
 Procedia Computer Science 79 (2016) 8 – 15

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICCCV 2016
doi: 10.1016/j.procs.2016.03.003

ScienceDirect
Available online at www.sciencedirect.com

7th International Conference on Communication, Computing and Virtualization 2016

The Impacts of Test Automation on Software’s Cost, Quality and
Time to Market

Divya Kumara*, K. K. Mishrab
a,bMotilal Nehru National Institute of Technology Allahabad, Allahabad,244001, India

Abstract

In spite of the availability of most proficient quality assurance teams and tools, software testing has always been a time-
consuming task. Thus test automation is being profoundly practiced in most of the software industries to leverage the total
development time. Although the test automation has its own advantages and disadvantages and it influences various other
development phases, the higher management is particularly interested in reckoning its effects on total software’s cost, quality and
time. In this paper, we have tried to ascertain some of the critical factors related to test automation and cost/return of/from
automation. As automation is itself a pricy activity, it requires development effort and significant time, we have attempted to
enumerate test automation’s impacts on software’s cost, time and quality on three different softwares. The results of our
experiments clearly show the positive effects of test automation on cost, quality and time to market of the software.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Organizing Committee of ICCCV 2016.

Keywords: Test Automation; Software Development Cost; Quality Factors; Software’s Time to Market; Return on Investment.

1. Introduction

Software Testing is the process to bring on the latent defects into identifiable ones. This crucial phase of the
software development life cycle uncovers the hidden defects in a software product. Regardless of time-consuming
and resource-hungry nature of testing, we can never ignore it. Every newly developed or modified engineering
product is required to pass rigorous tests so as to ensure the quality of the developed product5. Software Testing
utilizes approximately 40%-50% of total resources, 30% of total effort and 50%-60% of the total cost of software
development1–4. Testing phase, being a major challenge in software development, can be considered as a fair

* Corresponding author. Tel.: +91 941 109 5353

 E-mail address: divyak@mnnit.ac.in

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICCCV 2016

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.03.003&domain=pdf

9 Divya Kumar and K.K. Mishra / Procedia Computer Science 79 (2016) 8 – 15

opportunity that can considerably help to improve and optimize software’s cost, quality and time to market. This
improvement is much desired in the present scenario when software industries are facing tough international
competition and trying to shrivel their budgets and schedules 4.

In the interest of this research paper we have classified the Software testing into two basic categories: a) Manual
Testing and b) Automated Testing. Since long and now also, we are conducting manual testing of software products;
in this type of testing a human tester executes the application and initiates various tests over it by interpreting and
analyzing the behavior of the product on various input conditions2,6. The human tester later prepares the reports and
provides comments on the quality-state of the product by comparing the actual results against the expected results.
On the other hand an Automated Testing (AT) refers to the use of some standard software solutions to control the
execution of test-cases on the Software Under Test (SUT)7,8. This process also involves setting up the preconditions,
matching the actual results against the predicted ones and then documenting the observations according to some
standard protocol9,10. Automated testing requires writing up some special computer programs to find bugs or defects
in SUT. It is an excellent approach to replace the laborious and time consuming manual testing. Automated testing
has various advantages and it is always suggested for the quality improvements of the application as it provides
formal test coverage, avoid human errors and speed up the test execution process11. Also, as it speeds up the
execution process, it is most effective solution for meeting the strict deadlines.

As a result, today, there are many commercial software tools, that allows fully automation, are available for
testing purposes and lot of organizations are engaged in providing the quality assurance/testing services. But, test
automation is a very critical process; a lot of factors, like which feature requires automated testing, are needed to be
determined before any organization proceeds for the automation testing. Also, test automation requires high primary
investments in terms of software feature analysis, scripting, tool procurement and training etc. Thus a precise
analysis of the Return on Investment (ROI) from test automation is required before we start5,12,13.

In this paper we have tried to identify and quantify the ways in which the test automation affects the three critical
software dimensions of time, cost and quality. The flow of our paper goes in the following manner: First we have
discussed the empirical annotations from the past studies over test automation. Then we have tried to model the
effects of test automation on cost, quality and time to market of the software product in the subsequent sections.
Afterwards the effects of test automation are calculated on three different software’s, through this model.

