Available online at www.sciencedirect.com

scmuce@mnscro J?urnal (?f
Differential
ACADEMIC Equations
PRESS J. Differential Equations 187 (2003) 520540 -

http://fwww.elsevier.com/locate/jde

Global existence, asymptotic behavior and
blowup of solutions for a class of nonlinear wave
equations with dissipative term ™

Yang Zhijian
Department of Mathematics, Zhengzhou University, Zhengzhou 450052, People’s Republic of China
Received April 9, 2002; revised August 22, 2002

Abstract

The paper studies the global existence, asymptotic behavior and blowup of solutions to the
initial boundary value problem for a class of nonlinear wave equations with dissipative term.
It proves that under rather mild conditions on nonlinear terms and initial data the above-
mentioned problem admits a global weak solution and the solution decays exponentially to
zero as t— + oo, respectively, in the states of large initial data and small initial energy. In
particular, in the case of space dimension N = 1, the weak solution is regularized to be a
unique generalized solution. And if the conditions guaranteeing the global existence of weak
solutions are not valid, then under the opposite conditions, the solutions of above-mentioned
problem blow up in finite time. And an example is given.
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1. Introduction

In this paper, we study the global existence, the asymptotic behavior of weak
solutions and the blowup of solutions to the initial boundary value problem for a
class of nonlinear wave equations with dissipative term:

N
0 .
u,,+A2u+)vu,:Z$ai(uxi) in Q x (0,+00), (1.1)
i=1
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ou

%6920 on [0,+0), (1.2)

ulpg =0,

u(x,0) =up(x), wu(x,0)=u(x), xeQ,

where Q<R”" is a bounded domain with smooth boundary 9Q,A is the Laplace
operator, 24|, indicates derivative of u in outward normal direction of 9, 6;(s) (i =
1,...,N) are given nonlinear functions and A>0 is a real number.

In the case of N = 1, without loss of generality we assume that Q = (0, 1), problem
(1.1), (1.2) becomes

Ut + Uxxxx + ;LH, = a(ux)x in (07 1) X (07 +OO)7 (13)

u(0,1) =u(l,2) = ux(0,7) = u (1,¢) =0, =0,
u(x,0) = up(x), wu(x,0)=u(x), 0<x<l. (1.4)

Equations of type (1.3) are a class of essential nonlinear evolution equations
appearing in the elasto-plastic-microstructure models. They describe the longitudinal
motion of an elasto-plastic bar and the anti-plane shearing, see [2]. When 1 = 0,
under the assumption “¢(s) = as®, where a<0 is a real number”, the authors [2]
showed that the interaction between the lower-order nonlinear terms that change
type and the small, higher order dispersive microstructure terms leads to the
equations that have a soliton structure locally. The competition of the focusing effect
of the nonlinearity and the spreading effect of the dispersive microstructure terms
leads to a well-posed but growing ‘jump’ profile. And for general Eq. (1.3), with
/.= 0, under the assumption “ce C?(R), ¢”(s) satisfies local Lipschitz condition and
d’(s) is bounded below”, the authors [5] proved that corresponding problem (1.3),
(1.4) admits a unique generalized solution and gave some sufficient conditions which
make the solutions of problem (1.3), (1.4) blow up in finite time. But if ¢'(s) is not
bounded below, does problem (1.3), (1.4) admit any global solution? When the space
dimension N >=2, does problem (1.1), (1.2) admit any global solution? These
questions are still open.

In real process, the linear damping, as well as dissipation, plays an important
role. Therefore, the study of nonlinear evolution equations with linear
damping or dissipative term has recently attracted the attention of many
mathematicians and engineers, and there have been a lot of impressive literature,
see [3,4,7-9].

In the present paper, on the one hand, by a Galerkin approximation scheme, as
well as combining it with the potential well method, we proved that

1. If 6,eC'(R),0;(s) are of polynomial growth order, either ¢;(s)s>0 or
ai(s)=Co,seR,i =1, ..., N, where and in the sequel Cj is a constant, then problem
(1.1), (1.2) admits a global weak solution u as long as initial data
upe H3(Q),u1 € Ly(RQ). And if [)oi(1)dt<o(s)s,seR, i=1,...,N, then when
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A>0, the solution features the asymptotic behavior
2 2 -5
lur (D)l + | Au()][L,0) S ME(0)e™™, >0, (1.5)

where E(0) is as shown in (2.6), M and ¢ are positive constants (see Theorem 2.2).

