lemma 9 f is \mathbb{Z}_L -equivalent to a polynomial of the form $\eta^p f^*(\eta^{-1}x)$, where $\eta \in \mathbb{L}$ is a unit, $f^* \in \mathbb{Z}_L[x]$ and (7) holds. Further $g^*(x) = \eta^{-pn}g(\eta^p x) \in P_L(G)$ and $g^*(f^*(x))$ is reducible over \mathbb{L} .

K. GYÖRY

References

- 1. A. BAKER. Bounds for the solutions of the hyperelliptic equation, *Proc. Cambridge Philos.* Soc. 65(1969), 439-444.
- 2. A. BAKER AND J. COATES, Integer points on curves of genus 1, Proc. Cambridge Philos. Soc. 67 (1970), 595-602.
- 3. K. M. BARTZ, On a theorem of Sokolovskii, Acta Arith. 34 (1978), 113-126.
- 4. C. BERGE, "Graphs and Hypergraphs," North-Holland, Amsterdam/London, 1973.
- A. BRAUER AND R. BRAUER, Über Irreduzibilitätskriterien von I. Schur and G. Pólya, Math. Z. 40 (1936), 242-265.
- 6. A. BRAUER, R. BRAUER, AND H. HOPF, Über die Irreduzibilität einiger spezieller Klassen von Polynomen, Jahresber. Deutsch Math.-Verein. 35 (1926), 99-112.
- K. GYÖRY, Sur l'irréductibilité d'une classe des polynômes I, Publ. Math. Debrecen 18 (1971), 289–307.
- K. GYÖRY, Sur l'irréductibilité d'une classe des polynômes II, Publ. Math. Debrecen 19 (1972), 293-326.
- K. GYÖRY, Sur une classe des corps de nombres algébriques et ses applications, Publ. Math. Debrecen 22 (1975), 151-175.
- K. GYÖRY, Sur les polynômes à coefficients entiers et de discriminant donné III, Publ. Math. Debrecen 23 (1976), 141-165.
- K. GYÖRY, On polynomials with integers coefficients and given discriminant V. p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190.
- 12. K. GYÖRY, On the number of solutions of linear equations in units of an algebraic number field, *Comment. Math. Helv.* 54 (1979), 583-600.
- 13. K. GYÖRY, On certain graphs composed of algebraic integers of a number field and their applications I. Publ. Math. Debrecen 27 (1980), 229-242.
- K. GYÖRY, On the solutions of linear diopantine equations in algebraic integers of bounded norm, Ann. Univ. Budapest Eötvös, Sect. Math. 22-23 (1979-1980), 225-233.
- K. GYÖRY AND J. RIMÁN, On irreducibility criteria of Schur type (in Hungarian), Mat. Lapok 24 (1973), 225-253.
- K. MAHLER, Inequalities for ideal bases in algebraic number fields, J. Austral Math. Soc. 4 (1964), 425–428.
- M. POHST, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), 459-492.
- G. PÓLYA, Verschiedene Bemerkungen zur Zahlentheorie, Jahresber. Deutsch. Math-Verein. 28 (1919), 31-40.
- G. PÓLYA AND G. SZEGÖ, "Aufgaben und Lehrsätze aus der Analysis." Band II. Springer-Verlag, Berlin, 1925.
- 20. L. RÉDEI, "Algebra," Akadémiai Kiadó, Budapest, 1967.
- 21. W. SCHULZ, Über Reduzibilität bei gewissen Polynomen und das Tarry-Escottsche Problem, Math. Z. 63 (1955), 133-144.
- 22. I. SCHUR, Aufgabe 275, Archiv Math. Phys. 15 (1909), 259.
- 23. I. SERES, On the irreducibility of certain polynomials (in Hungarian), Mat. Lapok 3 (1952), 148-150.
- 24. I. SERES, Über eine Aufgabe von Schur, Publ. Math. Debrecen 3 (1953), 138-139.
- I. SERES, Lösung und Verallgemeinerung eines Schurschen Irreduzibilitätsproblems für Polynome, Acta Math. Acad. Sci. Hungar. 7 (1956), 151–157.
- 26. I. SERES, Über die Irreduzibilität gewisser Polynome, Acta Arith. 8 (1963), 321-341.
- 27. I. SERES, Irreducibility of polynomials, J. Algebra 2 (1965), 283-286.
- C. L. SIEGEL, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1969), 71-86.

- 29. J. S. SUNLEY, Class numbers of totally imaginary quadratic extensions of totally real fields, *Trans. Amer. Math. Soc.* 175 (1973), 209-232.
- 30. N. TSCHEBOTARÖW AND H. SCHWERDTFEGER, "Grundzüge der Galois'schen Theorie," Noordhoff, Groningen/Djakarta, 1950.
- 31. H. ZASSENHAUS, On Hensel factorization, I, J. Number Theory 1 (1969), 291-311.