2. Literature Review

Industrial softwares are released out in versions. For any version there exists many in home local builds of that
version at developer’s site. Thousands of software developers work together to brought up any single software. In
this industrial scenario, developers usually work on the local version of the software on their machine, they modify
it repeatedly, and merge their changes with the latest build ready for release. When thousands of developers
simultaneously develop nightly (or weekly or monthly builds) it is nearly impossible to test every developer’s local
modified version build before it is merged to the main build. As the changes are generally iterative test automation is
a right answer. The software grows more with more functionality added in each release. Then, why and how much
to test the pre-existing functionalities is the difficult to decide.

A right degree of test automation of the pre-existing functionalities is always necessary, cost effective and time
saving activity. Ramler et al in4 discussed the benefits arising from the automated testing. They discussed test
automation as one solution to reduce recurring testing costs and proposed a cost based model, to decide on
automation strategy. In14 Berner et al. claimed that in an experiment automated testing relieves expert testers from
executing the same monotonous regression test suite again and again. Hence more resources (expert testers) are
available for other hard testing activities which were not possible with manual testing. They also stated that timely
maintenance of automated test suits is also required and this maintenance is a major drawback of automated testing.

Hoffman in15 well defined a trade-off between cost and benefit of test automation by considering various ROI
(return on investment) factors. From the calculations it is apparently reasonable to conclude that return from the
automation are usually seen in the next release that uses it i.e. running and re-running the automated test cases yields
considerable savings. Kasurinen et al. in16 analyzed the industrial applications of the automated testing. They
concluded with the findings that nearly 26% of the test cases are automated in industry, adoption of test automation
is a demanding effort in software industry and test automation is most commonly used for quality control and quality

10 Divya Kumar and K.K. Mishra / Procedia Computer Science 79 (2016) 8 – 15

assurance. Alan et al. in17 discussed the benefits, challenges and applications of test automation in context of various
particular domains like web applications, sensor networks and mobile phone applications etc. Bret in18 stressed on
adopting a development process similar to the development of standard software. They identified different criteria
for selecting test cases for automation.

Li et al. in19 stated that in spiral development, testing cycles are responsible for creating a demand of tools that
automate testing. They focused on the design of the tools so as to produce high-quality software in shortened time.
Being a step ahead, Damm et al. in20 describes how test-driven development is possible in industry with test
automation. They presented an approach for early detect detection in a cost effective way with the use of C++ to
write both software and test tool. Amannejad et al. in21 automate the integral testing process, ranging from test-case
design, to test scripting, to test execution and finally test-result evaluation, in an oil and gas industry and found out
that effective decisions on test automation may result in more than 100% ROI in ten rounds of test case rerunning.

 A lot more work has been done in this area which emphasizes on the importance and benefits of test automation.
However no work, to the best our knowledge, has been done to formulate and calculate the direct effect of test
automation on cost, quality and time.

3. Problem Description

The cost benefit analysis of test automation and its impacts on the overall quality and schedule of the software is
the central problem that arises from the literature review. This problem is of great significance in the scenarios of
Continuous Integration (CI)22,23 where minor changes are incorporated frequently into the software. Optimization of
regression testing cycles, in the scenarios of CI is vital because it has a great impact on revenue of the software
industry which is about to produce a new release of an old software. Recent trends have shown that automation of
regression testing (fully or partially) is the key to its optimization. And to optimize this particular wing of testing we
need to reckon certain parameters in terms of its impact on the time, cost and quality of the software arising out of
automated testing. Although a lot of research has been done in the past to calculate the ROI from test automation but
none of the author has analyzed the impacts of test automation on these parameters separately. In the next sections
we have shown, how to calculate and quantify the consequences of test automation on cost, quality and time to
market of the software.