2. Even if the above-mentioned conditions ‘“either o;(s)s=>0 or g}(s)= Co,
seR,i=1,...,N” are not valid, problem (1.1), (1.2) admits a global weak solution
u as long as initial data uye W (potential well), u; € L,(Q) such that the initial energy
E(0)>0 is properly small, and when 1> 0,

e (0)117, ) + 1Au(D| 17,0 + [IVu(|I7 | (2 < ME©0)e ™", >0, (1.6)
where 0, is a positive constant (see Theorem 2.1). Egs. (1.5) and (1.6) show that the
additionally dissipative term u, makes the weak solutions decay exponentially. In
particular, in the case of space dimension N =1, the weak solutions can be
regularized to be a unique generalized solution (see Theorem 2.3).

On the other hand, by an energy method, we prove that if the above-mentioned
conditions guaranteeing the global existence of weak solutions are not valid, then
under the opposite assumptions similar to thresholds, the solutions of problems
(1.1)~(1.4) blow up in finite time (see Theorem 2.4).

The plan of the paper is as follows. The main results concerning the global
existence, the asymptotic behavior of weak solutions and the blowup of solutions are
stated in Section 2. The proofs of global existence and asymptotic behavior of weak
solutions are given in Section 3. In the case of N = 1, the weak solution of problem
(1.3), (1.4) is regularized to be a unique generalized solution in Section 4. In Section
5, the proof of a blowup theorem is given and an example shown.

2. Statement of main results
We first introduce the following abbreviations:
Or=0x(0,T), L,=Ly(Q), W"'=Ww"(Q),
o = wyt(@), CF=chQ), G =G (@),
H = w2 H =W =l 1=

Let (+,-) denote the Ly-inner product and p’ = p/(p — 1) for any real number p> 1.
Define the potential well

W = {ueH; |I(u) = [|Aul” = b||Vull;, 71 >0} U {0}, (2.1)

where and in the sequel m>1 and b>0 are real numbers.
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Lemma 2.1 (Adams [1] and Ladyzhenskaya [6]). For any ue Hg, ||Aul| is equivalent
to |Jull e

Lemma 2.2. Let m + 1<13N2 if N>2. Then W is a neighborhood of 0 in Hg.
Proof. By the Sobolev embedding theorem,
HE o Wy, (2.2)

For any ue H3, if ||Au|| = 0, obviously ue W; if [|Au||>0, (2.2) and the Poincaré
inequality yield

B[Vl [ 1 < €| Audl " || A | < || Au (2.3)

I
as long as ||Au||<(1/C,b)m=1 where and in the sequel C, denotes embedding

constant from H} to W,""!

2.2 is proved. O

. Eq. (2.3) implies the conclusion of Lemma 2.2. Lemma

For later purpose we introduce the functional J defined by

1 b .
I(u) = |8l = =Vl (24)

m+1

for suitable u. Obviously, we have

1 L i
J(u) =5 1(u) + d[|Vullni) = m—HI(U) + 3||Au|\ (2.5)
for all such u, where and in the sequel d; = 'gﬂ Jl)ll)’
Now we state the main results of the paper. (To simplify notation we shall not
introduce the range of summation if it is extending from 1, ..., N.)

Theorem 2.1. Assume that

(i) 6;€C'(R), |oi(s)|<b|s|",seR, i=1,...,N, and if N>2, also m + 1<
(i1) upe W,uy € Ly such that

0<E(0 )——||u1|| +—\|Au0|| +Z // s) ds dx

m—1 1 "7%1 26
Simro\co) (2-6)

Then for any T>0, problem (1.1), (1.2) admits a weak solution ueL ([0, T];
H3) WL ([0, T); Ly), and when A>0, (1.7) holds.
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Theorem 2.2. Assume that

(i) Assumption (i) of Theorem 2.1 holds, and either o;(s)s=>0 or o7(s) = Cy,s€R, i =
1,....,N, where Cy is a constant.

(11) Ug GH&, up €L2.

Then for any T>0, problem (1.1), (1.2) admits a weak solution
ueLq, ([0, T]; H3) n Wh* ([0, T; Ly). And if

(i) [; 0i(t) dr<oi(s)s,seR,i=1,...,N.

Then when A>0, (1.6) holds.

Theorem 2.3. Assume that

(i) ae C*(R),d" (s) is locally Lipschitz continuous, ¢’(0) = ¢”(0) = 0, |a(s)| <b|s|",
seR.

(i) upe W~ H*, uy € H} such that

1 1 o
0<E(0):5||u1||2+5||uoxx|\2+/g/0 o(s) ds dx
2

m—1 (1 \"!
<ZG;:B<EE> . (2.7)

Then for any T >0, problem (1.3), (1.4) admits a unique generalized solution
ue C([0,T); H* A H3) n C'([0, T); H) n C?([0, T]; L»), and when 7.>0,

et ()| + s (D] + [t (1) 51 < ME(0)e™", 10, (28)
Theorem 2.4. Assume that
(i) ;€ C(R),0:(s)s<k [; oi(1) dr< — kp|s|™" seR,i=1,...,N, where k>2 and
B >0 are constants, and if 1>0, also 1 <m<3.
(ii) uoe HZ,u1 € Ly such that E(0)<0, where E(0) is as shown in (2.6).

Then the solution u of problem (1.1), (1.2) blows up in finite time T, i.e. when
A>0,1<m<3,

t
||u,(l)|\2+/0 ||u(r)||2dr—>+oo as 1717, (2.9)

and when 1 = 0,

(D] + [[u@®)]| = + 0 as =T, (2.10)

where T is different for different conditions.
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3. Global existence and asymptotic behavior of weak solutions

Proof of Theorem 2.1. We look for approximate solutions #"(z) of problem (1.1),
(1.2) of the form

=3 T, (3.0)
=

where {w;}, is an orthogonal basis in HZ, and also in L,, and the coefficients
{Tin}i_, satisfy Tj, (1) = (u"(2), w;) with

(ad (1), ) + (A2 (1), W) + 2} (1), )
:Z<8ax,~ai(u§"(t))’wj)’ t>0, j=1,...,n, (3.1)

u'(0) =up, u}(0) =ui. (3.2)

Since C¢° is dense in HZ and L,, we choose ul,u" € C;° such that

up—ug in Hg, uf—u; in L, as n— 0. (3.3)

Replacing w; in (3.1) by u(¢) gets

where

Obviously,

d 1 n
27 En(0) + Al I =0, (3.4)
t
t)+i/ |l ()||* dv = E,(0), >0, (3.5)
0

E1) = Sl 01 + 3]l A 1) +Z// ) ds dx.

E\(0)=4lu} (0)|* + T (u"(1)),  1>0, (3.6)

E0) = 3l 1P +31au) +Z// s) ds dx. (3.7)
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By integral mean value theorem, assumption (i), (2.2) and (3.4),

s) ds dx|<

/ 03 (E) (1, — )]

< o (El g1y b, — oximir

Uox;

< DIl [yl 6, — 0w [y >0 asn—oo,  (3.8)

where ¢ = uoy, + i, ,0<0;<1, i=1,...,N. So E,(0)—>E(0)(>0) as n— o,
where E(0) is as shown in (2.6). Without loss of generality, we assume that
E,(0)<2E(0) for all n. And thus (3.5) implies, for all n,

E,(1)<2E(0), ¢>0. (3.9)

Since wuge W, combining (3.3) with (2.2) yields I(uj})—1I(u)>0 as n— oo. Let,
without loss of generality, I(uf}) >0, i.e. uje W for all n. Hence, for all n,

(e W, 1>0. (3.10)

In fact, if there exists a 7 >0 such that «"(¢1)e W,te[0, T), while «"(T)e0W, i.e.
I(u"(T)) = 0 for some n, then ||Au"(T)||#0 (or else by Lemma 2.2, " (T) is an inner
point of W), and by (2.3), (2.5), (3.6), (3.9) and (2.6),

B[V (1)l < €, bRE(0)b/dy) T IIAM (0)]><Au" ()|,
0<t<T. (3.11)
Eq. (3.11) implies I(¥"(7T))>0, which is a contradiction. So (3.10) is valid. And

(3.10) implies that (3.11) holds for ¢>0.
It follows from (3.5), (3.6), (3.9), (3.10) and (2.5) that