4. Proposed Solution

4.1. Experimental Setup

To calculate the effects of test automation on software’s time to market, cost and quality, we set up an experiment
over three different of software’s. All the software’s are produced using iterative enhancement model24. In all these
software’s, after an initial release, subsequent versions of the software’s are developed with more added
functionality. The details of each of the software used in our experiment are as follows:

4.1.1. Railway’s Cloakroom and Retiring Room Management:
This software† is prepared for the digital management of Railway’s cloakroom and retiring rooms available for

the passengers. It is intended to be installed on kiosk for all the passengers having a valid PNR (Passenger Name
Record). Passenger can acquire a lock on any available free locker based on his/her choice (available choices are
small, medium or large lockers). This software is produced in five versions with the following details: In version 1
only small lockers were available. In version 2, small and large lockers were available. In version 3, small, medium
and large lockers were available. In version 4, a bug was found in the previous systems in the code fragment of
release lock; that bug was corrected by adding a new error message. In version 5, the railway system demanded a

† Available online at https://github.com/kumardivya/test_automation_cloakroom

11 Divya Kumar and K.K. Mishra / Procedia Computer Science 79 (2016) 8 – 15

new software with the functionality of retiring rooms. So while keeping the old system intact, a new functionality to
assign and release retiring rooms was also added. UI interface, format and outputs were also changed.

4.1.2. Restaurant Billing System:
This software‡ was created for restaurants, for placing orders and generating corresponding bills. However as the

restaurant grows, it was required to add more type of food items in the menu and more functionalities by the
administrator. The version specific information of is software is as follows: Version 1 is designed for restaurants
which have “one type of food and only one item under food category”. Here you can create order and generate bill
against the order. Version 2 is same as version 1 with extra items under one category of food. Version is same as
version 2 with various types of food and various items under each food category. Version 4 is same as version 3
with the extra feature of editing the order and editing the quantity if items. Version 5 is version 4 with the features of
availability of food item, i.e., if any item is unavailable then ordering of that item is not possible.

4.1.3. Mini Geometric Figure Analyzer
This software§ is used for simplifying the line-point relations in the geometrical figures. The version specific

information of is software is as follows: Version 1 is the initial version and is developed to identify the type of
triangle using length of edges of given figure. Version 2 is developed to identify the type of triangle or quadrilateral
using length of edges of given figure. In version 3 we can identify the type of triangle using length of edges or
coordinates of given figure. As done in previous version, it also finds the type of quadrilateral using length of sides.
Version 4 is developed to identify the type of triangle using length of edges or coordinates of given figure. It also
recognizes the type of quadrilateral using given coordinates or given length of sides.

4.2. Impacts of Test Automation on Software’s Cost

As described in25,26 we have measured all the cost in terms of effort which has a unit of person/months. So from
now on-words cost and effort can be used interchangeably in the forth coming text. The five types of efforts used in
our analysis, during any version i are: MTEi: Manual Testing Effort, TMEi: Automated Test-case Maintenance
Effort, ATEi: Automated Testing Effort, TAEi: Test Automation Effort, TTEi: Total Test-team Effort, STE:
Combined, total Software Testing Effort for all versions. Manual Testing Effort in any version is calculated using
Use Case Point (UCP) approach as described by Suresh in27. When we are trying to automate a test case we are
creating a whole new program, and the cost of developing this whole new software equals Test Automation Effort
which can be calculated using Boehm’s COCOMO-228 model of software cost estimation. This software is relatively
small, can be developed by a sub-team of testers or developers and have a set of less rigid requirements hence this
can be treated in the category of organic projects of COCOMO-2 with nominal value of cost drivers. To visualize
the cost impacts, let us first suppose that there is no test automation in the industry. In this situation the total test-
team effort will be equal to manual testing effort and total software testing effort will be a summation of this total
test-team effort over all k versions of the software.

In the scenario of full test automation, MTEi is calculated as given in equation 1 but only for the newly developed
features. For testing old features in the current version, we will be using test-cases which were automated in the
previous version. ATEi is taken as negligible as the whole testing work is done by machine. TAEi is calculated
through COCOMO-2 model for organic projects as in equation 4 and it is assumed that 30% of effort is utilized in
maintaining the previously written automated test case. Finally net cost impact can be calculated as the difference in
STEwith automation and STEwithout automation.