%II YOI +5 <|IA ()II2+|IW”(1)IIiZi})
+i/t||u’;(r)||2d‘c<2E(0), 1>0. (3.12)
0

By (3.12), on the one hand, we have
|(ai(uds, ), Wi I < ol ) sy 197 e
< M|, ()| [1Awy [ < M,
t>0, i=1,...,N, j=1,....n,

where and in the sequel we denote by M and C;(i=1,2,...) various positive
constants independent of n and ¢, i.e. for any 7 >0, the nonlinear terms in system of
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equations (3.1) are uniformly bounded on [0, 7. So the solution u"(¢) of problem
(3.1), (3.2) exists on [0,7] for each n. On the other hand, we can extract a
subsequence from {u"}, still denoted by {u"}, such that for any 7>0,

u"—»u weak® in L, ([0, T]; H3),
u! >u, weak™ in L, ([0, T]; L), (3.13)
and for any >0,
u'(t)—>u(t) weak™ in HZ,
Wl (1) > u,(t) weak™ in L, (3.14)

as n— o0. By (3.14), the Sobolev embedding theorem and the continuity of ¢;(s), for
any >0,

Vu"(t)>Vu(r) strongly in L, and a.e. on Q,

ol (1) —>o;(uy(t)) ae onQ i=1 .. N (3.15)

Xi

as n— oo. Integrating (3.1) over (0, 7) gets
W (1), ;) + /(Au (c), Aw)) dTH/ o) w,) de
= —Z/ ), Wix,) dt + (uf,w;), t>0. (3.16)
Since

t t
/(Aun(f),ij)dT</ 1A @) |Awllde<MT, te0,T),  (3.17)
0 0

t t
/O (00" (2)), wp,) dr< /0 30" () 1y [ s e
t
<M /0 e (D)2 | Aws|| e
< MT, 10, T), (3.18)

i=1,...,N,j=1,...,n, letting n— oo in (3.16) and making use of (3.14), (3.15),
(3.17), (3.18) and the Lebesgue-dominated convergence theorem yields

o)+ [ @t dzd [ o)z + S [ otus) ) de

= (u1,w;), t>0, j=12,.... (3.19)
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Since {w;} is dense in H§, differentiating (3.19) gets, for any ve H7,
(un(£) — Nu(t) + Juy(t Z o oi(uy,(1)),0) =0, tel0,T). (3.20)

By (3.13)
" (1), w;) = (u(t),w;) weak® in W"*[0,T] as n— oo,
j=1,2 ... . (3.21)
Since W0, T| < C|0, T},
("(0),w;) > (u(0),w;) asn—oo, j=1,2, ... (3.22)
Letting t— 0" in (3.19) gets
(u(0),wj) = (ur,wy), j=12,.... (3.23)
Combining (3.22), (3.23) with (3.3) gets
u0)=uy in H},  w(0)=u in L. (3.24)

Egs. (3.20) and (3.24) imply that ue L., ([0, T); H3) n W= ([0, T]; L) is a global
weak solution of problem (1.1), (1.2).
Now, we discuss the asymptotic behavior of the above-mentioned weak solutions.
Replacing w; in (3.1) by u"(f) gets

_d noony n ii n 2
0= (") = [fuiy (¢ P+ llAw (1)]* + E (0:G),1t3) + 5 |l (D)
d non n 2 iﬁ " 2
> ") = (O + 1 (@0) + 5 " DI, >0, (3.25)

By (3.11),
bl (0)|[ny <yl Ad" (0)|P, £>0,

m—1

where y = C,b(2E(0)b/d,) 2 < 1. Therefore,

n n n m 1 n m
1" (1)) = ||Aw(1)|]* — b]|Vu <z>|mi}>b(/ )||Vu O, (3.26)

160(0) > (1 =) | (0], (3:27)
IV O+ a0l <= (G ) 100), 0. (328)
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Multiplying (3.4) by €’ gives

%(e‘”En(t)) + 2 (1|2 = 8" E, (1),  1>0. (3.29)

Integrating (3.29) over (0, ¢) and using (3.9), (3.28) and (3.25) we obtain

@%xn+z/¥MWﬂwwdr
50)+5 [ & (S0l + S I @F + 2 v ) o
<2E(0)+§/ & [ul' (0)]]? a’r+C15/ e I(u' (1)) dt
l ! St e 2 T
<2E(0)+<2+C1>5/0 | ()] d
o)1) = () =5 [ ) )
= |l 0lF = ) =5 [P
l ! St e 2 T
<260+ (3¢ )0 [ SR