 (1)

‡ Available online at https://github.com/kumardivya/test_automation_restaurant_billing/

§ Available online at https://github.com/kumardivya/test_automation_geo_calculation/

12 Divya Kumar and K.K. Mishra / Procedia Computer Science 79 (2016) 8 – 15

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

4.3. Impacts of Test Automation on Software’s Quality

Software testing has a direct bond with software quality. Software’s quality is the level to which it coheres with
the laid specifications29 and in the testing phase we are measuring how much the software adheres to its
requirements. To perform a quantitative analysis of software’s quality ISO 9126-130 have defined six main quality
characteristics that are: Functionality, Reliability, Usability, Efficiency, Maintainability and Portability. Out of these
features Functionality (degree to which program fulfills its requirements), Reliability (extent of failure free
operations of software during a specified time slot) and Maintainability (time and effort required to analyze a failure
in an operational software, to change it and then test the changed system) prominently affect the quality of the
software. The others characteristics which are Usability, Efficiency and Portability are ignored in our analysis as
these characteristics and their measurements are isolated from the testing phase. The focused features i.e.
Functionality, Reliability and Maintainability are calculated according to the equation 9, 10 and 11 respectively.

 (9)

 (10)

 (11)

4.4. Impacts of Test Automation on Software’s Time

There is a direct correlation between time and effort31–34. The impacts of test automation on the total time to
market of the software can be calculated simply by adjusting the gained or lost effort from equation 8. We have used
the COCOMO-2’s second equation for calculation the development time based on the required effort. Although this
equation is used to calculate the total development time needed for the production of whole software, this equation
is used for the effort to time conversion also. In our calculations we have used the second formula of COCOMO-2
for organic type of projects and nominal value of cost drivers, as given in equation 12. The reader may use other
value of COCOMO-2 coefficients c, d, if their projects are semi-detached or embedded type.

 (12)

13 Divya Kumar and K.K. Mishra / Procedia Computer Science 79 (2016) 8 – 15

Ta
bl

e
1:

 C
os

t Q
ua

lit
y

an
d

Ti
m

e
Im

pa
ct

s o
f T

es
t A

ut
om

at
io

n

So
ftw

ar
e

V
er

si
on

C
os

t a
nd

 T
im

e
Im

pa
ct

Q

ua
lit

y
Im

pa
ct

W
ith

ou
t A

ut
om

at
io

n
W

ith
 A

ut
om

at
io

n
W

ith
ou

t A
ut

om
at

io
n

W
ith

 A
ut

om
at

io
n

A
U

C
P=

M
TE

=T
TE

=S
TE

M

TE

K
LO

C

TA
E

TM
E

ST
E

F
R

M

F

R

M

Software 1:
Railway’s Cloakroom

and Retiring Room
Management

1
39

39

12

80

3.
11

0

42

.1
1

4

0.
7

0.

61

3

0.
9

0.

55

2
45

8

10
80

2.

60

0.
93

11

.5
3

3

0.
9

0.

69

4

0.
7

0.

65

3
52

8

10
77

2.

59

0.
73

11

.3
7

5

0.
5

0.

77

3

0.
9

0.

64

4
60

11

12

33

2.
99

0.

77

14
.7

6
6

0.

4

0.
74

5

0.

5

0.
52

5
85

17

14

86

3.
63

0.

89

21
.5

3
6

0.

4

0.
72

3

0.

9

0.
51

To
ta

l
28

1

10
1.

32

C

os
t I

m
pa

ct

17
9.

67

Ti

m
e

Im
pa

ct

3.
04

5

Software 2:
Restaurant Billing

System

1
35

35

14
30

3.

49

0

38
.4

9
2

0.

6

0.
67

3

0.

9

0.
57

2
55

21

13
65

3.

32

1.
04

25

.3
7

3

0.
6

0.

68

3

0.
7

0.

61

3
50

15

15
00

3.