+ Ci0 {6(%(

+ Cz52/ (|| @I + [l (©)|) de

0

N —

n 1 n 1 n 1 n
wxof+zu+znumw)+§nm2+§u+zn%w}

! ‘o .
<2E(0) + §+C1>5/ & ||u ()]|* dt + C30¢ E, (1)
0
1 n|2 ny2
+ 5 Cro([l |7 + (1 + Allug| )

t
+ Cy0? / " E,(1)dt, t>0. (3.30)
0
Take 6: 0<d<min{(2C3)™", (2C4)", /(1 +2C))}, we deduce from (3.30) that
t Py
eéfEn(z)H/ | (2)| de
0

t
SME(0) +2C46° / e E,(t)dt, t>0. (3.31)
0
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Applying the Gronwall inequality to (3.31) yields

1 iy d o
01 + 5 (Gl @I + v o1
<E,()<SME(0)e™", >0, (3.32)
where §; = (1 —2C48)6>0. Letting n— oo in (3.32), from the sequential weak™

lower semi-continuity of the norm in L., ([0, T]; H3) n W= ([0, T]; L,) we deduce
that

et ()P + 1A (0) |+ [ V()] [
< Jim inf ([[a(0)]” + 1" (1) + 922" (1) [111)
<SME(0)e™!, >0, (3.33)

where ue L., ([0, T); H3) n W ([0, T; L,) is a weak solution of problem (1.1), (1.2).
Theorem 2.1 is proved. [

Proof of Theorem 2.2. We still look for approximate solutions " () of problem (1.1),
(1.2) as shown in (3.0).

Case 1. If 6;(s)s>0,5€R,i=1,...,N, note that [jo;(t)dt=0 (i=1,...,N) at
this time, repeating the proof of Theorem 2.1 and explomng (3.5) and (3.9) gets

t
1, (D11” + 1| Au (1)) +2/1/0 [} (x)|[*d<4E(0), 1>0. (3.34)
Replacing w; in (3.1) by u"(¢) gets

d noon n n Zd "
= (") = ||} (0)]1* + [ A (1)) +a ol Olls

dt
+ Z )oul) =0, t>0. (3.35)

Eq. (3.4) + ¢ x (3.35) gives
SO +5llaw () +Z// 9 ds d

+ oS OIF + )

+ey (o) ul) =0, 1>0. (3.36)
i

dl

+ (A= o)l (1) + el A (1)
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Note that |(u,u")| <4||u"(2)|]* + 2|jul (¢)]|*, taking & = 2/2, multiplying (3.36) by ¢*
and integrating the resulting expressmn over (0, 1) gets

1
1)
e’[zn (01 + 5l (0] +Z// dsdx]
% ' ot n 2
w5 ) | IO + 1@+ 3 ot 0.,
1
< (1 + 1w |) +z// dsdx+—||u0||
j’ (31
+§ uy, up) +5 Z oi(uy),uy ) dt

t
+csa/ (@ + 1A (D)) de, 10, (3.37)
0

where assumption (iii) of Theorem 2.2 has been used. Take J: 0<d<
min{1/2,4/2Cs}. From (3.37) we have

e ()| + YA (1)|]P < ME,(0)e™,  t>0. (3.38)

By (3.34), repeating the arguments of the proof of Theorem 2.1 gives that there exists
a subsequence of {u"}, still denoted by {u"}, such that (3.13)—~(3.14) hold and the
limiting function ue L., ([0, T]; H3) n W= ([0, T]; L) is a weak solution of problem
(1.1), (1.2).

Letting n— oo in (3.38), from (3.13) and the sequential weak™ lower semi-
continuity of the norm in L., ([0, T]; H3) n W= ([0, T; L,) we obtain

[lue(D)| + NJAu(0)| < tim inf ([l (0)]|* + [|Aa” (0)])

< ME(0)e™, t>0. (3.39)

Case 2. If gi(s)= Cy,seR,i=1,...,N, let G;(s) = g;(s) — kos — 7;(0), where ky =
min{Cy,0}<0, i=1,...,N. Obviously 6;(0) =0,6%(s) = ai(s) —ko=0, 6:(s)s=0,
seR, i=1,...,N, and if assumption (iii) of Theorem 2.2 holds, then a simple
calculation shows f(‘) 1) dt<6i(s)s,seR, i=1,...,N. Therefore, substituting
ai(s) = 64(s )+kos+a,(0) into (3.1) and repeating the proof in Case 1 gets the
conclusions of Theorem 2.2. Theorem 2.2 is proved. [
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4. The case in one dimension
In order to prove Theorem 2.3, we first quote a lemma.
Lemma 4.1 (Zhou and Fu [10]). Assume that G(zy, ...,z,) is a k-times continuously
differentiable function with respect to variables zi,...,z; and z;jeL.,([0,T];

HYQ)) (i=1,....h). Then

2
Hk

I

2 h
WG(21(~,Z),...,Z;,(~,I)) <C(M,k,h)2||z,-(t)|
i=1

where M = max << max, o, |Zi(x, )], C(M, k,h) is a positive constant depending
only on M,k and h.

Proof of Theorem 2.3. We still start with approximate solutions "(z) of problem
(1.3), (1.4) of form (3.0), where {wj};ﬁl is an orthonormal basis in H4mH§, and the

coefficients {7}, }}_, satisfy Tj,(¢) = (u"(1), w;) with

(g, (8), wy) + (W (2), wy) + 2@l (2), wy) = (0 (2)) , wy),
>0, j=1,....n, (4.1)

u'(0) = ug,  u(0) = uy, (4.2)

where and in the sequel uu = 2% u 1/ € C and uj —ug in H* A H, uf} > uy in H] as
n— oo. Repeating the arguments of the proof of Theorem 2.1 gets (3.12) (replacing
Au" and Vu" there by u. and u, respectively), and by (3.12) and the Sobolev
embedding theorem

" (D] er <M, 1>0. (4.3)
Replacing w; in (4.1) by ., (), integrating by parts and utilizing (4.3) and Lemma
4.1 gets
1 d n ¢ 2 n ¢ 2 n ¢ 2 } n t 2
5 77 U N7+ s (D17 + [ (OI) + Allad, O]

= (0(3) 0, the) + (", 1)

<M (|| ()7 + s D), £>0. (4.4)
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Applying the Gronwall inequality to (4.4) gives

I3
o)+ (0l + 22 [ I )P e M(T),
i (Dl er + " (Dl s <M(T), 0<t<T, (4.5)
where and in the sequel we denote by M(T) various positive constants depending

only on 7. Replacing w; in (4.1) by u/,(¢) and making use of the Holder inequality
gets

[adf (O < (ads ()] + 21aaf ()] + o @y () D e (1),

[, (< M(T), 0<¢<T, (4.6)
Let v"(1) = u"(t) — "~ !(), then v"(¢) satisfy

(Wi (0, wp) + (03 (0), wy) + A0 (1), wy)

= (a(u} (1), — a(ufjl(t))x, wi), >0, j=1,...n, (4.7)
v"(0) = uf —up~', (0) = uf —ui (4.8)

Replacing w; in (4.7) by v, (¢) and exploiting the Lagrange mean value theorem and
(4.5) gets

3 U OIF + IO + I OIP) + e Ol
= ((02) = (™)) 1, ) + (7, 07)
<MY Ol + 1, (O]P),  0<I<T. (49)

Applying the Gronwall inequality to (4.9) yields

t
[V ()1 + 110" (1) 74 +27~/0 [V (DI dt
<ol + Nl )T -0 (4.10)

uniformly on [0, 7] as n— oo. Replacing w; in (4.7) by v/,(¢) and making use of the
Holder inequality, (4.5) and (4.10) gets

107 (DI o (D)1 + 217 (O] + [0 (e (0) i (1) + 0" (Ea ()l () ()]

< M(T)([[" (D]l g+ + o7 (D)) =0 (4.11)
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uniformly on [0, T] as n— oo, where &, =" + 0,u"!,0<6,<1. From (4.10) and
(4.11) we deduce that

" (1) = " (O s + [t (1) = 6" (Ol g2 + |lea (1) = v (D) =0

uniformly on [0,7] as m,n— oo, ie. {u'} is a Cauchy sequence in
C([0, T); H* A H3) n C'([0, T); H3) " C*([0, T); L»). Therefore,

u"—u in C([0,T); H*nH})~C'([0,T); H}) nC*([0, T; Ly) (4.12)

as n— 0. Letting n— oo in (4.1), (4.2) gives that ue C([0, T]; H*n H3)n C'([0, T);
H3)n C?([0, T); L) is a generalized solution of problem (1.3), (1.4).