67

0.
99

19

.6
7

2

0.
7

0.

60

1

0.
9

0.

63

4
60

15

14
00

3.

41

1.
10

19

.5
1

4

0.
7

0.

64

3

0.
8

0.

61

5
70

15

16
00

3.

93

1.
02

19

.9
5

1

0.
8

0.

56

1

0.
8

0.

51

To
ta

l
27

0

12
3.

01

C

os
t I

m
pa

ct

14
6.

98

Ti

m
e

Im
pa

ct

3.
02

2

Software 3:
Mini Geometric
Figure Analyzer

1
50

50

12
86

3.

12

0

53
.1

2
5

0.

6

0.
66

3

0.

9

0.
55

2
51

10

19
68

4.

88

0.
93

15

.8
2

4

0.
9

0.

68

4

0.
9

0.

64

3
66

14

14
56

3.

56

1.
46

19

.0
2

3

0.
9

0.

76

3

0.
9

0.

63

4
68

10

15
89

3.

90

1.
06

14

.9
7

5

0.
8

0.

71

3

0.
9

0.

52

To
ta

l
23

5

10
2.

94

C

os
t I

m
pa

ct

13
2.

05

Ti

m
e

Im
pa

ct

3.
00

9

14 Divya Kumar and K.K. Mishra / Procedia Computer Science 79 (2016) 8 – 15

5. Results

For all the software projects deployed in our study, there are all around favorable impacts of software test
automation. Table 1 shows the impacts of test automation on three software’s i.e. Railway’s Cloakroom and Retiring
Room Management, Restaurant Billing System and Mini Geometric Figure Analyzer. The effect of test automation
is measured along the all versions of these software’s. All It is a common observation in all the projects that there is
a positive cost and time impacts of test automation and quality is also improved in most of the cases as program is
found incorrect fewer numbers of times with automated test cases than with manual testing. The availability
increases in all the cases and relative time in testing is also fairly decreased because of test automation.

6. Conclusion and Future Work

Software testing has a prime importance in software’s verification and validation. It is important because of two
main reasons, first, it assures software quality, and second, nearly 60% of the total software’s cost is spend over
different types of testing. Regression testing is the object of interest in this paper and we have detailed the effects of
automation of regression tests over the software’s cost, quality and time to market. In our experiments in we have
used three different software’s which are, developed in versions. We have formulated mathematical models, based
on the various significant testing effort factors, to quantify the impact of test automation. Although, automation of
test cases have a high implementation and maintenance costs, from our experiments we have found that, automation
of test cases can give remarkable returns in the long runs where we run and rerun the automated-tests, multiple
times. We have also found that test automation has positive effects on software quality. Hence we can claim that test
automation increases the overall effectiveness of the testing process when we have repetitive testing tasks which are
similar. This work can be extended in future by adding more variable automation cost factors in the analysis to make
it more precise and accurate. The concept of automatic test data generation can also be combined with the present
research.

References

1. Kit, E. & Finzi, S. Software Testing in the Real World: Improving the Process. (ACM Press/Addison-Wesley Publishing Co.: New York,
NY, USA, 1995).

2. Myers, G. J., Sandler, C. & Badgett, T. The art of software testing. (John Wiley & Sons: 2011).
3. Oster, N. & Saglietti, F. Automatic test data generation by multi-objective optimisation. SAFECOMP 4166, 426–438 (2006).
4. Ramler, R. & Wolfmaier, K. Economic perspectives in test automation: balancing automated and manual testing with opportunity cost.