Let u,ve C([0,T); H*nHZ)n C([0, T); H3) n C*([0, T); L,) are two generalized
solutions of problem (1.3), (1.4), w = u — v. Then we have

Wi (1) + Waxxx (£) + 2w (2) = a(ux (1)), — o(vx(2)),, 1€(0, T, (4.13)

w(0) =0, w,(0)=0. (4.14)

Taking the L,-inner product of (4.13) with w, gives

d ot
7 (w1 + w1 + 24/0 [wi(2)|[* de
= 2(0" (tt )Wy + 6" (E)Vrxwy, Wr)

<SM(T)(|w (DI + [wal(0)|P), 0<<T, (4.15)
where & = u, + Ov,,0<0<1 . Applying the Gronwall inequality to (4.15) gets
[wi (DI = [[wex (@)l = 0, €0, T]. (4.16)
Hence w(f) =0, i.e. u(t) = v(t),1€[0, T).

Repeating the arguments of the proof of Theorem 2.1 gets (2.8). Theorem 2.3 is
proved. [

5. Blowup of solutions
Proof of Theorem 2.4. Taking the L,-inner product of (1.1) with u, yields

E(t) + A|u()|* =0, E()<E(0)<0, =0, (5.1)
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where and in the sequel - dt, and

EO =5 (Ol + 18P+ 3 [ [ o) e, e0

Let

t
F(1) = IILt(l)||2+/1/0 [u(z)|[* dx,
where 1>0 as shown in (1.1). Then

F(1) = 2(uu,) + 2lu(0)| ],
(1) = U, 2 Au(d)|]? - oi(uy, Uy, dx
F(t)2<|| O = [lAu(r)]| Z/Q (ux,) ,d>

<||uf<>|| SRS Y I AT dsdx)
>z<z|u, WP = (k—2) Z// dsdx—2E(0)>

= 2(2l[u(0)|P + (k = 2)BI[Vu(D)|[i1 = 2E(0)), >0,

where assumption (i) of Theorem 2.4 and the fact
e [ [ o) dsates 2600 = 01 = sato P

k22// s) ds dx

have been used. By (5.5),

2k - 2B/ V()| de — 4E(0)t + F(0), 10,

F(t) + F(6)= 4|[u,(0)])* + 2(k — 2)B <||v 21}+/ IVu(o)||21] de
— 4E(0)(1 + 1) + F(0)

=g¢(1), t>0.
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(5.3)



536 Y. Zhijian | J. Differential Equations 187 (2003) 520-540

Take p =™, obviously 2<p<m+ 1 and p/
and the Sobolev—Poincaré inequality,

=243 (<2). By the Young inequality

u,u ! u(t)|f 1 w (D)
(O] p|| Il +p,|| (01l
< Col(IVu@) )" + ()11,

|(u, ur)l’l‘ CrllIVu(n) [ + [lu(0)|P], - >0, (5.8)

where and in the sequel C; (j = 6,7, ...) denote positive constants independent of

Lu= 2{’,’,,131) (<1). By the Holder inequality,

m m+1
IV u(t)|[miy = Cs(|[u(D)]P) 2, >0, (5.9)

m+1

! 1-m 4 2
[ivu@itasz el ([ uore) © o s
0 0

(1) If />0, then by (5.8)(5.10),

t
gu>><zo(zHVuunZi}+|wxonz+lA HVu@rnzﬂch)

— 4E(0)1 + F(0)
1
>a{w%ﬁ+m<m #%/Hundﬁzl
— 4E(0)t + F(0)
>cm‘mhuwn+|w (/w HdQ}
— 4E(0)t + F(0) — Clll 3 i1, (5.11)

1—-m

where and in the sequel o = 1/u>1. Since —4E(0)¢t+ F(0) — C;;f 2 — + oo as
t— + oo, there must be a #p=>1 such that

, 1-m
C4E(0)t + F(0) — Ciyf 2 =0 as =1 (5.12)

Let y(f) = F(t) + F(t). Then from (5.6) and (5.3) we obtain y(¢)>0 as t>#,. And
thus (5.11) and (5.12) imply

1—m
g(t)=Cnt 2 y*(1), =1, (5.13)



Y. Zhijian | J. Differential Equations 187 (2003) 520-540 537

where the inequality (aj + --- +a)"<20"V0U=D(gh + ... +-a7), here @;=0 (i=
l,...,I) and n>1 are all real numbers, has been used. Combining (5.7) with (5.13)
gives

J'/(l)chzllamy“(l), t=1. (5.14)
Therefore,
3—m[ 3™ 1 g
i<T={ 2 T -y )| "< (5.15)
1
P D T "=3
and
y()—» + o0 ast—T. (5.16)

By (5.3), (5.4) and (5.16),

2+ D)) + e (DI + i/ot [[u(2)|* de

>Ft)+F(t)>+0 as t—->T". (5.17)
And (5.17) implies
, ~
\|u,(t)|\2+/ ||u(‘c)||2d7:—> 4+ o0 as t-T". (5.18)
0
In fact, if
t
sup (Ilut(t)||2+/ IIu(f)llsz><M7 (5.19)
0<t<T 0
then

t
d
||u<r>||2:/0 (I de + P
! 2 2 2
</0<||u<r>|| (1) dt + o]
< (1+ DM + |lw*, 0<i<T, (5.20)

which contradicts (5.17). Therefore (5.18) holds.
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(2) If A =0, then by (5.8) and (5.9),

g(1)= Cio2I[Vu(0)|lniy + [[u(0)]* + 1) = 4E(0)¢ + F(0)

> Cull(u,u) " + ([[u(0)|)] = 4E(0)t + F(0),  1>0. (5.21)

By the same method used in deriving (5.14), there must be a ¢, >0 such that
—4E(0)t + F(0)>0 and y(¢) = F(¢) + F(t)>0 as t>t;. So combining (5.7) with
(5.21) yields

()= Ciy*(t), t=1. (5.22)

Eq. (5.22) implies that there exists a positive constant T = #; + [Cyz(a — 1)y* ' (£;)]
such that y(r)— + oo as - T~ Since (1) <||u,(¢)|* + 2||u(?)|)%,

[lu: (O] + [Ju(®)|]|—> + 0 as —>T". (5.23)

Theorem 2.4 is proved. [

Example. Take a;(s) :a|s\m71s, i=1,...,N, where a#0,m>1 are all real num-
bers. Obviously, a;€ C'(R),|a;(s)| = |a |s|",i =1, ..., N.
(1) If a>0, and if N>2, also m + 1<:25, then ¢;(s)s>0 and

P
/ ai(t) dt = 4 s <als|™™" = oi(s)s, seR, i=1,...,N,
0 m —+ 1

i.e. assumptions (i) and (iii) of Theorem 2.2 hold. So by Theorem 2.2, corresponding
problem (1.1), (1.2) admits a global weak solution ue L., ([0, T]; H3) n W ([0, T);
L,) as long as initial data ug eH&, ureL,. And when A>0, the solution has
asymptotic behavior (1.6), where E(0) as shown in (5.24).

(2) In the case of a<0.

(a) If upe W,u; € L, such that

1 2 1 2 a
0< E(0>:§||u1|| +§|\Auo|| +m—+1||vuo|\ﬁﬂ

2

m—1 1 m—1
[ 5.24
S+ 1><c* |a|> | 24

and if N>2, also m + 1<%, then assumptions (i) and (ii) of Theorem 2.1 hold. So
by Theorem 2.1, corresponding problem (1.1), (1.2) still admits a global weak
solution ue L, ([0, T); H3) n W= ([0, T); L,). And when 2>0, the solution has
decay property (1.7).
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(b) If uge H3, u; € Ly such that E(0) <0, and if >0, also 1 <m<3, then a simple
verification shows that

oi(s)s = k/‘ oi(t)dt = —kp|s|"™", seR, i=1,...,N,
0

where k =m + 1>2, = —a/k>0, i.e. assumptions (i) and (ii) of Theorem 2.4 hold.
So by Theorem 2.4, the solution u of corresponding problem (1.1), (1.2) blows up in
finite time, see (2.9) and (2.10).

(3) In the case of N = 1,0(s) = als|" 's. If m>3, a direct verification shows that
e C3(R),d”(s) is locally Lipschitz continuous, ¢’(0) = ¢”(0) = 0. So by Theorem
2.3, corresponding problem (1.3), (1.4) admits a unique generalized solution
ue C([0,T); H* A H3) n C'([0, T); H3) n C?([0, T]; L»), and when 4>0,u has decay
property (2.8) as long as initial data upe W~ H* u; € H} such that

1 , 1 ) a mel . m—1 1\
0<E0) == = —_— — | = .
< ( ) 2||u1|| +2|‘MOXX|| +m+1||u0«’€”m+l<4(m+l) C, |a|

Remark. The example shows that there exist some clear condition boundaries
similar to thresholds among the sign of a, the states of initial energy £(0) and the
existence, asymptotic behavior and nonexistence of global solutions of problem

(1.1), (1.2).
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