Proceedings of the 2006 international workshop on Automation of software test 85–91 (2006).
5. Jalote, P. An integrated approach to software engineering. (Springer Science & Business Media: 2012).
6. Hetzel, B. The Complete Guide to Software Testing. (QED Information Sciences, Inc.: Wellesley, MA, USA, 1988).
7. Dustin, E., Rashka, J. & Paul, J. Automated software testing: introduction, management, and performance. (Addison-Wesley Professional:

1999).
8. Hoffman, D. Test automation architectures: planning for test automation. Quality Week 37–45 (1999).
9. Page, A., Johnston, K. & Rollison, B. How we test software at Microsoft. (Microsoft Press: 2008).
10. Pettichord, B. Seven steps to test automation success. STAR West, San Jose, NV, USA (1999).
11. Dustin, E. Effective Software Testing: 50 Ways to Improve Your Software Testing. (Addison-Wesley Longman Publishing Co., Inc.: 2002).
12. Bertolino, A. Software testing research: Achievements, challenges, dreams. 2007 Future of Software Engineering 85–103 (2007).
13. Stobie, K. Too much automation or not enough? When to automate testing. Pacific Northwest Software Quality Conference (2009).
14. Berner, S., Weber, R. & Keller, R. K. Observations and lessons learned from automated testing. Proceedings of the 27th international

conference on Software engineering 571–579 (2005).
15. Hoffman, D. Cost benefits analysis of test automation. STAR West 99, (1999).
16. Kasurinen, J., Taipale, O. & Smolander, K. Software test automation in practice: empirical observations. Advances in Software Engineering

2010, (2010).
17. Hartman, A., Katara, M. & Paradkar, A. Domain Specific Approaches to Software Test Automation. The 6th Joint Meeting on European

Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering: Companion Papers
621–622 (2007).doi:10.1145/1295014.1295062

18. Pettichord, B. Success with test automation. Ninth International Quality Week, Software Research, San Francisco (1996).
19. Li, K. & Wu, M. Effective software test automation: developing an automated software testing tool. (John Wiley & Sons: 2006).
20. Damm, L.-O., Lundberg, L. & Olsson, D. Introducing Test Automation and Test-Driven Development: An Experience Report. Electronic

Notes in Theoretical Computer Science 116, 3–15 (2005).

15 Divya Kumar and K.K. Mishra / Procedia Computer Science 79 (2016) 8 – 15

21. Amannejad, Y., Garousi, V., Irving, R. & Sahaf, Z. A Search-Based Approach for Cost-Effective Software Test Automation Decision
Support and an Industrial Case Study. Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh International
Conference on 302–311 (2014).doi:10.1109/ICSTW.2014.34

22. Fitzgerald, B. & Stol, K.-J. Continuous software engineering and beyond: trends and challenges. Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering 1–9 (2014).

23. Turk, D., France, R. & Rumpe, B. Assumptions underlying agile software development processes. arXiv preprint arXiv:1409.6610 (2014).
24. Larman, C. & Basili, V. R. Iterative and incremental development: A brief history. Computer 47–56 (2003).
25. Kemerer, C. F. An empirical validation of software cost estimation models. Communications of the ACM 30, 416–429 (1987).
26. Pressman, R. S. Software engineering: a practitioner’s approach. (Palgrave Macmillan: 2005).
27. Nageswaran, S. Test effort estimation using use case points. Quality Week 1–6 (2001).
28. Boehm, B. W., Madachy, R., Steece, B. & others Software cost estimation with Cocomo II with Cdrom. (Prentice Hall PTR: 2000).
29. Kitchenham, B. & Pfleeger, S. L. Software quality: The elusive target. IEEE software 12–21 (1996).
30. Iso, I. IEC 9126-1: Software Engineering-Product Quality-Part 1: Quality Model. Geneva, Switzerland: International Organization for

Standardization (2001).
31. Agrawal, M. & Chari, K. Software effort, quality, and cycle time: A study of CMM level 5 projects. Software Engineering, IEEE

Transactions on 33, 145–156 (2007).
32. Boehm, B. W. & others Software engineering economics. 197, (Prentice-hall Englewood Cliffs (NJ): 1981).
33. Capra, E., Francalanci, C. & Merlo, F. An empirical study on the relationship between software design quality, development effort and

governance in open source projects. Software Engineering, IEEE Transactions on 34, 765–782 (2008).
34. Lind, R. K. & Vairavan, K. An experimental investigation of software metrics and their relationship to software development effort. IEEE

Transactions on Software Engineering 649–653 (1989).

